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Abstract: The mental health app is designed to provide users with a holistic approach to managing their mental health. The app 
is built using React, and features a chatbot, a meditation timer, and a task manager. The chatbot provides users with a safe space 
to express their feelings and emotions, and to receive advice and support from the app's virtual assistant. The meditation timer 
helps users to focus on their breathing and relax, while the task manager helps users to organize and prioritize their daily tasks. 
With these features, the mental health app provides users with the tools they need to manage their mental health in a more 
efficient and effective way. 
Keywords: mental health, depression, wellness, React, chatbot, meditation timer, task manager, holistic approach, user-friendly 
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I. INTRODUCTION 
Mental health is an important aspect of our overall well- being, and taking care of it can greatly improve our quality of life. With the 
increasing use of technology in our daily lives, mental health apps have become a popular way to support individuals in managing 
their mental health. This app aims to provide a comprehensive solution for mental health management, using React as the 
development framework. The app features a chatbot, meditation timer, and task manager to help users with their mental health 
needs. The chatbot provides a safe and confidential space for users to talk about their feelings, receive support, and access resources 
for mental health. The meditation timer allows users to set a timer for their meditation sessions, helping them to reduce stress and 
anxiety. The task manager helps users to organize their daily tasks, set reminders, and stay on top of their priorities. 
With the combination of these features, users can manage their mental health more effectively, stay organized, and improve their 
overall well-being. The app's user-friendly interface and intuitive design make it easy for users to navigate and access the features 
they need. By using this app, users can take control of their mental health and develop healthy habits to support their overall well-
being. 

II. LITERATURE SURVEY 
The article "Mental Health Assessment using Smartphone Sensors and Machine Learning: A Review" published in the IEEE Sensors 
Journal in 2019, presents an overview of the potential of using smartphone sensors and machine learning for mental health 
assessment. The authors, Bhattacharya and Basu, explore the various ways in which sensors embedded in smartphones can be used 
to capture physiological, behavioral and environmental data, which can be used for the assessment of mental health. They also 
discuss the application of machine learning techniques for analyzing the data and deriving insights that can aid in the early 
detection, diagnosis and treatment of mental health disorders. The article highlights the promising role of smartphones in the future 
of mental health care and suggests avenues for future research in this field.The article "Investigating persuasive technologies for 
mental health and wellbeing" published in IEEE Pervasive Computing explores the potential of persuasive technologies for 
promoting mental health and wellbeing. The authors discuss various persuasive technologies, such as mobile apps, wearable devices, 
and virtual reality, and how they can be utilized for mental health interventions. The article also highlights the importance of user-
centered design in developing persuasive technologies, as well as the need for rigorous evaluation to determine their effectiveness. 
The authors conclude that while persuasive technologies have the potential to be effective in improving mental health and wellbeing, 
there is still a need for more research and development in this area to ensure that these technologies are designed and evaluated in a 
responsible and ethical manner. A Systematic Literature Review on Chatbots and Conversational Agents for Mental Health ,This 
paper presents a systematic literature review on the use of chatbots and conversational agents for mental health. It explores the 
conceptualization and development of these technologies, highlighting design considerations and their integration with existing 
mental health services. The review encompasses various applications, including depression screening, psychoeducation, therapy 
delivery, and crisis intervention. It analyzes methodologies, data collection processes, and evaluation techniques used in the selected 
studies. Ethical considerations, privacy concerns, and user acceptance factors are also discussed. The review concludes by 
emphasizing the potential of chatbots and conversational agents in enhancing mental health interventions and suggests future 
research Mental Health Web App directions.  
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Overall, it provides a comprehensive overview, synthesizing existing knowledge and offering insights for researchers, practitioners, 
and developers in the mental health technology field. 
 

