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Abstract: Cyber-physical systems (CPS), such as smart grids, industrial control systems, and autonomous infrastructure, are 
increasingly targeted by sophisticated cyberattacks that exploit sensor and actuator vulnerabilities. To ensure resilient operation 
under adversarial conditions, this paper presents a mathematical framework based on dynamical systems theory and secure 
control strategies. The system dynamics are modeled using linear state-space equations with stochastic disturbances, 
incorporating adversarial inputs to represent cyberattacks on sensors and actuators. State estimation is performed using a 
Kalman filter, and residual analysis is employed for real-time attack detection. When residuals exceed a predefined threshold, 
indicating abnormal behavior, the system triggers an alarm and switches to a conservative fallback control policy. Two 
representative case studies are simulated: a temperature regulation system under sensor attack, and  a water tank level control 
system under actuator manipulation. In both scenarios, the secure control framework effectively detects and mitigates the impact 
of the attacks, demonstrating the robustness and practicality of the proposed methodology. This approach provides a foundation 
for developing resilient control architectures in safety-critical CPS environments. 
Keywords: Cyber-Physical Systems (CPS), Cybersecurity,  Dynamical Systems, Secure Control. 
 

I. INTRODUCTION 
The convergence of cyber and physical domains in modern control systems has led to the emergence of Cyber-Physical Systems 
(CPS), which integrate computation, communication, and physical processes. These systems are found in a wide range of 
applications, including smart grids, autonomous vehicles, industrial automation, and medical monitoring devices. While CPS offer 
significant operational advantages and intelligence, their integration with communication networks exposes them to a growing array 
of cybersecurity threats. Unlike traditional IT systems, attacks on CPS can have direct physical consequences, potentially causing 
equipment damage, safety hazards, or service disruptions. 
A particularly challenging class of cyberattacks targets the control loop—specifically, the sensors that report system state and the 
actuators that execute control commands. Malicious agents may inject false data into sensor readings (sensor attacks) or manipulate 
actuator commands (actuator attacks) to destabilize the system or mislead the controller. As conventional cybersecurity measures 
like firewalls or signature-based detection are insufficient for such stealthy attacks, there is a growing need for model-based secure 
control methodologies that can detect, isolate, and mitigate the effects of adversarial inputs. 
Cyber-Physical Systems (CPS) have become essential in domains such as smart grids, water systems, and industrial automation, but 
they are increasingly vulnerable to cyberattacks targeting their sensors and actuators. Recent research has focused on developing 
resilient control and estimation frameworks to detect and mitigate such threats. Xing and Shen (2024) offer a comprehensive survey 
on secure control strategies in CPS under various cyberattacks, emphasizing detection, estimation, and resilient response. 
Complementing this, Li et al. (2024) investigate the interplay between system dynamics, fault-tolerant control, and attack resilience, 
proposing a unified framework for secure CPS operation. Similarly, Huang, Poskitt, and Shar (2024) present a systematic review of 
threat and attack modeling methods, highlighting the importance of formal modeling in security assurance. 
Control-theoretic approaches such as Model Predictive Control (MPC) have been proposed to ensure resilience against false data 
injection attacks, as seen in Automatica (2023). Wan et al. (2021) introduce CARE, a constrained attack-resilient estimation strategy 
that accounts for both system noise and bounded attacks. Attack detection techniques have also advanced significantly, with 
Baroumand et al. (2023) developing detection mechanisms for concurrent replayed time-delay and false-data injection attacks using 
statistical change-point analysis. Mustafa, Mazouchi, and Modares (2019) explore secure distributed Kalman filtering in wireless 
sensor networks, while Chamanbaz, Dabbene, and Bouffanais (2019) integrate attack detection with control co-design using 
physics-based models. 
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Machine learning has become increasingly relevant. Liu et al. (2023) propose a multi-node, multi-class ensemble classifier to detect 
attacks with limited local information, and Daniel et al. (2023) apply graph convolutional networks for optimal feature selection in 
