

12 XI November 2024

https://doi.org/10.22214/ijraset.2024.65070

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

1208 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Memory Optimization using Dynamic

Programming: A Comprehensive

Rutuja Borchate
1
, Saloni Jibhe

2
, Tanvi Bhandane

3
, Prof. Dipti Pandit

4

Vishwakarma Institute of Information Technology, Pune

Abstract: Dynamic Programming (DP) is one of the main techniques applied in problem solving by breaking a complex problem

into its small, easier parts. It focuses on how these parallel methods are applied in current parallel computing systems, especially

shared memory systems using OpenMP and distributed memory systems using MPI. We analyzed and compared execution times,

scalability, and communication costs in which these parallel DP methods perform well. Shared memory systems are easier to

implement for small to medium problems because they have low communication costs. Distributed memory systems are better

suited for large problems though distributed memory systems have higher communication costs. This gives one an idea of the

strengths and weaknesses associated with different parallel DP methods. It also enables the choice of the most relevant methods

according to the features of the computing problem.

Keywords: Dynamic Programming, Parallel Computing, Shared Memory Systems, Distributed Memory Systems, Scalability,

Communication Overhead, Parallel Algorithms, Computational Optimization, Survey.

I. INTRODUCTION

Dynamic Programming (DP) is one of the more well-known decomposition approaches to complex optimization problems. It

efficiently solves optimization challenges in many fields by ensuring that a subproblem is computed as often as possible, though it

only does so once, storing the result for later use to avoid redundant computation. It is extremely efficient for problems with

overlapping parts and good structures. A few classic problems solved by DP are the Knapsack problem and shortest-path

algorithms, among others, which fall within combinatorial optimization challenges. However, with the problem size becoming big,

other traditional DP methods may need even more memory and processing power. To solve this problem of high computing needs,

techniques that use parallelization have been used to make DP algorithms work better. Shared memory systems allow all processors

to use a common memory area. Here, processors can talk to each other directly by reading and writing to the same memory.

OpenMP is mostly used here, offering an easy way to make DP algorithms run in parallel using commands for the compiler.

OpenMP is effective for small and medium-sized problems since communication between processors takes much less time.

The operation of DP algorithms on two different system types shared memory systems using OpenMP and distributed memory

systems using MPI is examined and contrasted in this survey article. differences regarding execution time, scalability,

communication overhead, and how simple they are to implement will be exhibited. The paper presents various studies and results,

intending to provide informative details about the advantages and disadvantages of choosing between shared and distributed

memory systems for parallel DP algorithms.

II. LITERATURE REVIEW

The literature survey in the document focuses on the challenges and solutions related to memory-efficient dynamic programming [1]

for pairwise local sequence alignment in computational biology [10]. Traditional methods struggle with storing all intermediate

results in high-speed memory, necessitating checkpointing strategies to store selected computation stages and recompute missing

values as needed. The document introduces an optimal checkpointing strategy, demonstrating its effectiveness compared to previous

methods by Wheeler and Hughey (2000). The new approach optimizes the backtrace process, reducing the number of stages and run

time required for computations, as evidenced by comparative data in Table 1. In bioinformatics, advancement is essential for

increasing the effectiveness of sequence alignment tasks [8].

The study presents a method for automatically parallelizing and optimizing static and dynamic memory on MPSoCs [2]. The main

point is to ensure proper mapping of data within the data memory hierarchy and optimize the way data statically and dynamically

allocated are accessed and stored. The support tools [6] for automatic parallelization, static memory management, and dynamic

memory management are also included in this framework [15] to maximize MPSoC's computing capabilities while addressing the

complexity of high data transfer and storage requirements found in contemporary embedded applications.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

1209 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

[7] For developing the work for automating the parallelization and memory optimization for MPSoCs, the framework is proposed

for use in development tools.

Significant resources are included in this framework, including static memory control to improve performance and automatic

parallelization of sequential code to run in parallel based on user preferences. It also strongly emphasizes efficient data management

so that fixed and changing memory utilization can be optimized for the special requirements of embedded applications in the

MPSoC architecture. a new approach to solving DCOPs is presented in this paper because the objective and constraint functions

change over time[3].