III. PROPOSED METHOD 
A. Data Collection 
In the data collection phase, the aim is to gather a large dataset of user queries and their corresponding intents. This dataset is crucial 
for training the chatbot to understand and respond appropriately to user inputs. To collect the dataset, various methods can be 
employed. Surveys can be conducted where users are asked to provide queries related to specific topics or scenarios. These surveys 
can be administered online or in-person, depending on the target user group. Another approach is to directly engage with users 
through chat interfaces or customer support interactions, where their queries and intents can be recorded. Additionally, publicly 
available data sources can be scraped to gather relevant queries and intents. These sources can include online forums, social media 
platforms, or question- and-answer websites. By extracting data from these sources, a diverse range of user queries can be obtained, 
covering different topics and scenarios. The goal of data collection is to ensure that the dataset is representative of the target user 
group. It should encompass the various types of queries and intents that the chatbot is expected to handle. By collecting a 
comprehensive dataset, the chatbot can be trained on a wide range of inputs, enabling it to understand and respond accurately to user 
queries in real- world scenarios. 
 
B. Data Preprocessing 
Data preprocessing is an important step in preparing the collected dataset for training the chatbot model. Let's dive into the details of 
each preprocessing step: 
Tokenization: Tokenization involves breaking down the text data (user queries) into individual words or tokens. This is done using 
the nltk.word_tokenize() function from the Natural Language Toolkit (NLTK) library. The function splits the text into a list of 
tokens based on spaces and punctuation marks. 
Lemmatization and Lowercasing: After tokenization, the words in the queries are lemmatized and converted to lowercase. 
Lemmatization reduces words to their base or dictionary form, enabling better generalization by treating different forms of the same 
word as a single entity. For example, "running" and "runs" would both be lemmatized to "run". Lowercasing all the words ensures 
consistency and avoids treating words with different cases as separate entities. 
Removing Duplicates and Sorting: To create a unique and organized set of words, duplicates are removed from the list of words 
obtained after tokenization and lemmatization. This step  ensures  that  each  word  appears  only  once  in  the vocabulary. 
Additionally, sorting the vocabulary alphabetically provides a consistent ordering for the words, which can be helpful in various 
stages of the chatbot development process. 
Bag-of-Words Matrix: Once the vocabulary is obtained, a bag-of-words matrix is constructed. The matrix represents the presence or 
absence of each word in each query. Each row in the matrix corresponds to a query, and each column represents a word in the 
vocabulary. The values in the matrix indicate whether a particular word is present in a specific query or not. This binary 
representation of the words allows the model to learn patterns based on the presence or absence of specific words in the queries. 
By performing these preprocessing steps, the collected dataset is transformed into a suitable format for training the chatbot model. 
Tokenization breaks down the text into individual words, lemmatization reduces words to their base forms, removing duplicates and 
sorting create a unique vocabulary, and constructing the bag-of-words matrix represents the presence or absence of words in each 
query. These steps help in improving the effectiveness of the subsequent model training and enable the chatbot to better understand 
and respond to user queries. 

TABLE 1 
Dataset (Before 
Preproce ssing) 

Tokeniza tion Lemmati zation & 
Lowerca sing 

Duplicat es Remove 
d 

Sorted Vocabul ary Bag-of- Words 
Matrix 

How are you? [How, are, you, 
?] 

[how, be, 
you, ?] 

[how, be, you] [be, how, you] [1, 1, 1] 

What is the 
weather today? 

[What, is, the, 
weather, today, ?] 

[what, be, the, 
weather, today, ?] 

[what, be, the, 
weather, today] 

[be, the, today, 
weather, what] 

[1, 1, 1, 
1, 0] 

Can you help me? [Can, you, help, me, 
?] 

[can, you, help, me, 
?] 

