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Abstract: Melanoma is one of the most aggressive forms of skin cancer, and early detection plays a vital role in reducing
mortality rates. Traditional diagnostic methods rely heavily on expert dermatologists and biopsy confirmation, which can be
time-consuming, subjective, and resource-intensive. With advances in artificial intelligence, deep learning has emerged as a
powerful approach for medical image classification. This paper presents a convolutional neural network (CNN)-based model for
melanoma detection using the HAM10000 dataset. The dataset of 10,015 dermoscopic images was pre-processed through
normalization, resizing, and augmentation to address class imbalance. The proposed CNN model was trained and evaluated
using multiple metrics, achieving 97% accuracy, 85% precision, 79% recall, and 82% F1-score. Class-wise performance and
graphical analysis, including training curves and a confusion matrix, validated the robustness of the model. The study
demonstrates that CNNs can serve as effective tools for melanoma detection, offering potential clinical support for
dermatologists. Future work should focus on improving sensitivity, addressing dataset imbalance, and integrating explainable Al
techniques to enhance clinical adoption.

Keywords: Melanoma detection, Deep learning, Convolutional neural networks, HAM10000 dataset, Skin cancer classification,
Medical image analysis

I. INTRODUCTION
Skin cancer has become a significant global health concern due to its increasing incidence, morbidity, and mortality rates. Among
the various forms of skin cancer, melanoma is the most aggressive and life-threatening, characterized by its high potential for
metastasis and rapid progression. While non-melanoma skin cancers such as basal cell carcinoma and squamous cell carcinoma
account for the majority of cases, melanoma disproportionately contributes to deaths associated with skin cancer because of its
tendency to spread beyond the skin to internal organs. According to the World Health Organization (WHO), over 300,000 new cases
of melanoma are diagnosed globally each year, and nearly 57,000 people die from it annually. The growing incidence is attributed
to factors such as increased ultraviolet (UV) exposure due to environmental degradation, tanning practices, genetic predispositions,
and lifestyle changes.
Early detection of melanoma is essential to improving survival rates. Studies indicate that if melanoma is identified and treated in its
early stages, the five-year survival rate exceeds 95%. However, once the cancer spreads to distant organs, survival rates drop
drastically to below 20%. Traditional diagnostic approaches rely on dermatologists’ expertise in visual examination and
dermoscopic analysis, often followed by invasive biopsies for histopathological confirmation. While these methods are considered
gold standards, they face challenges such as inter-observer variability, limited access to dermatologists in rural or underserved areas,
and time-intensive processes that may delay treatment. Misdiagnosis or delayed diagnosis significantly increases patient risk,
making early, accurate, and accessible detection systems a pressing need in clinical practice.
The evolution of digital technologies and artificial intelligence (Al) has provided opportunities to develop automated diagnostic
systems that complement dermatologists’ efforts. Machine learning and, more recently, deep learning have emerged as
transformative tools in medical image analysis, offering the ability to process large datasets and identify complex patterns that may
not be evident to the human eye. Convolutional neural networks (CNNs), in particular, have revolutionized computer vision tasks
such as image recognition, classification, and segmentation, and their application in healthcare, specifically dermatology, has
demonstrated remarkable results.
This research focuses on developing a CNN-based deep learning framework for the detection of melanoma using the HAM10000
dataset, one of the most widely recognized benchmarks for dermoscopic image analysis. The study emphasizes data pre-processing,
architectural optimization, and performance evaluation using metrics such as accuracy, precision, recall, F1-score, and confusion
matrix. The ultimate objective is to assess the feasibility of deploying deep learning systems as supportive tools in clinical
dermatology, enabling early detection of melanoma and reducing the burden of misdiagnosis.
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Figure 1: Example of melanoma skin lesion exhibiting asymmetry and irregular borders

A. Melanoma and Skin Cancer: Clinical Background

Skin cancer originates from abnormal growth of skin cells, primarily caused by DNA damage due to excessive exposure to
ultraviolet (UV) radiation from sunlight or artificial sources such as tanning beds. Broadly, skin cancers are categorized into
melanoma and non-melanoma skin cancers. Non-melanoma skin cancers, though more common, tend to grow slowly and are less
fatal. In contrast, melanoma arises from melanocytes, the pigment-producing cells that give skin its colour, and is highly malignant.
Melanomas can develop anywhere on the skin, though they are most commonly found on sun-exposed areas such as the back, legs,
arms, and face. They may also appear in less obvious areas such as the soles of feet or under fingernails, making detection more
difficult.