Conventional EAs fail to capture such dynamic variations in real-time as they take the use of a rigid feasible region [9]. The authors

here proposed an MBDE algorithm by taking a hybrid memory scheme. In a hybrid memory scheme, authors used both short-term

and long-term memory so that this problem can be avoided. It would indicate the existence of short-term memory to note down

failed solutions which improves diversity, it also indicates the existence of long-term memory to hold the best possible and

impossible solutions for the coming changes. A method of how changes may be noticed is created, and the group adjusts quickly

based on how good things work by noting results over time with trial vectors.

A new IATM is introduced for switching between meeting goals and following limits which enables efficient control of the

distribution when there are changes in the limits or objectives Tests on benchmarks with 1000 runs show that the MBDE compares

very well with nine of the best methods according to the solution quality to the challenges introduced by dynamic optimization

problems.

To solve the Knapsack Problem [11], this study compares the performance of distributed and shared memory dynamic programming

methods [4], highlighting their effectiveness on various parallel systems. The two methodologies are compared in this work.

OpenMP for shared memory and MPI for distributed memory through time of execution, scalability, and overhead management.

The results are presented as shared memory being more appropriate for small to medium-sized problem sizes because of the

decrease in overhead from communication, and distributed memory is shown to be better suited for large-scale problems. However,

it incurs higher costs in terms of communication overhead. Moreover, the method discusses efficiency in the implementation

associated with OpenMP [12] rather than the great scalability of MPI at what trade-off; thus, valuable insight is given for

optimization in dynamic programming applications. Shared and Distributed Memory Models for Parallel Dynamic Programming

Algorithms: A Comparison. In particular in the context of the Knapsack Problem that has not been included here for reasons of size.

Here, the code uses OpenMP for shared memory algorithms and MPI for distributed memory. Key measurements for performance

are execution time, scalability, and communication overhead. The result shows that shared memory appears to work better for small

to medium problems because it has less communication overhead. On the other hand, distributed memory only seems efficient for

larger problems, but it comes with more communication costs. The experiment highlights a trade-off between the ease of use of

OpenMP and the higher scalability offered by MPI, which is crucial for the experts in the field. [3]. It addresses the challenge of test

case selection and prioritization during software testing, a challenge usually experienced where complete execution time exceeds

what is available for execution which is the case most of the time in developing projects.

An algorithm for dynamic programming has been developed. It blends human judgment with objective techniques like

computational optimization. This is accomplished by the provision of unambiguous, professional prioritizing with a recurrence

formula that does not exceed gigabytes. For this reason, training in taxonomy should explain the various approaches. The algorithm

is for the use of medium to large project sets and retains some memory space. The present dynamic programming algorithms are

used to solve the shortest-path problem. Single-source shortest path (SSSP) and all-pairs shortest path (APSP) are the two scenarios

that are discussed in this study. The author explains the main difficulties and how they solve them. The categorization informs

readers of what's going on with dynamic programming [13]. It breaks down the problem into smaller subproblems, and the solutions

to the subproblems can be combined in some optimal way to pick the best test cases.

The ultimate focus is on having the chosen test cases be meaningful within a period. Every test case is assigned a weight that gives a

reflection of objective and subjective criteria. The objectivities include aspects such as time taken to execute, while the subjective

refers to aspects that significantly influence one's choice of selecting test cases in one order more than another. The process followed

by the algorithm defines the selection problem in terms of test case importance, execution time, and the available maximum time for

the effective prioritization of test cases [14]. A Survey of Shortest- Path Algorithms.

[5] The paper provides an extensive overview of the algorithms that focus on finding the shortest paths between vertices in a graph,

a critical problem related to various applications ranging from network routing to traffic control, game development, etc. It

categorizes these algorithms based on the system proposed, which explains the different options available in solving the shortest

path problem.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

1210 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

It talks about both single-source shortest path (SSSP) and all-pairs shortest path (APSP) situations where the challenges and

solutions fall into two different categories. In this categorization, the authors reveal the difficult challenges of finding the lowest-

cost paths in a graph efficiently.