[can, you, help, me] [can, help, me, you] [1, 1, 1, 
1] 
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C. Model training 
Model training is a crucial step in building a chatbot, and it involves training a neural network model using the preprocessed dataset. 
Here's a detailed explanation of the model training process: 
Model Architecture: The neural network model is typically built using the Keras Sequential class, which allows for stacking layers 
on top of each other. The model architecture consists of an input layer, one or more hidden layers, and an output layer. 
The input layer receives the preprocessed data, which is the bag-of-words matrix representing the presence or absence of words in 
each query. The hidden layers are responsible for learning patterns and extracting meaningful representations from the input data. 
The number of hidden layers and the number of neurons in each layer depend on the complexity of the problem and the size of the 
dataset. Experimentation and optimization techniques such as cross-validation can help determine the optimal architecture. 
The output layer has a number of neurons equal to the number of intent classes. Each neuron in the output layer represents a specific 
intent, and the output values indicate the model's confidence or probability for each intent. 
Model Compilation: Before training the model, it needs to be compiled with specific settings. One important aspect is the choice of 
optimizer, which determines how the model learns and adjusts its weights during training. In this case, the SGD (Stochastic 
Gradient Descent) optimizer is used with the Nesterov accelerated gradient variant. Nesterov accelerated gradient helps the model 
converge faster and find better solutions. 
Another crucial component is the loss function. For multi- class classification tasks like intent classification, the categorical cross-
entropy loss function is commonly used. This loss function measures the difference between the predicted intent probabilities and 
the actual intent labels. The goal of the model is to minimize this difference during training. 
Model Training: The model is trained using the model.fit() function in Keras. This function takes the preprocessed dataset as input 
and performs the training process. 
Training involves iteratively presenting the training data to the model, computing the predicted intents, comparing them with the 
actual intents, and updating the model's weights to minimize the loss function. The number of training iterations is determined by the 
number of epochs. Each epoch represents a complete pass through the entire training dataset. Training for more epochs allows the 
model to learn more from the data, but too many epochs can lead to overfitting. The batch size determines the number of samples 
processed before the model's weights are updated. Training with mini- batches instead of individual samples can help improve 
training efficiency and generalization. 
During the training process, the model learns to recognize patterns in the preprocessed data and make accurate predictions of the 
intents for user queries. By adjusting the weights based on the optimization algorithm and loss function, the model optimizes its 
performance over time. The training process continues until the specified number of epochs is reached. 
It's important to note that model training can be an iterative process that involves experimentation, hyperparameter tuning, and 
monitoring the model's performance on validation data to achieve the best results. 
 
D. Model Evaluation 
Evaluation Dataset: An evaluation dataset is prepared, which consists of a separate set of user queries and their corresponding 
intents. This dataset should be distinct from the training dataset to ensure a fair evaluation of the model's generalization capability. 
The evaluation dataset should contain a representative sample of user queries, covering a range of topics and scenarios. It helps 
evaluate how well the model performs on unseen data. 
Predicting Intents: The evaluation dataset is fed into the trained model to predict the intents for each query. 
The model takes the preprocessed representation of the query as input and produces a probability distribution over the intent classes. 
The intent with the highest probability is considered as the predicted intent. 
Performance Metrics: Several metrics can be used to evaluate the performance of the model. Commonly used metrics include 
accuracy, precision, recall, and F1-score. 
Accuracy: It measures the overall correctness of the model's predictions. It is calculated as the ratio of the number of correctly 
predicted intents to the total number of queries in the evaluation dataset. 
Precision: It measures the proportion of correctly predicted positive intents out of all intents predicted as positive. Precision is 
calculated as the ratio of true positive predictions to the sum of true positive and false positive predictions. It indicates the model's 
ability to avoid false positives. 
Recall (Sensitivity): It quantifies the model's ability to correctly identify positive intents. Recall is calculated as the ratio of true 
positive predictions to the sum of true positive and false negative predictions. It reflects the model's ability to avoid false negatives. 
F1-score: It combines precision and recall into a single metric that provides a balanced measure of the model's performance. F1-score 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue V May 2023- Available at www.ijraset.com 
     

 
7590 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

is the harmonic mean of precision and recall and is calculated as 2 * (precision * recall) / (precision + recall). F1- score is useful 
when both precision and recall are important. 
These metrics provide insights into different aspects of the model's performance, such as its accuracy, ability to avoid false positives 
and false negatives, and overall balance between precision and recall 
Interpreting Results: The evaluation metrics are analyzed to assess the model's performance. A high accuracy, precision, recall, and 
F1-score indicate good performance, while lower scores may suggest areas for improvement. 
It's important to consider the specific requirements of the chatbot application and the importance of each metric. For example, if 
false positives are more critical, precision may be of higher importance. Alternatively, if false negatives are more problematic, recall 
may be prioritized. 
By evaluating the model's performance on an independent dataset, you can gain insights into its effectiveness in predicting intents 
and make informed decisions about its readiness for deployment or the need for further improvements. 
 