Clinically, dermatologists often use the “ABCDE” rule to differentiate melanoma from benign lesions:

e Asymmetry: Melanomas are often asymmetric in shape, unlike benign moles.

o Border: They tend to have irregular, scalloped, or poorly defined borders.

e Colour: Multiple colours, including shades of black, brown, tan, red, or white, may appear within a single lesion.

e Diameter: Lesions larger than 6 mm raise suspicion, though smaller melanomas also exist.

e Evolving: Any mole or spot that changes in size, shape, or colour warrants further evaluation.

Despite these guidelines, melanoma diagnosis remains challenging. Benign lesions may exhibit features resembling melanoma,
while some melanomas may lack classical signs, leading to potential under-diagnosis. Studies show that dermatologists achieve
accuracy rates of approximately 75-85% in melanoma detection. While respectable, these figures underscore the need for
supplementary diagnostic tools to reduce diagnostic errors and improve patient outcomes.
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Figure 2: Comparative dermoscopic view of benign nevus and melanoma lesion

B. Artificial Intelligence in Medical Imaging

Artificial intelligence has rapidly evolved into a cornerstone of modern healthcare. Its ability to process vast amounts of data,
uncover hidden patterns, and provide predictive insights has enabled breakthroughs in disease detection and management. In
medical imaging, Al has been employed in radiology, pathology, ophthalmology, and dermatology, delivering results that often
exceed human performance.Machine learning, an early subset of Al, involved algorithms that relied on handcrafted features
extracted from images. For instance, dermatological studies employed colour histograms, texture analysis, and shape descriptors as
inputs to machine learning classifiers like support vector machines (SVMs) or decision trees. While effective to a certain degree,
these methods were limited by their reliance on manually engineered features, which often failed to capture the complex variability

present in medical images.
Training II
classifier model

New instance

Figure 3: Deep Learning enabled Melanoma Skin Cancer detection
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Deep learning, and CNNs in particular, overcame these limitations by enabling end-to-end learning. CNNs automatically extract
hierarchical features from images, with early layers detecting edges and textures, and deeper layers capturing complex structures
and contextual details. This ability to autonomously learn discriminative features makes CNNs ideally suited for medical image
classification tasks, where subtle differences between healthy and diseased tissue can have profound clinical
implications.Applications of CNNs in healthcare have been transformative. In radiology, CNNs detect lung nodules and predict
tumor malignancy. In ophthalmology, they diagnose diabetic retinopathy from retinal fundus images. In dermatology, CNNs trained
on dermoscopic images have achieved diagnostic accuracies comparable to or even surpassing expert dermatologists. These
successes demonstrate the potential of Al to augment clinical decision-making, reduce workload, and increase diagnostic
consistency.

C. Relevance of Al in Melanoma Detection

Melanoma detection presents unique challenges that make it an ideal domain for Al intervention. First, the visual similarities
between melanoma and benign lesions demand sophisticated pattern recognition capabilities, which CNNs provide. Second, the
global shortage of dermatologists, especially in rural or resource-limited regions, restricts timely access to diagnostic services. Al
systems can be deployed as portable, scalable solutions to bridge this gap. Third, the consequences of misdiagnosis are severe in
melanoma, making it critical to develop tools that minimize both false positives and false negatives.

The HAM10000 dataset, which forms the basis of this study, is a comprehensive collection of dermoscopic images representing
diverse skin lesion categories. It provides a challenging yet representative benchmark for testing deep learning models. By
leveraging CNN architectures, this research aims to demonstrate not only high accuracy in melanoma detection but also the
potential for generalization to real-world clinical applications. The motivation for this work extends beyond technical innovation. It
addresses a pressing healthcare challenge with global implications. By harnessing the power of Al, particularly deep learning,
melanoma detection systems can evolve into reliable, accessible, and scalable solutions that democratize healthcare and save lives.

Il. REVIEW OF LITERATURE

The detection and classification of melanoma and other skin cancers using artificial intelligence (Al) and deep learning have been
the focus of extensive research in recent years. A growing body of literature highlights the role of image analysis techniques, signal
processing methods, and convolutional neural networks (CNNSs) in advancing diagnostic accuracy and supporting clinicians in
decision-making. This section reviews key studies, organized across domains of medical image analysis, Al-based dermatological
applications, and recent advancements in deep learning models for melanoma detection.Early research in medical image analysis
emphasized feature extraction using traditional image processing techniques. Kirar et al. [1] employed discrete wavelet transform
(DWT) for glaucoma image analysis, demonstrating that wavelet-based methods could effectively capture texture information
relevant for disease diagnosis. Later, Kirar et al. [2] advanced this approach using variational mode decomposition (VMD) for
automated glaucoma detection from fundus images, highlighting its superiority in decomposing signals into informative modes
compared to traditional wavelets. In a follow-up study, Kirar et al. [3] combined image channels with DWT to improve glaucoma
detection accuracy, reflecting the growing emphasis on hybrid approaches that merge multiple feature spaces.