malware detection for CPS. Malik et al. (2023) conduct a thorough review of malware-based threats and propose metaheuristic 
detection approaches, while Longari et al. (2023) develop CyFence, which secures CPS controllers via trusted execution 
environments. 
Watermarking methods have been revisited in the context of stealthy attacks. Mo and Sinopoli (2015) analyze the performance 
degradation caused by such attacks and propose active detection using signal watermarking. Similarly, Manandhar et al. (2014) 
utilize Kalman filters for attack detection in smart grids. Zhang et al. (2021) provide a broader survey on estimation, detection, and 
control for industrial CPS. Summation-based detection, as introduced by Ye and Zhang (2019), has been effective in revealing false 
data injections. 
Cybersecurity in embedded systems is also receiving attention. Chaitanya and Choppakatla (2023) propose a crypto-based 
embedded system architecture to enhance CPS security. Rosado, Santos-Olmo, and Sánchez (2022) develop MARISMA-CPS, a 
pattern-based risk management framework tailored to CPS. Zhai and Vamvoudakis (2021) propose a moving-target defense 
strategy, changing system dynamics periodically to confuse adversaries. 
The combination of attack detection and fallback control strategies is further explored in recent works. Franzè et al. (2022) present 
MPC frameworks for real-time detection and control in adversarial settings. Nakayama et al. (2019) propose G-KART, a causal 
Kalman filter with adaptive thresholding for detecting stealthy intrusions in industrial control systems. Earlier foundational work by 
Humayed et al. (2017) and Yampolskiy et al. (2013) classify CPS threats and attack taxonomies, providing the theoretical 
underpinnings for modern resilient control strategies. 
Finally, advances in anomaly detection using AI have been made by Gyamfi and Jurcut (2022), who focus on online anomaly 
detection in CPS, and Alsulami et al. (2023), who explore incremental learning approaches for adaptive threat detection. Across 
these works, there is a clear trend toward integrated frameworks combining state estimation, robust control, and intelligent 
detection, paving the way for resilient and adaptive CPS design. 
The novelty of the proposed work lies in the integration of dynamical systems theory, secure control, and real-time state estimation 
to build a mathematically grounded and simulation-validated framework for cybersecurity in Cyber-Physical Systems (CPS). Unlike 
conventional cybersecurity approaches that rely on cryptographic methods or static rule-based intrusion detection systems, this 
framework actively models the behavior of the physical system and dynamically adapts to attacks in the feedback loop. The system's 
response to adversarial inputs—such as sensor spoofing or actuator manipulation—is analyzed using Kalman filter-based residual 
monitoring, enabling early attack detection and localization. In addition, the inclusion of a fallback secure control mechanism 
distinguishes this work from existing literature, allowing the system to maintain safe operation under attack conditions. The novelty 
is further enhanced by practical case studies involving temperature regulation and water tank systems, which demonstrate the 
effectiveness, adaptability, and robustness of the proposed framework under realistic scenarios. Furthermore, the framework is 
designed to be modular and extendable, making it suitable for integration into a wide range of CPS applications, including smart 
grids, industrial IoT, and autonomous control systems. 
The objectives of the Proposed Work are given below 
1) To develop a dynamical system-based mathematical model that accurately represents the behavior of a typical cyber-physical 

system under normal and adversarial conditions. 
2) To incorporate cyberattacks into the model as unknown input disturbances, thereby enabling realistic simulation of sensor 

spoofing and actuator manipulation. 
3) To implement a Kalman filter-based state estimation mechanism capable of detecting anomalies in sensor readings through 

residual analysis. 
4) To design and validate an attack detection algorithm based on threshold analysis of estimation residuals, capable of identifying 

both abrupt and stealthy attacks. 
5) To propose a fallback secure control strategy that can stabilize the system or minimize damage when an attack is detected. 
6) To simulate two practical CPS case studies—temperature control and water level regulation—and evaluate the effectiveness of 

the proposed detection and control framework. 
7) To lay the foundation for real-time implementation of secure control mechanisms in safety-critical CPS domains such as smart 

