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Abstract: In this paper introduces a nonlinear fractional-order prey—predator model to describe the interaction between one prey
species and two predator species in an ecological system. These model are formulated with the use of Caputo fractional
derivative with time delay to represent memory and hereditary effects that naturally arise in biological processes. The model
includes prey growth dynamics and nonlinear interaction terms among the three species. Local stability of the system is
examined at different equilibrium points using the Jacobian matrix method. Numerical solutions of the fractional delay system
are obtained using the fractional Adams—Bash forth —Moulton predictor—corrector scheme. The influence of different fractional
orders 0 <a <Iis investigated and the results are compared with those of the classical integer-order model. Validation is carried
out through comparisons with the fourth-order Runge — Kutta and classical Adams—Bash forth—Moulton methods. Numerical
simulations confirm the accuracy, stability, and effectiveness of the proposed approach.

Keywords: Prey—Predator Model; Caputo Fractional Derivative; Time Delay; Stability Analysis; Fractional Adams—Bash forth—
Moulton Method; Runge — Kutta Method.

L. INTRODUCTION

Applied mathematics provides powerful tools for describing natural phenomena and predicting the evolution of complex dynamical
systems over time. In particular, mathematical modelling plays a significant role in ecology and economics, where population
growth, species interactions, and system stability are influenced by multiple biological and environmental factors. Among these
models, predator—prey systems are widely used to understand interaction mechanisms and long-term population behaviour. Several
studies have investigated predator—prey dynamics under different ecological and mathematical assumptions. Agarwal and Pathak [1]
examined optimal harvesting strategies in predator—prey models with Holling type-11l1 functional response. Toaha et al. [2]
performed stability analysis of predator—prey systems, emphasizing the dependence of predators on prey populations and the
regulatory role of predation. It has been observed that excessive predation, limited prey availability, or slow prey growth may result
in population decline or extinction.

The classical Lotka — Volterra model has been extensively modified to incorporate realistic features such as harvesting, time delays,
and nonlinear functional responses. Srinivasu et al. [3] analyzed harvesting control mechanisms within the Lotka — Volterra
framework, while Kar [4] studied selective harvesting with time delays. Didiharyono [5] investigated the stability of a one-prey two-
predator system with Holling type-111 response and harvesting, and later extended the analysis to constant harvesting strategies [6].
Kunal et al. [7] considered optimal harvesting in stage-structured predator—prey systems, and Li and Kaitai [8] derived conditions
for positive and stable equilibria in multi-species interaction models. In parallel, various analytical and numerical techniques have
been developed for solving nonlinear and fractional differential equations arising in population dynamics. Abd-Elhameed et al.
[9,10] introduced spectral and operational matrix methods based on Chebyshev polynomials for solving Emden—-Fowler and
fractional Riccati equations. Abdallah et al. [11] applied the Fractional Reduced Differential Transform Method (FRDTM) to
nonlinear fractional mutualism models. Hadziabdic et al. [12] analyzed a Lotka — Volterra system with two predators and one prey,
while Noori et al. [13] studied convergence properties of reduced differential transform methods. Recent research has focused on
fractional-order predator—prey models to capture memory and hereditary effects that cannot be described by classical integer-order
systems. Abdallah and Ishag [14] proposed fractional predator—prey models, Romero-Ordonez et al. [15] investigated prey fear
effects, and Zabidi et al. [16] and Bhalekar and Daftardar -Gejji [17] developed predictor—corrector numerical schemes for fractional
differential equations. Motivated by these studies, the present work formulates a delayed prey—predator model consisting of one
prey and two predator populations using the Caputo fractional derivative. The fractional Adams—Bash forth—-Moulton (FABM)
predictor—corrector method is employed to obtain accurate numerical solutions, particularly in the presence of time delays.
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The proposed method is validated through comparison with classical numerical schemes, including the fourth-order Runge —Kutta
method, demonstrating its accuracy, stability, and computational efficiency.

We consider a prey—predator system consisting of one prey population x(t) and two predator populations y(t) and z(t). The dynamics
with constant time delay t and harvesting effects are governed by the following system of differential equations:

% = ax(t) [ 1- %] = Bx(t — 1)yt — 1) — yx(t)z(t) — E; x(t)

d

d_Jt’ = —by(t) + Bx(t — D)y(t — 7) — dy(t) — E, y(¢t) [1]
d

d—i = —cz(t) + y(O)z(t) — dy(t) — Es z(t)

Here, a denotes the intrinsic growth rate of the prey, k is the carrying capacity, and b and c represent the natural death rates of the
predators. The parameters 3 and y are predation coefficients, d denotes the conversion rate from the first predator to the second
predator, and E1, E2, E3 represent harvesting rates. The time delay t accounts for delayed predator—prey interactions.