Similarly, CNN-based models have been applied in ophthalmology for fundus image analysis. Kirar and Soni [4] proposed the
VGG-19 deep learning model for glaucoma detection, showing that pre-trained CNN architectures significantly outperformed
handcrafted feature extraction techniques. The extension of Al beyond ophthalmology to domains such as cardiology is evident in
Patel et al.’s work [5], [6], where empirical mode decomposition (EMD) techniques were applied for ECG denoising, followed by
adaptive filtering to improve signal quality. These contributions illustrate how pre-processing and denoising techniques lay the
foundation for robust medical Al systems.In the domain of wireless sensor networks (WSNs), Al has also been explored for security
applications. Rathore et al. [7] applied neural network-based routing protocols to detect wormhole attacks, while Rathore et al. [8]
proposed a modified multicast routing protocol to mitigate security vulnerabilities. Although these studies are not directly related to
dermatology, they highlight the broad applicability of neural networks in diverse computational challenges. More recently, Wandile
et al. [9] reviewed image denoising techniques, emphasizing filtering methods and assessment criteria that could also inform
preprocessing strategies in dermoscopic image analysis.Recent literature has increasingly focused on the application of Al for
melanoma and skin cancer detection. Sardar et al. [10] explored ensemble deep learning methods for skin cancer detection,
highlighting that combining multiple models improved robustness and reduced misclassification rates compared to single CNNs.
Jicman et al. [11] emphasized the importance of early malignant melanoma detection, particularly among individuals with
pigmented skin, where diagnostic challenges are often amplified due to reduced contrast in dermoscopic images.
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Jamil et al. [12] demonstrated the effectiveness of transfer learning by applying deep CNNs pre-trained on large image datasets for
skin lesion classification, reporting improved accuracy and generalization. Similarly, Almufareh et al. [13] proposed a fine-tuned
CNN-based melanoma identification and classification model, achieving high accuracy and efficiency in dermoscopic image
recognition. These studies underscore the increasing trend of leveraging pre-trained networks to address data scarcity in specialized
medical domains.Naqvi et al. [14] provided a comprehensive review of deep learning applications in skin cancer detection,
concluding that while CNNs deliver strong performance, challenges such as dataset imbalance, interpretability, and real-world
validation remain. Relatedly, Mahmood et al. [15] surveyed deep learning applications in breast cancer diagnosis, emphasizing the
value of multi-image modalities in improving model accuracy. Their findings parallel the dermatological domain, where combining
clinical and dermoscopic images may enhance melanoma detection. Abbas et al. [16] compared various deep learning models for
skin lesion classification, providing a benchmark analysis that reinforced the superiority of CNN-based architectures over classical
machine learning models.

Transfer learning has emerged as a dominant paradigm in melanoma detection research. Rahman et al. [17] applied a transfer
learning-based CNN approach for melanoma detection, demonstrating its ability to achieve high performance with limited labelled
data. Tariq et al. [18] extended this by testing multiple deep learning models for automated melanoma detection, reporting
improvements in both accuracy and recall metrics. Wang et al. [19] proposed an attention-based CNN for skin cancer classification,
showing that attention mechanisms help the model focus on clinically relevant regions of dermoscopic images, thereby improving
interpretability and diagnostic reliability.Other researchers have explored specific CNN architectures for efficiency and accuracy.
Xiao et al. [20] employed EfficientNet, a computationally optimized deep learning architecture, achieving superior melanoma
recognition performance compared to older CNN designs. Smith et al. [21] conducted a systematic review of Al in dermatology,
concluding that deep learning has demonstrated consistent diagnostic accuracy comparable to dermatologists, though explainability
and clinical integration remain critical challenges. Zhang et al. [22] proposed a deep learning-based melanoma detection system
using dermoscopic images, which demonstrated state-of-the-art performance on benchmark datasets.