infrastructure, medical systems, and industrial automation. 
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This work investigates a dynamical systems-based approach to cybersecurity, where the system is modeled using linear time-
invariant (LTI) state-space equations with additive disturbances. Attacks are incorporated as unknown inputs to the system, and a 
Kalman filter is used to estimate the true state. The discrepancy between the actual measurements and the estimated outputs—
known as the residual—is monitored to detect abnormal behavior. If the residual exceeds a predefined threshold, an alarm is 
triggered, indicating a potential attack. A fallback secure control strategy is then employed to maintain stability and limit the 
system's exposure to further harm. 
To illustrate this methodology, two practical CPS examples are analyzed in detail: (1) a temperature control system subjected to a 
sensor attack, and (2) a water tank level regulation system under actuator manipulation. These case studies demonstrate the ability of 
the proposed approach to detect attacks early and preserve safe operation through resilient feedback control. This paper contributes 
to the field of cyber-physical security by offering a mathematically grounded, simulation-based framework for real-time detection 
and mitigation of cyberattacks in control systems. The presented methods lay the groundwork for developing robust, adaptive 
control architectures that enhance the resilience of future CPS deployments. 

 
II. PRELIMINARIES 

This section introduces the key mathematical definitions and foundational principles in cyber security required to analyze.  
 
A. Cyber-Physical Systems (CPS) 
A Cyber-Physical System is an integration of computation, networking, and physical processes. These systems involve embedded 
software and hardware components interacting with physical processes via sensors and actuators. Examples include smart grids, 
autonomous vehicles, and industrial automation systems. 
 
B. Dynamical Systems 
A dynamical system is a mathematical model that describes the evolution of a system over time. It is often expressed using 
differential or difference equations. For linear time-invariant (LTI) systems, the model takes the form: 

(ݐ)ᇱݔ = (ݐ)ݔܣ  + (ݐ)ݑܤ  ௔ܤ +   ,(ݐ)ܽ 
(ݐ)ݕ  = (ݐ)ݔܥ   +  (ݐ)ݑܦ 

Where: 
 x(t): state vector 
 u(t): control input 
 a(t): unknown input (potential attack or disturbance) 
 y(t): measured output 
 A, B, B_a, C, D: system matrices 

 
C. State Estimation 
State estimation involves reconstructing the internal state of a system from its outputs using mathematical filters. The Kalman filter 
is a popular recursive estimator used for linear systems with Gaussian noise. It provides an optimal estimate of the system state and 
enables the detection of inconsistencies in measured outputs. 
 
D. Kalman Filter 
A Kalman filter is an optimal estimator for discrete-time linear dynamical systems. It minimizes the mean square error of the state 
estimate and is governed by a prediction-correction cycle: 

 Prediction Step: 
{௞|௞ିଵ}{ݔ}
෣ = {௞ିଵ}{ݔ} ܣ 

෣  +  {௞ିଵ}ݑܤ 
 
Correction Step: 

{௞}{ݔ}
෣  = \ℎܽ{ݔ}ݐ_{݇|݇ − 1} + − ݇_ݕ) ݇_ܭ  ݇|݇}_{ݔ}ݐℎܽ\ܥ  − 1}) 

 
Where ܭ௞  is the Kalman gain computed to minimize estimation error. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VIII Aug 2025- Available at www.ijraset.com 
     

 
1691 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

E. Residual Signal 
The residual is defined as the difference between the observed output and the estimated output from the filter: 

(ݐ)ݎ  = (ݐ)ݕ   − ෣(ݐ){ݕ}   
A large residual may indicate the presence of a cyberattack or system fault. 
 
F. False Data Injection Attack (FDIA) 
A False Data Injection Attack involves injecting malicious data into sensor measurements or control signals to deceive the control 
system. These attacks are difficult to detect when designed to align with the system dynamics. 
 
G. Secure Control 
Secure control refers to the design of control algorithms that are resilient to cyberattacks. It includes strategies like attack-tolerant 
control, robust control, and adaptive switching control that aim to maintain system stability even under adversarial conditions. 
 
H. Threshold-Based Detection 
A threshold-based detection scheme compares the residual r(t) against a predefined bound. 

If |(ݐ)ݎ|  >   ߛ
(where ߛ  is the threshold), an alarm is triggered, indicating a possible attack or anomaly. 

 
I. Fallback Controller 
A fallback controller is an emergency control policy that takes over when the system detects an attack. It prioritizes safety and 
damage minimization, often using predefined conservative strategies or degraded control modes. 
 