Table 1. Comparison Table

Paper Execution Time Memory

Optimization

Energy

Consumption

Parallelization Scalability

[1] Improved Moderate Low No Low

[2] Significant High Reduced Yes High

[3] Improved Moderate Moderate No High

[4] Significant Low High Yes High

[5] Moderate Moderate Low No Low

Table 1. Indicates that a significant trade-off exists between the two main approaches in parallel dynamic programming: resource-

oriented and memory-oriented techniques. Resource-oriented techniques, emphasizing the best possible usage of resources, show

better scalability and efficiency, especially when used with large-scale problems. As both key advantages are in the efficient use of

more than one processing core, the gain comes with a reduction in overall execution time with the growth of problem size. It makes

them appropriate for high-performance computing applications by enabling them to boost their processing power to handle huge and

complicated datasets that simple speeds cannot handle. However, these can be heavy-duty resource-intensive, leading to more

memory usage and bottlenecks in data synchronization and communication.

In comparison, memory-optimistic strategies will pursue reducing the footprint of computation memory often through techniques

about efficient data structures or redundant calculations minimization. Scalability may be brought into question while moderate

execution time gains may be attained, particularly for memory-constrained environments. For bigger problem sizes, gains from

memory optimization are easily obfuscated by increasing energy consumption and an underutilization of parallel processing

capabilities. Furthermore, memory-centric methods may potentially fail to scale performance across multiple processors while also

suffering the unsalability of memory access as well as data sharing.

III. ANALYSIS AND DISCUSSION

The experiments in Table I illustrate the importance of these trade-offs between parallelization-focused and memory-optimized

techniques for parallel DP. Techniques like these are designed to optimize performance in large-scale optimization problems but

display very different emphases between either a focus on high-speed computation or resource conservation. Parallelization-

Focused Techniques. Good scalability by strong parallelization-focused techniques demonstrates good leverage on both multi-core

and distributed architectures. Such techniques that decompose the problem into subproblems and distribute the workload among

several processors significantly reduce execution times for large problems. Since these techniques are computationally very

efficient, especially for the systems with considerable resources of processing, they become a more than effective source of handling

large data and intricate tasks. However, the cost is also paid in terms of increased memory usage and enhanced inter-processor

communication overhead, specifically on distributed systems. Overhead causes frequent bottlenecks because it either involves

synchronization or involves a memory bandwidth-constrained environment. Parallelization is the best strategy for achieving great

scalability in big computational systems, despite these setbacks.

The comparative study of optimization trends for the MPI and OpenMP scheduling techniques between 2018 and 2024 is shown in

Figure 1. The graph shows that over the observed years, for large problems trails behind for small problems in terms of optimization

percentages.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

1211 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The graph demonstrates how well the small problems approach performs when dealing with smaller problem sizes. The analysis

highlights how important these optimization techniques are becoming in terms of increasing computational efficiency. Thus, the

choice among the above methods is dependent on the size of the problem in question, the architecture of the system, and specific

performance requirements. Parallelization-focused methods are more suitable for large-scale problems requiring a lot of

computation. In smaller or energy-constrained environments, memory-optimized approaches have an acceptable balance despite

their poor scalability.

Figure 1. Performance Comparison of Optimization Progress

Figure 1 represents the trend of optimization concerning time for OpenMP (for small problems) and MPI (for large problems) titled

"Optimization Trend: OpenMP vs MPI (2018–2024)". Initially, the optimization rate shown by OpenMP is higher, and it would

cross around 70% only by 2020. This reflects the efficiency of shared memory systems for problem sizes without any high

communication overheads. However, beyond 2020, the plateauing curve of OpenMP optimizations heralds the "performance

ceiling" of scalability. On the other hand, the MPI presented optimization rates of around 55% in 2018 and increased steadily while

overtaking OpenMP in 2023 and reached optimization rates up to around 80% in 2024. This may indicate that the use of MPI for

distributed memory systems becomes more efficient when dealing with large-scale problems with improvements in the management

of overhead in communication and scalability. The data emphasizes the severe trade-off: OpenMP shines for small-scale problems

but quickly plateaus when dealing with large-scale workloads. MPI, at the same time, shows spectacular long-term scalability and

optimization of large-scale complex problems and should therefore become a much-preferred approach to high-performance

computing with an increase in problem size. This observation emphasizes the importance of choosing the proper parallel computing

model as related to problem size and system architecture.