To incorporate memory effects, the classical model is extended to a fractional-order framework using the Caputo derivative of order
O0<o<lI:

The equation is

D x()) = ayx(t) —x*(0)6 — Bx(t — Dy(t — ) — yx(£)z(t)

D y(t) = —ay(t) + px(t —1)y(t — 1) [2]

DP z(t) = —asz(t) +yx(t)z(t) + dy(t) O<w<Ll

The initial functions are defined on the interval t € [—t,0]. This fractional formulation allows the model to capture nonlocal
temporal effects and provides a more realistic description of population dynamics.

1. PRELIMINARIES
In this section, we recall some fundamental definitions from fractional calculus that are required for the formulation of the proposed
fractional prey—predator model and the development of the numerical scheme.

1) Definition 1
The Caputo fractional derivative of order « is defined as the n™ integer derivative of the function by an integral with a fractional
power in the kernel

1 )

D& = dt
PESO = Ty ), Goper
Wheren—1<a<nVn €N

In case n=1 the Caputo fractional derivative reduces to

g flx) = —— "L 4t [3]

r(i-a)“a (x-t)*
The Caputo derivative is particularly suitable for physical and biological applications, since it allows the use of classical initial
conditions.

2) Definition 2
A fractional Volterra integral equation of order o is expressed as

Dx(u(x)) = f(x)+ /Ifoxk(x. tu (t)dt [4]

Where u(x) is the unknown function, D “ is a fractional order derivative , f(x),k(x , t) is a known continuous function and X is a
constant.

Fractional Volterra integral equations naturally arise in the numerical treatment of fractional differential equations and play an
important role in the formulation of predictor—corrector schemes.
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1. METHODOLOGY
A. Lotka - Volterra Predator-Prey Model with Delay
In this section we have examined the classical model of the lotka - volterra equation in one prey and two predators in the non linear
differential equation of delay.
X(t) = a; x(t) —x(t — 1)yt —1) — x(t)z(t)
Y(t) = —ay y(©) —y(t — D)x(t — 7)
Z(t) = —ag z(t) — z(t)x(t)
Where T > 0 is a constant time delay . we will represent the delayed equation can be proved the stability conditions also
a, x(t) — x(t — )yt — 1) — x(t)z(t)
F(t) = —a, y(£) — y(t — T)x(t — 7) [5]
—a5 z(t) — z(t)x(t)

Therefore X, y, z are the population of prey and predators and the parameters of a;, a,, a3 = 0.

B. Local Stability Analysis

The local stability of the equilibrium points of system (5) is analyzed using the Jacobian matrix technique. This approach describes
the behaviour f the system in a small neighbourhood around each equilibrium point. For linearization, the delay terms are neglected,
and the Jacobian matrix of system (5) is obtained as

a;—z(t)  —x(t) —x(t)
J@O=| @)  —a+x(t) 0 (6]
z(t) 0 —az; — x(t)

The local stability of each equilibrium point is determined by evaluating the eigen values of the Jacobian matrix at that point. An
equilibrium point is locally asymptotically stable if all eigen values have negative real parts otherwise it is unstable.

C. Equilibrium Points
The equilibrium points of system (5) are obtained by setting and solving the resulting algebraic equations yields the following
equilibrium points:
1) Trivial equilibrium (extinction state):
to = (0,0,0)
2) Prey-only equilibrium:
t;= (a4,0,0),which corresponds to the absence of both predator species.
3) Prey-first predator equilibrium:
t ,.=(a,,4,0) representing coexistence of the prey and the first predator only.
4) Prey-second predator equilibrium:
t:=(a3,0,a,), representing coexistence of the prey and the second predator only.
These equilibrium points form the basis for the subsequent stability and bifurcation analysis of the delayed predator—prey system.

a) Theorem1

Given the nonlinear differential equation of the system of eq [5] and therefore the equilibrium point is (0,0,0) is unstable.
Proof :