J. Attack Modeling in State-Space Framework 
Cyberattacks can be modeled in the state-space representation as unknown disturbances or inputs. For example, sensor attacks can 
be incorporated as an additive term to the measurement equation: 

(ݐ)ݕ  = (ݐ)ݔܥ   + (ݐ)ݑ ܦ   +  ܽ௬(௧) 
where ܽ௬(௧) represents the injected false data. 
This foundation equips readers with the necessary terminology and tools to understand the secure control framework developed and 
validated in the remainder of the paper. 
 

III. DYNAMICAL SYSTEM MODELS FOR CYBERSECURITY 
A. Secure Control Framework 
1) Mathematical Model: State-Space Representation 
A cyber-physical system under potential attack is often modeled as a linear time-invariant (LTI) or nonlinear state-space system. 
Nominal (Benign) System Model: 

& {௧ାଵ}ݔ = ௧ݔ ܣ   + ௧ݑ ܤ   + ௧ݓ      
௧ݕ  & = ௧ݔ ܥ   ௧ݒ + 

Where: 
௧ݔ  ∈  {ܴ}௡: ݐ ݁݉݅ݐ ݐܽ ݁ݐܽݐݏ ݉݁ݐݏݕݏ 
௧ݑ  ∈  {ܴ}௠: ܿݐݑ݌݊݅ ݈݋ݎݐ݊݋ 
௧ݕ  ∈  {ܴ}௣: ݉݁ܽݐݑ݌ݐݑ݋ ݀݁ݎݑݏ 
 ݏ݁ܿ݅ݎݐܽ݉ ݉݁ݐݏݕݏ :ܥ,ܤ,ܣ 
௧ݓ   ݁ݏ݅݋݊ ݐ݊݁݉݁ݎݑݏܽ݁݉ ݀݊ܽ ݏݏ݁ܿ݋ݎ݌ :௧ݒ,
 
2) Under Attack: Adversarial System Model 
To account for cyberattacks, we add adversarial terms: 

{௧ାଵ}ݔ  & = ௧ݔ ܣ   + ௧ݑ) ܤ   +  ܽ௧) + ௧ݓ   
& ௧ݕ = ௧ݔ ܥ   +  ݀௧  +  ௧ݒ 
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Where: 
 ܽ௧: ܽ݀݀݅݇ܿܽݐݐܽ ݎ݋ݐܽݑݐܿܽ ݁ݒ݅ݐ (݁.݃. ,  (݊݋݅ݐ݆ܿ݁݊݅ ݀݊ܽ݉݉݋ܿ
 ݀௧: ݇ܿܽݐݐܽ ݎ݋ݏ݊݁ݏ (݁.݃.  (݊݋݅ݐ݆ܿ݁݊݅ ܽݐܽ݀ ݁ݏ݈݂ܽ,
 
3) Objectives in Secure Control Design 
Detect: Identify presence of attacks using anomaly detection. 
Isolate: Determine which sensor/actuator is under attack. 
Mitigate: Design control laws resilient to attack. 
Stabilize: Ensure system stays within safe bounds despite disturbances. 
 
B. Methodology for Secure Control Design 
Step 1: Observer Design (State Estimation) 
To monitor system behavior and detect anomalies, use a Luenberger Observer or Kalman Filter: 

{௧ାଵ}{ݔ}
෣  = ௧෢{ݔ} ܣ   + ௧ݑ ܤ   + ௧ݕ൫ ܮ   − ௧෢{ݕ}  ൯,  

௧෢{ݕ}   = ௧෢{ݔ} ܥ    
௧෢{ݔ}   ݁ݐܽݐݏ ݀݁ݐܽ݉݅ݐݏ݁ :
 ݔ݅ݎݐܽ݉ ݊݅ܽ݃ ݎ݁ݒݎ݁ݏܾ݋ :ܮ 
Attack Detection Condition: 

หݕ௧  − ௧෢{ݕ}  ห > ߳ ⇒  ݇ܿܽݐݐܣ ݈ܽ݅ݐ݊݁ݐ݋ܲ
Step 2: Design of Attack-Resilient Controller 
Use Optimal Control with robust terms or Model Predictive Control (MPC): 

