

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74680

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Methodological Approaches in Software Testing for Ensuring Reliability and Quality

Mythili J¹, Keshini A², Priyadharshini R³, Vyshnavi B⁴

Department of Computer Science with Cognitive Systems, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India

Abstract: Adaptive web portals play an increasingly significant role in shaping decentralized community engagement, particularly in digital environments where inclusivity, accessibility, and sustained interaction are paramount. The architectural foundation of these portals—whether developed through full stack frameworks or content management systems (CMS)—directly influences their adaptability, scalability, and user experience. This study proposes a comparative investigation into how full stack and CMS-based portals mediate participation in decentralized communities. Two prototypes will be developed: one using a full stack framework and the other on a CMS platform. Both systems will implement identical baseline functionalities, enabling a controlled comparison of usability, customization, scalability, and inclusivity. Evaluation will combine technical metrics, such as load time and scalability, with user-centered measures, including task completion, accessibility perception, and engagement frequency. A diverse participant group will be recruited to reflect variations in digital literacy. The anticipated outcome is a nuanced understanding of architectural trade-offs and their socio-technical implications, with practical recommendations for hybrid models that balance customization with accessibility. This research aims to contribute to the discourse on digital inclusivity by providing design strategies that integrate semantic web technologies, AI-driven personalization, and participatory governance systems into adaptive portals for decentralized engagement.

I. INTRODUCTION

The transformation of social interaction and knowledge exchange in the digital era has been strongly shaped by the emergence of decentralized communities. Unlike traditional platforms governed by centralized authorities, decentralized communities foster collective ownership, distributed governance, and shared participation. Web portals serve as the primary interface through which these communities operate, making their adaptability and usability critical for sustaining meaningful engagement. Within this context, adaptive web portals—defined as digital systems capable of dynamically responding to user needs and community growth—play a central role in bridging diverse populations and ensuring inclusive digital citizenship.

The architectural design of these portals profoundly influences their effectiveness. At the core of the debate lies a methodological choice between two dominant paradigms: full stack development and content management systems (CMS). Full stack development involves building portals from the ground up, giving designers control over every layer of the system, from database architecture to user interface design. This approach allows deep customization, modular expansion, and enhanced interactivity, making it attractive for technologically advanced communities with complex needs. However, the high degree of customization comes at a cost: resource-intensive development, reliance on specialized expertise, and extended deployment timelines.

In contrast, CMS platforms provide an accessible, template-driven solution that lowers barriers for communities with limited technical capacity. Systems such as WordPress and Drupal offer rapid deployment, administrative ease, and intuitive content management, enabling non-technical stakeholders to participate in governance and maintenance. Yet, their advantages in accessibility are counterbalanced by constraints in customization, scalability, and the integration of advanced features. As communities grow and require more sophisticated functionalities, CMS-based portals may reveal limitations in flexibility and adaptability.

The challenge, therefore, lies not merely in selecting one approach over the other but in understanding how architectural choices impact decentralized engagement outcomes. Engagement in this context extends beyond surface-level interactivity to encompass inclusivity, accessibility, trust, and long-term sustainability. Communities differ widely in terms of digital literacy, socio-economic diversity, and governance models, making it imperative that adaptive portals accommodate a range of users while supporting participatory decision-making.

Existing scholarship has explored digital inclusivity, the role of web portals in bridging the digital divide, and the adoption of semantic web technologies for enhanced navigation and search. However, direct comparative analyses of full stack versus CMS

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

architectures in the context of decentralized community engagement remain limited. This absence of systematic research leaves designers and policymakers without clear guidelines for selecting or blending approaches based on community needs.

This proposed study addresses that gap by developing and evaluating two functionally equivalent prototypes—one built on a full stack framework and the other using a CMS platform. By controlling for baseline features such as registration, event management, and feedback submission, the study ensures a fair comparison of the two architectures. Evaluation will employ a mixed-methods approach, integrating technical performance testing with user-centered assessments involving participants from diverse digital literacy backgrounds.

The objectives of this research are threefold: (1) to compare full stack and CMS portals in terms of technical performance, usability, and inclusivity; (2) to analyze the socio-technical trade-offs that emerge from architectural choices; and (3) to propose recommendations for hybrid models that integrate the strengths of both approaches. By pursuing these objectives, the study aspires to generate practical insights for designers, community leaders, and policymakers who seek to build inclusive digital infrastructures. The anticipated contribution of this research is twofold. Theoretically, it enriches the discourse on socio-technical systems by situating portal architecture within the broader debate on digital inclusivity and participatory governance. Practically, it offers actionable design strategies for communities navigating the choice between rapid deployment and advanced customization. Furthermore, it sets the stage for future integration of semantic web technologies, AI-driven personalization, and decentralized governance mechanisms into adaptive portals, thereby advancing the vision of inclusive, resilient, and sustainable digital societies.

II. LITERATURE REVIEW

The study of adaptive web portals in the context of decentralized community engagement requires an understanding of multiple intersecting domains, including digital inclusivity, user experience design, architectural frameworks, and the socio-technical dimensions of engagement. Previous scholarship provides valuable insights into these domains but also highlights gaps that justify a comparative methodological study between full stack and CMS-based architectures.

A. Digital Divide and Inclusivity

One of the most persistent challenges in digital community building is the **digital divide**, which encompasses disparities in access, digital literacy, and the ability to use technological platforms effectively. Graetz et al. (2016) emphasize that such divides limit the effectiveness of portals designed to enhance social participation, as marginalized groups often face barriers related to hardware, connectivity, and user skills. Similarly, Coughlin et al. (2017) demonstrate that patient portals, although effective for disease management, remain underutilized among populations with lower technological proficiency, thereby reinforcing rather than mitigating inequalities. For decentralized communities to succeed, adaptive web portals must address this divide by offering accessible interfaces, intuitive navigation, and inclusive participation mechanisms. CMS platforms have often been highlighted as a solution to inclusivity, given their low barrier to entry and administrator-friendly design. However, inclusivity must be evaluated not only in terms of initial access but also in terms of long-term participation, adaptability to different literacy levels, and support for evolving community governance.