The Jacobian matrix of system

a, —z(t) —x(t) —x(t)
J@O=| y@®)  —a+x(t) 0
z(t) 0 —a; — x(t)
and the equilibrium point of t, is given by
a; O 0
J(to) = [O —a; 0 l
0 0 —ay

The corresponding eigen values areAl=01>0,12=—02<0, A3=—03<0. Since at least one eigen value has a positive real part, so the
equilibrium point of tqis unstable .
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b) Theorem2

Given the nonlinear differential equation of the system of eq [5] and therefore the equilibrium point is (a,,0 ,0) is unstable.
Proof ;

The Jacobian matrix of system

a;—z(t)  —x(t) —x(t)
J@O =1 y@®)  —ay+x(t) 0
z(t) 0 —a; — x(t)
and the equilibrium point of t; is given by
ay —aq —aq
Jt) =10 a—a 0
0 0 —a; —ay

The eigen values arell=a, ,\2=a; — a,,A3=a; — a3. Since at least one eigenvalue is positive (A1>0), the prey-only equilibrium t; is
unstable.

c) Theorem3

Given the nonlinear differential equation of the system of eq [5] and therefore the equilibrium point (a,,a,,0), is locally
asymptotically stable provided that a,<a;anda,<a;.

Proof:

The Jacobian matrix of system

a;—z(t)  —x(t) —x(t)
J@O=| y@®)  —a+x(t) 0
z(t) 0 —a; — x(t)
and the equilibrium point of t, is given by
a, —a, —ay
](tz) = [al 0 0 l
0 0 —-a,—as

The characteristic equation yields three eigen values. Two eigen values associated with the prey—first predator subsystem have
negative real parts under the condition a,<a;. The third eigenvalue is given by A3=a, — a5.Hence, all eigen values have negative
real parts if a,<a5. Therefore, under the conditionsa,<a;and a,<asthe equilibrium point of t,is locally asymptotically stable.

d) Theorem4

Given the nonlinear differential equation of the system of eq [5] and therefore the equilibrium point (a5,0,a,), is not locally
asymptotically stable .

Proof :

The Jacobian matrix of system

a, —z(t) —x(t) —x(t)
JO=| y@®)  —a+x(t) 0
z(t) 0 —a; — x(t)

and the equilibrium point of t; is given by
0 —a; —0s
J(@t;) = [O az—a; 0 l
o, 0 0
The characteristic equation of this matrix admits at least one eigen value with zero or purely imaginary real part, depending on the
parameter values. Consequently, the equilibrium point t;does not satisfy the conditions required for asymptotic stability.Hence, t4 is
not asymptotically stable.

D. Fractional Adams-Bash forth - Moluton (ABM) PECE Method

Let us define a fractional differential equation of order « € (0,1) in caputo sense
D y(&) =f(t,y(®) y(0) =y,

Volterra integral equation
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y(t) = y, + %fot t— 1% (r,y()) dr [7]
Where I" («) is the gamma function.

1) Adams-Bash Forth Predictor

Va1 = Yo + %; ftjjﬂ(tnu — 1) 1f(7,y(1)) dz

a

t h
fo t =1 f(7,y(7)) dr = o [bn—j f(tj,y]-) +b,_jq f(t]-+1,y]-+1p) + o]

1
Yie1 = Yo +m27]‘1=0 bjn+1 f(tjvy]‘) [8]

2) Adams-Bash forth Corrector

tns

1 (¢
Yn+1 = Vot mfo (thsr — D) Hf (r.y(2)) dr + ft (tpir — D f(,y(7)) dr

n
h“ h“
Vi+1 = Yo+ Fa+D f(tns1: Ynsi®) + mz an—;if (8,5;)
j=0

Yn+1 = Yot ﬁ [27]‘1=o Ao n+1 f(tn+1 ,Y£+1) +Z7=o ajynﬂf(t]-,y]-)] [9]
3) Numerical Simulation

To validate the proposed fractional Lotka — Volterra prey—predator model with delay, numerical simulations are performed using the
Fractional Adams—Bash forth—-Moulton (FABM) predictor—corrector (PECE) method. The obtained fractional-order solutions are
compared with those computed using the fourth-order Runge — Kutta (RK4) method, which serves as a benchmark for validation.
The system parameters are selected aa; = a, = a3 = 0.0001, g =0.003, y =0.005,d = 0.005,5 = 0.005and the initial
state x, =4, yo=2, z0=2, t=0,x(t —7) = x(t) w =0.9. For numerical simulations, the system is integrated over the
time interval t€[0,100]. The choice of the final simulation time T=100 is made to ensure that the long-term dynamical behaviour of
the fractional-order prey—predator system is adequately captured.