Chen et al. [23] investigated ensemble CNN models for skin cancer diagnosis, reporting significant improvements in diagnostic
precision and recall compared to individual models. Oliveira et al. [24] focused on the role of data augmentation, demonstrating that
techniques such as rotation, scaling, and flipping improved the robustness of CNN-based melanoma classifiers. Similarly, Kumar et
al. [25] introduced a hybrid deep learning model that combined CNNs with other learning frameworks, achieving enhanced
melanoma classification accuracy.The deployment of Al-based melanoma detection systems in real-time clinical and mobile
applications has also gained traction. Li et al. [26] proposed a real-time melanoma detection model optimized for mobile platforms,
emphasizing its utility in point-of-care diagnostics, especially in remote or resource-limited settings.

1. RESEARCH METHODOLOGY

The research methodology of this study was carefully designed to ensure that the development of the proposed deep learning-based
melanoma detection system was systematic, replicable, and scientifically rigorous. Methodology plays a vital role in any research
work because it outlines the step-by-step approach followed to achieve the objectives of the study, and ensures that the conclusions
drawn are based on valid and reliable processes. This chapter provides a comprehensive description of the methodology adopted,
starting from dataset selection and pre-processing to the design of the deep learning architecture, training, evaluation, and
performance analysis. Each component of the methodology is essential in ensuring that the final model is not only accurate but also
practical for potential clinical applications.

A. Dataset Description

The dataset chosen for this research is the HAM10000 dataset (Human Against Machine with 10000 training images), a benchmark
dataset widely used in dermatology and computer vision research. It contains 10,015 dermoscopic images covering seven diagnostic
categories, including melanoma, melanocytic nevi, basal cell carcinoma, actinic keratoses, benign keratosis-like lesions,
dermatofibroma, and vascular lesions. These images were collected from different populations and imaging modalities, making the
dataset rich in diversity and representative of real-world clinical cases.Table 1: Dataset Description (HAM10000 Class
Distribution).
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Table 1: Dataset Description

Class Number of Images Percentage (%)
Melanoma 1113 11.1
Melanocytic Nevi 6705 66.9
Basal Cell Carcinoma 514 51
Actinic Keratoses 327 3.3
Benign Keratosis 1099 10.9
Dermatofibroma 115 1.1
Vascular Lesion 142 1.4

B. Data Pre-processing

Pre-processing dermoscopic images is a critical step in preparing data for training. Raw images often contain noise, inconsistencies

in resolution, and irrelevant background details that may mislead the model. Several pre-processing steps were undertaken:

e Image Resizing: All images were resized to a standard resolution of 64x64x3 pixels. This ensured uniformity across the dataset
and reduced computational complexity without compromising important lesion details.

e Normalization: Pixel intensity values were normalized to a range of [0,1]. This helped accelerate convergence during training
and reduced the chances of gradient vanishing or exploding.

e Data Augmentation: To address the dataset imbalance and enhance the model’s generalization capability, augmentation
techniques such as random rotations, horizontal and vertical flips, zooming, cropping, and brightness adjustments were applied.
These augmentations increased the diversity of training data and simulated real-world conditions where lesion images may vary
in orientation and lighting.

e Label Encoding: Labels representing the seven classes were converted into one-hot encoded vectors, enabling the model to
perform multi-class classification.

Through these pre-processing steps, the dataset was standardized and enriched, providing a robust foundation for training the CNN

model.

C. Proposed CNN Architecture

The choice of architecture is crucial for the success of any deep learning model. For this research, a custom Convolutional Neural

Network (CNN) was designed to balance classification accuracy with computational efficiency. CNNs are particularly suited for

image-based tasks due to their ability to learn hierarchical spatial features.

The architecture consisted of the following components:

e ConvolutionalLayers: Three convolutional layers with filter sizes of 32, 64, and 128 were used. Each employed a kernel size of
3x3 and ReLU activation to introduce non-linearity. These layers extracted low-to-high-level features such as edges, textures,
and lesion structures.

e Pooling Layers: Max pooling layers followed each convolutional block to reduce dimensionality and retain dominant features.

e Flattening: Feature maps from convolutional layers were flattened into a one-dimensional vector to be fed into dense layers.

o Dense Layers: A fully connected dense layer with 128 neurons captured complex relationships among features. A dropout rate
of 0.5 was applied to prevent overfitting.

e Output Layer: A softmax layer with seven nodes was used for multi-class classification, outputting the probability distribution
across lesion categories.
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Layer (type) Output Shape Param #
conv2d (Conwv2D) { . 26, 26, 32) 328
max_pooling2d (MaxPooling2D) { » 13, 13, 32) a8
conv2d_1 (Conv2D) ( , 11, 11, 64) 18,496
max_pooling2d 1 (MaxPooling2D) { . 5, 5, 64) 8
flatten (Flatten) { » 1688} 2]
dense (Dense) { , 128} 284,928
dense_1 (Dense) { . 1) 129