E. Chatbot Implementation 
Flask Web Framework: Flask is a Python web framework that allows you to create web applications. It provides tools and libraries to 
handle routing, request handling, and response generation. The chatbot implementation utilizes Flask to create a web application 
that serves as the front-end for users to interact with the chatbot. Flask allows you to define routes, which are URLs that users can 
access to interact with different parts of the chatbot application. Loading Trained Model and Intents: The pre-trained model, which 
was trained using the methodology explained earlier, is loaded into the chatbot application. Additionally, the intents and training 
data are loaded from a JSON file. This file contains information about different intents, including patterns that users might input and 
their corresponding responses. Loading the model and intents allows the chatbot to understand user input, predict the intent of the 
input, and generate appropriate responses. 
Preprocessing User Input: When a user interacts with the chatbot, their input needs to be preprocessed before it can be passed to the 
trained model for prediction. 
Preprocessing involves tokenizing the user's input by breaking it down into individual words or tokens, similar to the preprocessing 
done during the training phase. 
The input is then lemmatized and converted to lowercase to ensure consistency in word representation. 
Predicting Intent: The preprocessed user input is passed through the trained model to predict the intent. 
The model takes the preprocessed representation of the user's input as input and produces a probability distribution over the intent 
classes. 
The intent with the highest probability is considered the predicted intent. Matching Intent with Responses: Once the intent is 
predicted, it needs to be matched with the appropriate response. The intents file, loaded earlier from the JSON file, contains patterns 
and corresponding responses for each intent. The pattern associated with the predicted intent is used to identify the appropriate 
response from the intents file. 
Generating Response: Based on the matched response, the chatbot generates a suitable response to be sent back to the user. This 
response can be a simple text message or a more complex output, depending on the specific requirements of the chatbot application. 
User Interaction via Web Application: With the chatbot implementation in place, users can interact with the chatbot through the web 
application created using the Flask framework.The web application typically consists of HTML templates that define the user 
interface for interacting with the chatbot. Users can enter their queries or messages in a text input field, and the application sends the 
input to the chatbot for processing. The generated response from the chatbot is then displayed back to the user through the web 
application. 
By implementing the chatbot using the Flask web framework, Keras neural network library, and NLTK library, you create a user-
friendly interface that allows users to interact with the chatbot and receive appropriate responses based on their input. 
 
 
 
 
 
 
 

Fig 1 - user interface 
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F. User Testing 
 
 
 
 
 
 
 
 
 
 
 

fig 2-front page 
 
Selecting a Group of Users: A diverse group of users is selected to participate in the user testing phase. The users should represent 
the target user group for whom the chatbot is designed. 
It's important to include users with different backgrounds, knowledge levels, and preferences to gather a comprehensive range of 
feedback. 
Interacting with the Chatbot: Users are provided with an opportunity to interact with the chatbot and use it as they would in real-
world scenarios. They can input queries, ask questions, or engage in conversations with the chatbot. The chatbot responds to user 
inputs by predicting intents and generating appropriate responses based on the implemented logic. 
Collecting User Feedback: During or after the interaction, users are encouraged to provide feedback on their experience with the 
chatbot. 
Feedback can be collected through various means, such as surveys, interviews, or feedback forms. Users are asked to evaluate the 
chatbot's accuracy in understanding their queries and providing relevant responses. They may also be asked to rate the overall user 
experience, interface design, and ease of use. 
Analyzing User Feedback: The collected user feedback is analyzed to identify patterns, common issues, and areas for improvement. 
Feedback is categorized based on different aspects of the chatbot's performance and user experience, such as accuracy, relevancy of 
responses, and usability. By analyzing the feedback, specific strengths and weaknesses of the chatbot can be identified. 
Making Necessary Changes and Enhancements: Based on the analyzed feedback, necessary changes and enhancements are made to 
improve the chatbot. Common issues and areas for improvement are addressed, such as refining the training data, improving the 
model's performance, or enhancing the user interface. Changes may involve updating the training dataset, retraining the model, 
adjusting the response generation logic, or making modifications to the user interface. 
Iterative Testing and Improvement: User testing is an iterative process, and multiple rounds of testing and improvement may be 
conducted. The updated version of the chatbot is tested again with a new group of users to assess the impact of the changes and 
gather additional feedback.  
This iterative approach allows for continuous refinement of the chatbot's performance and user experience. By conducting user 
testing and incorporating user feedback, the chatbot can be optimized to meet user expectations, provide accurate responses, and 
deliver a satisfactory user experience. 
 