W=0.9 W=0.9 W=0.9
TIME FAB PR (X) FAB CR (X) RK4 (X)
0.0 4.000 4.000 4.000
1.0 3.851 3.709 3.859
2.0 3.721 3.467 3.726
3.0 3.599 3.249 3.597
40 3.480 3.480, 3.426
5.0 3.357 3.357 3.282
6.0 3.244 3.244 3.138
7.0 3.137 3.137 2.995
8.0 3.029 3.029 2.851
9.0 2.930 2.930 2.708
10.0 2.813 2.813 2.564

Table 1 indicates Time Evolution of Prey Population
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W=0.9 W=0.9 W=0.9

TIME FAB PR (Y) FAB CR (Y) RK4 (Y)

0.0 2.000 2.000 2.000

1.0 2.0247 2.048 2.024

2.0 2.046 2.090 2.046

3.0 2.066 2.128 2.069

4.0 2.086 2.086 2.095

5.0 2.107 2.107 2.119

6.0 2.125 2.125 2.143

7.0 2.143 2.143 2.167

8.0 2.161 2.161 2.190

9.0 2.177 2.177 2.214

10.0 2.197 2.197 2.238

Table 2 indicates Time evolution of First Predator Population
W=0.9 W=0.9 W=0.9

TIME FAB PR (2) FAB CR (2) RK4(Z)

0.0 2.000 2.000 2.000

1.0 2.052 2.103 2.049

2.0 2.096 2.192 2.098

3.0 2.139 2.275 2.148

4.0 2.181 2.181 2.199

5.0 2.223 2.223 2.249

6.0 2.262 2.262 2.299

7.0 2.299 2.299 2.349

8.0 2.337 2.337 2.398

9.0 2.177 2.177 2.448

10.0 2.412 2.412 2.498

Table 3 indicates Time evolution of second Predator Population
& Time Evolution of Prey Population
- Prey (FABM)
3.999 > — — —Prey (RK4) | -
N ~
3.998 ~ -
R
~

. 3.997 = 8
-.\;/ ~ -~
S 3.996 = 1
i —
= 3.995 S~ 1
o ~
o -~
> 3.994 S =5
&) _____
(a1

3.993 4

3.992 1

3.991 .

3.99 : : : : : : : : :
0 10 20 30 40 50 60 70 80 90 100
Time t

Figure 1: Time Evolution of Prey Population
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Predator 1 Population y(t)

Predator 2 Population z(t)
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Time Evolution of First Predator Population
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Figure 2: Time Evolution of First Predator Population

Time Evolution of Second Predator Population

Predator 2 (FABM)
~ — — Predator 2 (RK4)

0 10 20 30 40 50 60 70 80 90 100

Time t
Figure 3: Time Evolution of Second Predator Population
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Comparison of Prey and Predator Populations (FABM vs RK4)
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O 28t i
. Predator 2 (RK4)
26 .
24 .
22 5
2 et Il 1 Il 1 Il 1 Il 1 1

0 10 20 30 40 50 60 70 80 90 100

Time t
Figure 4: Comparsion of Prey and Predator Populations (FABM vs RK4)

(AVA CONCLUSION

In this paper, a delayed Caputo fractional-order prey—predator model was analyzed to describe population interactions with memory
and time-delay effects. The local asymptotic stability of the equilibrium points was examined using the Jacobian matrix approach.
Numerical solutions were obtained by employing the Fractional Adams—Bash forth—Moulton (FABM) predictor—corrector method.
The numerical simulations demonstrate that the FABM scheme produces stable and accurate approximations for the nonlinear
fractional system considered. The results confirm that fractional-order models offer a robust mathematical framework for studying
complex dynamical behaviours in prey—predator interactions that are not adequately captured by classical integer-order
formulations.