Figure 4: CNN Architecture for the proposed model
D. Training Setup
The CNN model was compiled using the Adam optimizer, known for its adaptive learning rate, and the categorical cross-entropy
loss function, appropriate for multi-class classification. The following parameters were applied:
e Batch size: 32
e Epochs: 10 (chosen to avoid overfitting while demonstrating convergence)
e Training-validation split: 80-20, with 20% of the training set reserved for validation
e Early stopping: Monitored validation loss to prevent overfitting
e Model check pointing: Saved the best-performing model during training
These configurations ensured efficient training and stable convergence.

E. Evaluation Metrics

Evaluating deep learning models using a single metric like accuracy is insufficient, especially in medical applications where false

negatives can have severe consequences. Therefore, multiple metrics were employed:

e Accuracy: The proportion of correctly classified images out of the total samples.

e Precision: The ratio of true positives to the sum of true positives and false positives, reflecting how many predicted melanomas
were correct.

o Recall (Sensitivity): The ratio of true positives to the sum of true positives and false negatives, indicating the model’s ability to
detect melanoma cases.

e F1-Score: The harmonic mean of precision and recall, providing a balanced measure.

e Confusion Matrix: A detailed visualization of correct and incorrect classifications across all classes.

e Graphs of Accuracy and Loss: Training and validation plots to demonstrate model convergence and stability.

V. RESULTS AND DISCUSSION

The results of this research represent the culmination of a systematic methodology that combined dataset pre-processing, CNN
model design, and rigorous evaluation using multiple performance metrics. This chapter presents the outcomes of the experimental
study in detail, followed by a critical discussion of their significance in the context of existing literature and clinical applications.
The objective is not only to report the numerical results but also to interpret them in a manner that highlights the strengths,
limitations, and broader implications of the proposed deep learning-based melanoma detection system.The CNN model developed
in this study achieved an impressive overall accuracy of 97% on the HAM10000 dataset. This high level of accuracy demonstrates
the ability of the proposed architecture to effectively distinguish between the seven categories of skin lesions, including melanoma.
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Accuracy, however, only provides a general view of performance. For a comprehensive evaluation, metrics such as precision, recall,
F1-score, and confusion matrix were considered, which provided deeper insights into the strengths and limitations of the model.
Table 2: Overall Performance Metrics

Metric Value
Accuracy 97%
Precision 85%
Recall 79%
F1-Score 82%

These results indicate that the model is capable of correctly identifying a majority of the melanoma and non-melanoma cases, while
also maintaining a balance between false positives and false negatives. The precision of 85% shows that most of the cases identified
as melanoma by the model were indeed melanoma, while the recall of 79% highlights that some melanoma cases were missed. The
F1-score of 82% provides an overall balanced measure of the model’s classification ability.

A. Class-Wise Performance Analysis
Table 3: Class-wise Precision, Recall, and F1-Score

Class Precision Recall F1-Score
Melanoma 0.85 0.79 0.82
Melanocytic Nevi 0.97 0.98 0.97
Basal Cell Carcinoma 0.91 0.87 0.89
Actinic Keratoses 0.84 0.76 0.80
Benign Keratosis 0.86 0.78 0.82
Dermatofibroma 0.89 0.83 0.86
Vascular Lesion 0.92 0.88 0.90

Class-wise analysis of precision, recall, and F1-score provides a more nuanced understanding of the model’s effectiveness across
different lesion categories. Since the dataset is imbalanced, with certain classes like melanocytic nevi being overrepresented, it was
important to assess how well the model generalized across both majority and minority classes.
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Figure 5: Training and Validation Accuracy and Loss Plot

From this analysis, it is clear that while melanocytic nevi were classified with near-perfect accuracy due to their abundance in the
dataset, melanoma detection performance, though strong, lagged slightly behind in recall. This suggests that while the model is very
effective at identifying melanomas when they are predicted, there remains a risk of missing certain melanoma cases. This finding
aligns with the clinical reality, where melanoma often mimics benign lesions and presents challenges even for expert
dermatologists.The accuracy plot showed a consistent increase in training and validation accuracy across epochs, converging at
around 97% accuracy. The validation curve closely followed the training curve, indicating that the model generalized well without
significant overfitting.The loss plot further confirmed this observation. Both training and validation loss decreased steadily and
stabilized at low values, demonstrating efficient learning and robust convergence. The absence of divergence between training and
validation loss indicated that the model was not memorizing the data but instead learning generalizable features from the
dermoscopic images.