IV. ARCHITECTURE 
1) Input Layer: The input layer is the starting point of the model and receives the preprocessed input data. The number of neurons 

in the input layer is determined by the size of the vocabulary, representing the number of unique words in the dataset. Each 
neuron in the input layer corresponds to a word in the vocabulary, and its value represents the presence or absence of that word 
in the input query. 

2) Hidden Layers: The hidden layers are responsible for learning patterns and representations from the input data. The number of 
hidden layers and neurons in each layer depend on the complexity of the problem and the size of the dataset. Commonly used 
activation functions in the hidden layers include Rectified Linear Unit (ReLU) and hyperbolic tangent (tanh), which introduce 
non-linearity and enable the model to capture complex relationships between words and intents. 
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3) Output Layer: The output layer produces the final predictions of the model, indicating the intent of the user query. The number 
of neurons in the output layer is equal to the number of intent classes or categories. Each neuron represents a specific intent, 
and the output values from these neurons are transformed into probabilities using a suitable activation function, such as 
softmax. The intent with the highest probability is considered the predicted intent of the input query. 

4) Model Compilation: Before training the model, it needs to be compiled with specific settings.The optimizer, such as Stochastic 
Gradient Descent (SGD) with Nesterov accelerated gradient, determines how the model learns and adjusts its weights to 
minimize the loss function.The loss function, typically categorical cross-entropy, measures the difference between the predicted 
intents and the true intents in the training data.Additional metrics, such as accuracy, can be specified to monitor the model's 
performance during training. 

5) Model Training: The compiled model is trained using the preprocessed dataset.Training involves feeding the input queries and 
their corresponding intents to the model and adjusting the weights iteratively based on the calculated loss.The number of epochs 
specifies the number of iterations over the entire dataset during training.The batch size determines the number of samples 
processed before updating the weights, and it affects the speed and stability of the training process.By designing the model 
architecture with appropriate layers, activation functions, and optimization settings, the chatbot model can effectively learn the 
underlying patterns in the input queries and make accurate predictions about user intents. The training process enables the 
model to adjust its weights based on the provided dataset, improving its ability to understand and respond to user queries. 

Fig 2- architecture 
 

V. FUTURE SCOPE 
Mobile app: A mobile app could provide greater convenience and accessibility to users, making it easier for volunteers and 
organizations to connect. The app could include features like push notifications to remind volunteers of upcoming events or tasks, a 
GPS system to help volunteers locate nearby opportunities, and an easy-to-use interface for both volunteers and organizations to 
communicate and manage tasks. Additionally, a mobile app could be designed to be compatible with different operating systems 
and devices, allowing a wider range of users to participate. 
Social media integration: By integrating social media features, such as sharing, commenting, and liking, the project could be 
promoted and shared more widely on social media platforms. This could increase the visibility of the project and attract more 
volunteers and organizations to participate. Social media integration could also allow for more efficient communication between 
volunteers and organizations, making it easier to share updates and progress reports. 
Gamification: Gamification elements like leaderboards, badges, and rewards can make volunteering more engaging and fun, and 
incentivize volunteers to participate more frequently and complete more tasks. Gamification could also foster a sense of competition 
and community among volunteers, as they strive to achieve the highest rankings and earn the most rewards. 
Machine learning: Machine learning algorithms could help to improve the accuracy and efficiency of the matching process between 
volunteers and organizations. By analyzing the skills, interests, and preferences of volunteers, machine learning algorithms could 
suggest the best matches for each volunteer, increasing the likelihood of a successful partnership. Machine learning could also be 
used to predict which tasks are most likely to be completed successfully and which volunteers are most likely to complete those 
tasks, optimizing the matching process even further. 
Multi-language support: Adding support for multiple languages could make the project more accessible to non- English speakers 
and allow it to reach a more diverse audience. This would involve creating language-specific interfaces for both volunteers and 
organizations, as well as providing support for different character sets and text directions. Providing multi-language support could 
also help to create a more inclusive and welcoming environment for volunteers and organizations from different cultural 
backgrounds. 
Analytics and reporting: Incorporating analytics and reporting features could help organizations track the impact of the project and 
identify areas for improvement. This could include tracking the number of volunteers, the types of tasks completed, and the overall 
impact of the project. By analyzing this data, organizations could identify which tasks are most in demand, which areas need more 
attention, and which volunteers are most successful, allowing them to refine and improve the project over time. 
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VI. CONCLUSION 
In conclusion, mental health trackers can be a useful tool for individuals who want to monitor and improve their mental health. They 
can provide valuable insights into mood patterns, triggers, and behaviors, allowing users to identify areas for improvement and 
develop coping strategies. Additionally, mental health trackers can facilitate communication with mental health professionals, 
providing them with valuable information that can inform treatment decisions. However, it's important to remember that mental 
health trackers should not be used as a substitute for professional medical advice or treatment. They can be a useful addition to a 
mental health treatment plan, but should be used in conjunction with therapy and other forms of support. Ultimately, the 
effectiveness of a mental health tracker will depend on how consistently and accurately it is used, and whether it is integrated into a 
comprehensive mental health plan. 
 