[t
[2]
(3]
[4]
[5]
[6]
[’
(8]
[9]

REFERENCES
Agarwal M, Pathak R. Persistence, and optimal harvesting of prey-predator model with Holling Type Il functional response. International Journal of
Engineering Science and Technology. 2012; 4(3): 78-96. Available from: http://dx.doi.org/10.4314/ijest.v4i3.6.
Toaha S, Kusuma J, Khaeruddin, Bahri M. Stability analysis and optimal harvesting policy of prey-predator model with stage structure for predator. Applied
Mathematical Sciences. 2014; 8(159): 7923-7934. Available from: http://dx.doi.org/10.12988/ams.2014.410792.
Srinivasu PD,Ismail S, Naidu CR.Globaldynamicsandcontrollability of a harvested prey-predator system. Journal of Biological Systems. 2001; 9(1): 67-79.
Auvailable from: http://doi.org/10.1142/S0218339001000311
Kar TK. Selective harvesting in a prey predator fishery with time delay. Mathematical and Computer Modelling. 2003; 38: 449-458. Available from:
http://doi.org/10.1016/S0895-7177(03)00232-2.
Didiharyono D. Stability analysis of one prey two predator model with Holling type 111 functional response and harvesting. Journal of Mathematical Sciences.
2016; 1(2): 1-10
Didiharyono D, Toaha S, Kusuma J, Kashawati. Stability analysis of two predators and one prey population model with harvesting in fisheries management.
I0P Conference Series: Earth and Environmental Science. 2021; 921:012005. Available from: http://doi.org/10.1088/1755-1315/921/1/012005.
Chakraborty K, Das S, Kar TK. Optimal control of effort of a stage structured prey-predator fishery model with harvesting. Nonlinear Analysis: Real World
Applications. 2011; 12: 3452-3467. Available from: http://doi.org/10.1016/j.nonrwa.2011.06.007.
Li Z, Kaitai S. A condition of the existence of stable positive steady-state solutions for a one predator two prey system. Applied Mathematics Journal of
Chinese University. 1993; 8(2): 111-125. Available from: https://doi.org/10.1007/BF02661996.
Abd- Elhameed WM, Al-Harbi MS, Amin AK, Ahmed HM. Spectral treatment of high-order Emden Fowler equations based on modified chebyshev
polynomials. Axioms.2023;12: 99. Available from: http://doi.org/10.3390/axioms12020099.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Abd-Elhameed WM, Youssri YH. Explicit shifted second-kind chebyshev spectral treatment for fractional riccati differential equation. Computer Modelling in
Engineering & Sciences. 2019; 121(3): 1029-1049. Available from: http://doi.org/10.32604/cmes.2019.08378.

Abdallah MA, Ishag KA. Fractional reduced differential transform method for solving mutualism model with fractional diffusion. International Journal of
Analysis and Applications. 2023; 21(1): 33. Available from: http://doi.org/10.28924/2291-8639-21-2023-33.

Hadziabdic V, Mehulji¢ M, Bektesevic J. Lotka-Volterra model with two predators and their prey. TEM Journal. 2017; 6(1): 132-136. Available from:
http://doi.org/10.18421/TEM61-19.

Moosavi Noori SR, Taghizadeh N. Study of convergence of reduced differential transform method for differential classes of differential equations. International
Journal of Differential Equations. 2021; 2021: 6696414. Available from: http://doi.org/10.1155/2021/6696414.

Mohamed AhmedAbdallah , Khaled Abdalla Ishag.Prey and Predators in Mathematical Model Under Caputo Fractional Derivative. DOI:
https://doi.org/10.37256/cm.6220255892

Marco Antonio Romero-Ordonez , Jhelly Reynaluz Perez-Nunez, Neisser Pino-Romero. Mathematical Analysis of a Predator-PreyModel Incorporating Prey
Fear. Proyecciones Journal of Mathematics Vol. 44, No 4, pp. 561-599, August 2025.

Nur Amirah Zabidi, Zanariah Abdul Majid , AdemKilicman and Zarina Bibi Ibrahim. Numerical solution of fractional differential equations with Caputo
derivative by using numerical fractional predict-correct technique. Advances in Continuous and Discrete Models , Springer https://doi.org/10.1186/s13662-
022-03697-6

Sachin Bhalekar, Varshadaftardar-Gejji. A Predictor-Corrector Scheme For Solving Nonlinear Delay Differential Equations Of Fractional Order. Journal of
fractional calculus and applications, vol.1. July 2011, no.5, pp. 1-9. Issn: 2090-5858.http://www.fcaj.webs.com/

R. Sivakumar and S. Vijaya. Mathematical Modelling And Stability Analysis Of Two Prey And One Predator Population Model In Fisheries Management
System With Harvesting.International Journal Of Creative Research Thoughts. www.ijcrt.org //\VV13-2320-2882-d730-d741

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)