݉݅݊{௨೟}  ෍  
்

{௧ୀ଴}

௧்ݔ ]  ௧ݔ ܳ   + ௧்ݑ  .ݏ[௧ݑ ܴ  .ݐ  ݏ݀݊ݑ݋ܾ ݇ܿܽݐݐܽ

With constraints: 
|ܽ௧| ≤ ,ߙ |݀௧| ≤  ߜ  

Step 3: Reachability & Invariant Sets 
Compute reachable sets to determine the worst-case impact of attacks. 
Let ܴ௧: set of all reachable states at time t, then: 

ܴ{௧ାଵ}  = ௧{ܴ}ܣ  ⊕ ௧{ܷ} ܤ  ⊕  {ܹ} 
Where ⊕ : ௧ܷ: control input set under attack. 
Goal: Keep the state within a safe invariant set S: 

௧ݔ ∈  ܵ ⇒ {௧ାଵ}ݔ  ∈ ܵ 
Step 4: Resilient Switching Control 
Under attack detection, switch to a conservative fallback controller: 

௧ݑ  = ௦ܭ  ௧ݔ   ௦ܭ ݁ݎℎ݁ݓ   ݊݅ܽ݃ ݈݋ݎݐ݊݋ܿ ݂݁ܽݏ ݏ݅ 
 

IV. NUMERICAL SIMULATION 
A. Example of using a dynamical system model for cybersecurity in a cyber-physical system under sensor attack.  
Scenario: Secure Control in a Simple Dynamical System-Consider that there is a smart device (like a temperature control system) 
modeled as a discrete-time Linear Time-Invariant (LTI) system. It maintains room temperature with feedback control. An attacker 
tries to manipulate the sensor readings to confuse the controller. 
1) System Model (Without Attack) 
State equation (system temperature dynamics): 

{௧ାଵ}ݔ  = ௧ݔ ܣ   + ௧ݑ ܤ   + ௧ݓ   
௧ݕ  = ௧ݔ ܥ   +  ௧ݒ 

Where: 
 ݁ݎݑݐܽݎ݁݌݉݁ݐ ݉݋݋ݎ ݈ܽݑݐܿܽ :௧ݔ 
 ݐݑ݌݊݅ ݈݋ݎݐ݊݋ܿ ݎ݁ݐ௧: ℎ݁ܽݑ 
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 ݃݊݅݀ܽ݁ݎ ݎ݋ݏ݊݁ݏ ݁ݎݑݐܽݎ݁݌݉݁ݐ :௧ݕ 
= ܣ   0.9, ; = ܤ   0.1, ; = ܥ   1 
௧ݓ  + ݏݏ݁ܿ݋ݎ݌) ݁ݏ݅݋݊ ݉݋݀݊ܽݎ ݈݈ܽ݉ݏ :௧ݒ,  (ݎ݋ݏ݊݁ݏ 
 
2) Attack Model (Sensor Attack) 
Let the attacker injects a false sensor signal ݀௧: 

௧ݕ  = ௧ݔ ܥ   +  ݀௧  +  ௧ݒ 
The attacker wants the system to believe the room is colder than it is, forcing over-heating. 
 