IV. CONCLUSION

The suggested approach provides a versatile, effective, and scalable solution for handling big and complicated issues by combining

the strength of dynamic programming with memory-constrained techniques. It saves a lot of memory by employing techniques such

as a sliding window or recursive methods instead of building the whole DP table at the start; maintaining only necessary states or

calculating intermediate results when needed. All choices encountered during the process are recorded and so, backtracking gives an

exact solution. This ensures optimum performance under any variation of resource constraints and is thus perfectly suited to real-

world applications wherein scalability and memory constraints are major bottlenecks. This algorithm provides a sophisticated yet

useful framework through careful time and space trade-offs for many complex tasks.

According to the authors of this study, shared and distributed memory models depend on both the size of a task and the available

processing power to work best with parallel dynamic programming. OpenMP is said to be better suited for small to medium-sized

problems compared to distributions that work based on shared memory due to simplicity and lesser overhead of communication. For

large problems, however, MPI in distributed memory systems works better in scaling up at a cost of higher communication costs.

The findings highlight a clear trade-off between ease of implementation and scalability, making shared memory models more

practical for immediate applications and distributed memory models preferable for extensive, complex problems. Practitioners must

carefully consider these factors when designing and optimizing dynamic programming solutions, especially for resource-constrained

environments.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

1212 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] Lee A. Newberg, Memory-efficient dynamic programming backtrace and pairwise local sequence alignment, Bioinformatics, Volume 24, Issue 16, August

2008, Pages 1772–1778, https://doi.org/10.1093/bioinformatics/btn308.

[2] Y. Iosifidis, A. Mallik, S. Mamagkakis, E. De Greef, A. Bartzas, D. Soudris, F. Catthoor, "A Framework for Automatic Parallelization, Static and Dynamic

Memory Optimization in MPSoC Platforms," Journal of Embedded Systems, vol. 23, pp. 211-229, 2020.

[3] C. Chenggang, T. Feng, Y. Ning, C. Junfeng, "Memory-Based Differential Evolution Algorithms for Dynamic Constrained Optimization Problems,"

International Journal of Automation Engineering, vol. 30, pp. 193-206, 2021.

[4] M. Posypkin, S. T. T. Sin, "Comparative Performance Study of Shared and Distributed Memory Dynamic Programming Algorithms," Knapsack Problem

Conference, vol. 18, pp. 123-135, 2022.

[5] O. Banias, "Dynamic Programming Optimization Algorithm Applied in Test Case Selection," Software Testing Journal, vol. 12, pp. 45-57, 2019.

[6] A. Bartzas, et al., “Software metadata: Systematic characterization of the memory behavior of dynamic applications,” in Journal of Systems and Software, DOI:

10.1016/j.jss.2010.01.001.

[7] C. Baloukaset al., “Optimization methodology of dynamic data structures based on genetic algorithms for multimedia embedded systems,” in Journal of

Systems and Software, Volume 82, Issue 4, April 2009, Pages 590-602.

[8] Wheeler,R. and Hughey,R. (2000) Optimizing reduced-space sequence analysis. Bioinformatics, 16, 1082–1090.

[9] Nguyen, T.T., and Yao, X.: “Benchmarking and solving dynamic constrained problems”, in Editor (Ed.)^(Eds.): (IEEE, 2009, edn.), pp. 690-697.

[10] Waterman,M.S. (1995) Introduction to Computational Biology. Maps, Sequences, and Genomes. Chapman & Hall / CRC, London, UK.

[11] Hans Kellerer, Ulrich Pferschy and David Pisinger, “Knapsack Problems”, Springer, 2004.

[12] Barbara Chapman, Gabriele Jost, Ruud van der Pas, “Using OpenMP: Portable Shared Memory Parallel Programming”, 2008, Volume 10.

[13] T. J. McCabe, "A complexity measure." IEEE Transactions on Software Engineering 4 (1976), pp.308-320.

[14] Dan Hao, Lu Zhang, Lei Zang, Yanbo xWang, Xingxia Wu and Tao Xie, "To Be Optimal Or Not in Test-Case Prioritization, IEEE Transactions on Software

Engineering, Volume:PP, Issue 99, 2015, pp.1.

[15] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, S. Basalamah, "A Survey of Shortest-Path Algorithms," Journal of Algorithms, vol. 34, pp. 27-42,

2020