VII. ACKNOWLEDGMENT 
We are very thankful to the Department of Computer Science and Engineering of Adi Shankara Institute of Engineering and 
Technology for permitting us to work on the topic “Mental health web app”. We express our gratitude to prof. Rosemary 
Vargeehese., our project guide who gave us all the guidance and motivation and at any time available to us for doubts solving, 
grateful for giving us the required help, point by point recommendations and furthermore support to do the venture. We are excited 
and happy to offer our thanks to the Head of the Information Technology Department Prof. Manesh T I., for his endorsement of this 
undertaking. We are amazingly appreciative to all staff and the administration of the school for giving every one of us theoffices and 
assets required. 

REFERENCES 
[1] S. Taylor, The psychology of pandemics, First Edit. UK: Cambridge Scholar Publishing, 2019. 
[2] J.jin Zhang et al., “Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China,” Allergy Eur. J. Allergy Clin. Immunol., vol. 75, no. 7, 

pp. 1730–1741, 2020. 
[3] I. I. Haider, F. Tiwana, and S. M. Tahir, “Impact of the COVID- 19 pandemic on adult mental health,” Pakistan J. Med. Sci., vol. 36, no. COVID19-S4, pp. S90–

S94, 2020. 
[4] J. Shigemura, R. J. Ursano, J. C. Morganstein, M. Kurosawa, and D. M. Benedek, “Public responses to the novel 2019 coronavirus (2019- nCoV) in Japan: 

Mental health consequences and target populations,”Psychiatry Clin. Neurosci., vol. 74, no. 4, pp. 281–282, 2020. 
[5] C. S. Ho, C. Y. Chee, and R. C. Ho, “Mental Health Strategies toCombat the Psychological Impact of COVID-19 Beyond Paranoia andPanic,” Ann. Acad. Med. 

Singapore, vol. 49, no. 1, pp. 1–3, 2020. 
[6] W. Kawohl and C. Nordt, “COVID-19, unemployment, and suicide,”The Lancet Psychiatry, vol. 7, no. 5, pp. 389–390, 2020. 
[7] K. S. Khan, M. A. Mamun, M. D. Griffiths, and I. Ullah, “The Mental Health Impact of the COVID-19 Pandemic Across Different Cohorts,” Int. J. Ment. 

Health Addict., 2020. 
[8] L. Tang, B. Bie, S. E. Park, and D. Zhi, “Social media and outbreaks of emerging infectious diseases: A systematic review of literature,” Am. J. Infect. Control, 

vol. 46, no. 9, pp. 962–972, 2018. 
[9] T. M. Huang, “Design and implementation of APP system for legal consulting based on Java technology,” Procedia Comput. Sci., vol. 166, pp. 99–103, 2020. 
[10] M. J. Dutta, S. Kaur-gill, N. Tan, and C. Lam, “mHealth , Health , and Mobility : A Culture-Centered Interrogation Á Community Á Neoliberalism Á Mobile 

health,” mHealth Innov. Asia, pp. 91–107, 2017. 



 