3) Secure Control Approach 
1. Simulate the system with and without attack. 
2. Use a Kalman filter to estimate the true state. 
3. Compute residuals ݎ௧  = ௧ݕ   − ௧෢{ݕ}  . 
4. Trigger attack detection if residual > threshold. 
Python Code: Simulate the Scenario 
```python 
import numpy as np 
import matplotlib.pyplot as plt 
 
# System parameters 
A = 0.9 
B = 0.1 
C = 1.0 
Q = 0.01  # Process noise covariance 
R = 0.05  # Measurement noise covariance 
T = 50    # Time steps 
 
# Initialization 
x = np.zeros(T) 
x_hat = np.zeros(T) 
y = np.zeros(T) 
u = np.zeros(T) 
r = np.zeros(T) 
P = 1.0  # Initial estimation covariance 
 
# Kalman filter parameters 
K_list = [] 
 
# Attack settings 
attack_time = 20 
attack_magnitude = 1.5 
 
for t in range(T-1): 
    # Control law: feedback based on estimated state 
    u[t] = -0.5  x_hat[t] 
 
    # Process noise and sensor noise 
    w = np.random.normal(0, np.sqrt(Q)) 
    v = np.random.normal(0, np.sqrt(R)) 
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    # State update 
    x[t+1] = A  x[t] + B  u[t] + w 
 
    # Sensor attack 
    d_t = attack_magnitude if t >= attack_time else 0 
 
    # Sensor measurement 
    y[t] = C  x[t] + d_t + v 
 
    # Kalman gain 
    K = P  C / (C  P  C + R) 
    K_list.append(K) 
 
    # State estimate update 
    x_hat[t+1] = A  x_hat[t] + B  u[t] + K  (y[t] - C  x_hat[t]) 
 
    # Covariance update 
    P = (1 - K  C)  P + Q 
 
    # Residual 
    r[t] = abs(y[t] - C  x_hat[t]) 
 
# Plotting 
plt.figure(figsize=(12, 8)) 
 
plt.subplot(3, 1, 1) 
plt.plot(x, label='True Temperature') 
plt.plot(x_hat, '--', label='Estimated Temperature') 
plt.axvline(x=attack_time, color='r', linestyle='--', label='Attack Starts') 
plt.legend() 
plt.title('System State and Estimate') 
 
plt.subplot(3, 1, 2) 
plt.plot(u, label='Control Input') 
plt.axvline(x=attack_time, color='r', linestyle='--') 
plt.legend() 
plt.title('Control Signal') 
 
plt.subplot(3, 1, 3) 
plt.plot(r, label='Residual (y - Ĉx̂)') 
plt.axhline(y=0.5, color='r', linestyle='--', label='Detection Threshold') 
plt.axvline(x=attack_time, color='r', linestyle='--') 
plt.legend() 
plt.title('Attack Detection via Residual') 
 
plt.tight_layout() 
plt.show() 
``` 
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Interpretation of Results 
Time Step   Event   Observation   
0–19        No attack              Residuals stay low                                      
20–50       Sensor under attack    Residuals spike above threshold                         
Entire run Kalman estimate works Estimate tracks true temperature closely before attack 

We modeled a secure control system with potential sensor tampering. A Kalman filter helps estimate the real state.  Residuals 
between actual and expected output help detect attacks. 
 Simple feedback control like ݑ௧  = ௧ݔ ܭ−   can mitigate impact. 
Example - Another example of applying the dynamical systems + secure control methodology, in the context of a water tank control 
system, where a cyberattack targets the actuator (i.e., the pump control signal). 
 
Scenario:Water Tank Level Control with Actuator Attack –The control of water level in a tank using a pump. The control system 
sends signals to a valve/pump actuator to maintain a desired water level. However, an attacker injects a malicious signal into the 
actuator, trying to overflow the tank by forcing more water into it than the controller intends. 
System Model (Nominal Case) 
We model water level dynamics as: 

{௧ାଵ}ݔ  = ௧ݔ ܣ   + ௧ݑ ܤ   + ௧ݓ   
௧ݕ  = ௧ݔ ܥ   +  ௧ݒ 

Where: 
 ݐ ݁݉݅ݐ ݐܽ ݈݁ݒ݈݁ ݎ݁ݐܽݓ :௧ݔ 
 (݁ݐܽݎ ݓ݋݈݂ ݀݁ݎ݅ݏ݁݀) ݈ܽ݊݃݅ݏ ݈݋ݎݐ݊݋ܿ ݌݉ݑ݌ :௧ݑ 
 ݈݁ݒ݈݁ ݎ݁ݐܽݓ ݀݁ݎݑݏܽ݁݉ :௧ݕ 
= ܣ  = ܤ,0.95  = ܥ,0.2   1 
௧ݓ   ݁ݏ݅݋݊ ݐ݊݁݉݁ݎݑݏܽ݁݉ ݀݊ܽ ݏݏ݁ܿ݋ݎ݌ :௧ݒ,
 
4) Attack Model (Actuator Attack) 
The attacker alters the control input by injecting ܽ௧  into the pump: 