B. Confusion Matrix Analysis
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4000
3000

2000

1000

o] 1

Figure 6: Confusion Matrix of CNN Model Predictions

The diagonal dominance of the confusion matrix reflected a high number of correct predictions across all classes. However, some
off-diagonal entries highlighted misclassifications, particularly between melanoma and benign keratosis-like lesions, as well as
between actinic keratoses and basal cell carcinoma. These misclassifications are not surprising given the visual similarities between
these classes, even in dermoscopic images. In clinical practice, such overlaps often challenge dermatologists as well.
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C. Discussion of Clinical Significance

The findings of this study have profound clinical implications. The high accuracy and precision demonstrate that Al systems can
effectively complement dermatologists by providing reliable second opinions and reducing diagnostic errors. The recall rate, while
slightly lower than precision, highlights the challenge of detecting melanoma and the need for ongoing optimization. Importantly,
the model’s ability to generalize across multiple lesion categories underscores its potential as a comprehensive diagnostic tool rather
than being limited to melanoma detection alone.From a healthcare perspective, integrating such systems into clinical workflows can
democratize access to dermatological expertise, especially in rural or resource-constrained settings. By enabling automated, early
detection of melanoma, these systems can improve patient outcomes, reduce treatment costs, and ease the burden on healthcare
infrastructure.At the same time, caution must be exercised. No Al model should be considered a replacement for dermatologists but
rather as a supportive tool that enhances diagnostic accuracy. Future iterations of such systems must prioritize sensitivity
improvements, explainability features, and validation through large-scale clinical trials before they can be integrated into
mainstream practice.

V. CONCLUSION AND FUTURE WORK

The study presented in this dissertation investigated the application of deep learning, specifically convolutional neural networks
(CNNs), for the detection and classification of melanoma skin cancer using the HAM10000 dataset. The work addressed one of the
most significant challenges in dermatology: the early and accurate detection of melanoma, which remains a leading cause of skin
cancer-related deaths worldwide. By systematically implementing a robust methodology that included pre-processing,
augmentation, model design, training, and performance evaluation, the research demonstrated the power of Al in improving
diagnostic accuracy and supporting dermatologists in clinical practice.The proposed CNN model achieved 97% overall accuracy,
supported by a precision of 85%, recall of 79%, and an F1-score of 82%. These results underscore the model’s strong generalization
ability across diverse lesion categories, while also highlighting the critical challenge of improving sensitivity for melanoma cases.
The analysis revealed that the model performed exceptionally well in detecting majority classes such as melanocytic nevi but
exhibited slightly reduced performance in minority classes, including melanoma and actinic keratoses. This observation reflects the
underlying dataset imbalance and suggests areas for future improvement.Despite these limitations, the research contributes valuable
insights to the growing field of Al in dermatology. It establishes that CNN-based architectures can deliver exceptional accuracy in
melanoma detection and opens avenues for more advanced research to enhance performance, scalability, and clinical integration.

A. Recommendations and Future Scope

e Incorporate transfer learning techniques with advanced architectures such as ResNet, Inception, or EfficientNet to improve
sensitivity and recall rates for melanoma.

e Address dataset imbalance by employing techniques like Synthetic Minority Oversampling Technique (SMOTE) or Generative
Adversarial Networks (GANS) to generate synthetic dermoscopic images for underrepresented classes.

o Integrate explainable Al (XAl) methods such as Grad-CAM or SHAP to make model predictions interpretable and transparent
to dermatologists.

e Expand research to include multi-ethnic datasets with broader representation of skin tones, age groups, and geographic diversity
to enhance generalizability.

e Combine multimodal data sources, such as patient metadata (age, sex, lesion history), with dermoscopic images to build holistic
diagnostic models.

o Develop lightweight, maobile-compatible models to enable real-time melanoma screening in primary healthcare settings and
rural regions.

e Conduct longitudinal clinical trials to validate model performance in real-world healthcare workflows and assess its impact on
patient outcomes.

e Extend the framework to include lesion segmentation, which can provide detailed morphological analysis alongside
classification.

o Explore ensemble approaches that combine multiple models to achieve greater robustness and accuracy in melanoma detection.

e Investigate integration of the system into teledermatology platforms, enabling remote diagnosis and expanding access to
dermatological expertise globally.
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