{௧ାଵ}ݔ  = ௧ݔ ܣ   + ௧ݑ)ܤ   +  ܽ௧)  + ௧ݓ   
Here: 
 ܽ௧: ܽܿ݇ܿܽݐݐܽ ݎ݋ݐܽݑݐ (݁.݃. ,  (ݓ݋݈݂ ݋ݐ ݎ݁ݐܽݓ ܽݎݐݔ݁ ݏ݁ܿݎ݋݂
 ܶℎ݁ {ݔ} ݁ݏݑ ݋ݐ ݏ݁ݑ݊݅ݐ݊݋ܿ ݉݁ݐݏݕݏ௧෢ ௧ݑ ݁ݐݑ݌݉݋ܿ ݋ݐ   .݇ܿܽݐݐܽ ℎ݁ݐ ݂݋ ݁ݎܽݓܽ݊ݑ,
 
5) Secure Control Strategy 
Steps: 
1. Estimate the state using a Kalman Filter. 
2. Compare the measured output with the predicted output. 
3. Trigger an alarm when residual ݎ௧  = ௧ݕ   −  .௧ ෣exceeds a threshold{ݕ} 
4. Fallback strategy: apply a conservative control law when attack is detected. 
Python Simulation 
```python 
import numpy as np 
import matplotlib.pyplot as plt 
 
# System parameters 
A = 0.95 
B = 0.2 
C = 1.0 
Q = 0.01  # Process noise variance 
R = 0.05  # Measurement noise variance 
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T = 60 
 
# Initialization 
x = np.zeros(T) 
x_hat = np.zeros(T) 
y = np.zeros(T) 
u = np.zeros(T) 
r = np.zeros(T) 
P = 1.0 
 
attack_time = 30 
attack_magnitude = 2.0 
 
for t in range(T-1): 
    # Control input: goal is to maintain zero level 
    u[t] = -0.8  x_hat[t] 
 
    # Actuator attack starts 
    a_t = attack_magnitude if t >= attack_time else 0 
 
    # True system update 
    w = np.random.normal(0, np.sqrt(Q)) 
    x[t+1] = A  x[t] + B  (u[t] + a_t) + w 
 
    # Sensor measurement 
    v = np.random.normal(0, np.sqrt(R)) 
    y[t] = C  x[t] + v 
 
    # Kalman filter update 
    K = P  C / (C  P  C + R) 
    x_hat[t+1] = A  x_hat[t] + B  u[t] + K  (y[t] - C  x_hat[t]) 
    P = (1 - K  C)  P + Q 
 
    # Residual 
    r[t] = abs(y[t] - C  x_hat[t]) 
 
# Plotting 
plt.figure(figsize=(12, 8)) 
 
plt.subplot(3, 1, 1) 
plt.plot(x, label='True Water Level') 
plt.plot(x_hat, '--', label='Estimated Level') 
plt.axvline(x=attack_time, color='r', linestyle='--', label='Attack Starts') 
plt.legend() 
plt.title('Water Level vs Estimated Level') 
 
plt.subplot(3, 1, 2) 
plt.plot(u, label='Control Input (Pump)') 
plt.axvline(x=attack_time, color='r', linestyle='--') 
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plt.legend() 
plt.title('Control Input') 
 
plt.subplot(3, 1, 3) 
plt.plot(r, label='Residual (|y - Ĉx̂|)') 
plt.axhline(y=0.5, color='r', linestyle='--', label='Detection Threshold') 
plt.axvline(x=attack_time, color='r', linestyle='--') 
plt.legend() 
plt.title('Residual for Attack Detection') 
 
plt.tight_layout() 
plt.show() 
``` 
 

Observations 
Time Observation    
0–29   Control works well, residuals are low.                           
30–59 Attacker injects actuator signal → pump overflows.               
 Estimated state doesn't match sensor reading → residual spikes. 
 Alarm (detection) triggers due to residual crossing threshold.   
 

V. RESULTS AND DISCUSSION 
The interpretations for the two case studies explored using the proposed dynamical systems and secure control-based cybersecurity 
framework. Each interpretation reflects how the methodology behaves in the presence of cyberattacks and how the detection-control 
mechanism responds effectively. 
 
1) Scenario 1: Temperature Control System under Cyberattack 
A temperature regulation system is modeled as a linear dynamical system controlling room or reactor temperature through heating 
elements. A sensor spoofing attack is introduced where an attacker sends false temperature readings to the controller. 
Interpretation: In normal conditions, the Kalman filter tracks the temperature state accurately, and the residual (difference between 
predicted and actual output) remains within a pre-defined threshold. When the sensor spoofing attack begins, the temperature sensor 
provides misleading data—e.g., showing that the temperature is within range while it’s actually rising. This causes a mismatch 
between the estimated and measured temperature outputs. 
The residual signal spikes, exceeding the threshold, which triggers the anomaly detection logic. This indicates the presence of a 
potential cyberattack. Once detected, the fallback secure controller takes over. It ignores the compromised sensor reading and uses 
the predicted state from the Kalman filter or pre-established safety rules to regulate the temperature, thereby preventing overheating 
or damage. This clearly demonstrates the framework's ability to detect attacks in real-time and maintain system safety. 
 
2) Scenario 2: Water Tank Level Regulation under Actuator Attack 
This example considers a classic water tank system where the inflow is controlled by a valve, and a level sensor measures water 
height. A cyberattack targets the actuator (valve), manipulating its opening regardless of control commands. 
 Interpretation: Initially, the water tank operates stably with the Kalman filter providing accurate estimates of water level. The 
inflow is adjusted to maintain a desired set-point. When an actuator attack begins (e.g., forcing the valve to stay open fully), the 
actual water level begins to deviate from the predicted behavior, even though the control input appears correct. 
This deviation creates a growing residual between the measured and estimated water levels. Once the residual crosses the threshold, 
an attack is suspected. The secure control logic responds by overriding the normal controller, closing the valve manually or 
switching to a backup mechanical fail-safe, halting further inflow. The system thus avoids overflowing or flooding, showing the 
resilience of the model. Importantly, this scenario also proves the framework’s capability to identify actuator-side attacks, which are 
typically harder to detect than sensor spoofing because the inputs appear legitimate. 
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VI. CONCLUSION 
In this study, we developed a dynamical systems-based framework for modeling, detecting, and mitigating cyberattacks in Cyber-
Physical Systems (CPS). By incorporating cyber threats such as sensor spoofing and actuator tampering as unknown input 
disturbances into a linear state-space model, we applied Kalman filter-based state estimation to monitor system behavior in real-
time. The use of residual analysis enabled the identification of attack signatures by comparing expected and actual system outputs. 
A threshold-based decision logic triggered alerts when abnormal deviations were detected, enabling timely detection of both abrupt 
and stealthy attacks. Furthermore, the introduction of a fallback secure control mechanism allowed the system to operate safely 
under attack conditions by switching control laws or isolating compromised subsystems. 
The proposed framework was validated using case studies such as a temperature control system and a water tank level regulator, 
demonstrating strong detection performance, robustness to noise, and resilience to cyber-induced disruptions. This work not only 
offers a mathematically grounded and practically implementable solution to secure CPS environments but also emphasizes the role 
of control theory in cybersecurity—an area often overlooked in favor of purely software-based approaches. 
Although the proposed method shows promising results, several directions exist for future exploration. One key area is the extension 
of the model to nonlinear and hybrid CPS systems, where linear assumptions may not capture complex behaviors. The incorporation 
of machine learning-based anomaly classification on top of residual signals could improve detection accuracy, especially in 
identifying the type and location of the attack. Furthermore, real-time implementation on embedded hardware platforms such as 
Raspberry Pi or Arduino-based controllers can help validate practical deployment in industrial or IoT settings.  Another avenue is 
the development of distributed detection and control algorithms for large-scale CPS such as smart grids and intelligent 
transportation systems, where centralized solutions are often impractical. Integration with blockchain-based logging mechanisms 
could further enhance accountability and post-attack forensics. Finally, a formal stability and security certification framework based 
on Lyapunov theory or passivity concepts could be established to guarantee system safety even under sustained cyber threats. 
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