B. Adaptive Design and User Experience

The field of human-computer interaction (HCI) has long underscored the importance of usability and adaptive design in fostering user engagement. Portals that prioritize ease of navigation, task efficiency, and trust-building features are more likely to sustain active participation (Zhu & Freeman, 2018). Adaptive design goes beyond static interfaces to incorporate personalization, context-awareness, and responsiveness to user needs. In the context of decentralized communities, adaptive features are especially critical because such communities often lack hierarchical structures to enforce participation. Instead, engagement emerges organically, shaped by the portal's ability to accommodate diverse user needs. Full stack development offers greater potential for embedding adaptive features such as custom dashboards, semantic search, and AI-driven personalization. In contrast, CMS platforms provide predefined templates and plug-ins that may limit flexibility but enhance accessibility by offering ready-to-use solutions.

C. Semantic Web and Knowledge Organization

The semantic web has been recognized as a promising avenue for improving navigation and knowledge management in web portals. Lausen et al. (2005) and Mäkelä et al. (2004) argue that ontology-driven portals enable richer information retrieval by organizing content in meaningful ways that reflect user context and domain semantics. Such features are particularly relevant for decentralized communities, where participants often engage with complex datasets, community-generated content, or governance records.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

While semantic features can theoretically be integrated into both full stack and CMS portals, the degree of flexibility varies significantly. Full stack architectures allow for custom implementation of semantic frameworks, including ontologies tailored to specific community domains. CMS platforms, by contrast, rely on available plug-ins and modules, which may provide baseline semantic functionality but often lack the extensibility needed for advanced use cases.

D. Architectural Trade-offs: Full Stack vs CMS

The debate between full stack development **and** CMS-based solutions is not new, but it has gained renewed importance in light of decentralized digital governance. Full stack development has traditionally been associated with maximum flexibility, offering developers control over every architectural layer. This flexibility allows for the integration of complex features, modular expansions, and highly interactive user experiences. However, it requires significant technical expertise, extended development cycles, and higher costs for maintenance (Yadav & Pal, 2018).

On the other hand, CMS platforms democratize content creation and portal management by reducing technical barriers. Their strengths lie in rapid deployment, intuitive administration, and a large ecosystem of themes and plug-ins that extend functionality (Abdul-Karim & Abawajy, 2016). Yet these advantages often come with trade-offs in scalability, extensibility, and deep customization. Studies also note security concerns in CMS portals, as their popularity makes them frequent targets for cyberattacks (Sujithra & Kannimuthu, 2019).

Despite these well-documented trade-offs, limited research has systematically compared the two approaches in the context of decentralized community engagement. Most existing comparisons are technical in nature, focusing on performance, cost, or security, without addressing how architecture mediates inclusivity, participatory governance, and long-term engagement.

E. Engagement in Decentralized Communities

Engagement in decentralized communities is distinct from that in centralized digital platforms because it relies heavily on collective participation, trust, and transparent decision-making. Research on open data portals, municipal platforms, and civic engagement tools highlights the importance of interactivity and participatory features in building sustainable digital communities (Zhu & Freeman, 2018). The design of web portals for such communities cannot be reduced to technical considerations alone. Instead, they must be understood as socio-technical systems, where architecture, usability, and governance are deeply intertwined (Shirky, 2010). This perspective underscores the need for comparative studies that evaluate not just performance metrics but also user perceptions, inclusivity outcomes, and the sustainability of community interaction.

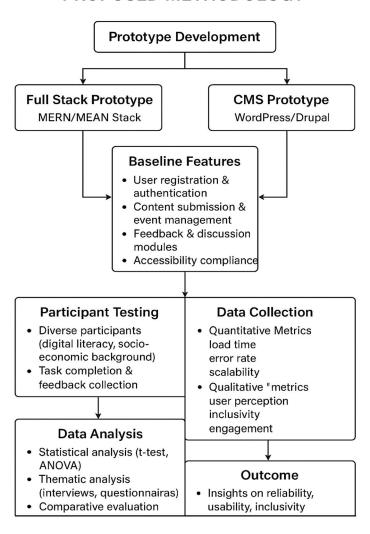
F. Identified Research Gap

While the literature establishes the importance of accessibility, adaptive design, and architectural trade-offs, direct empirical comparisons between full stack and CMS portals remain scarce. Few studies have examined how these architectural frameworks shape decentralized community engagement, particularly in terms of inclusivity and long-term participation. Furthermore, limited work has explored hybrid approaches that integrate the accessibility of CMS platforms with the extensibility of full stack development. The current research addresses this gap by proposing a comparative study grounded in prototype development and user testing. By employing a mixed-methods approach, the study seeks to generate a nuanced understanding of how architectural choices affect not only technical performance but also socio-technical outcomes in decentralized communities.

III. PROPOSED METHODOLOGY

This research adopts a comparative experimental methodology aimed at systematically evaluating the reliability, quality, and sociotechnical implications of adaptive web portals developed through full stack frameworks and content management systems (CMS). The methodological approach is anchored in established software testing practices and complemented by user-centered evaluations. By combining these two dimensions, the study ensures that both the technical robustness of the prototypes and the quality of user experience are rigorously assessed.

The study will begin with the development of two functionally equivalent prototypes. The first prototype will be constructed using a full stack framework such as the MERN stack, comprising MongoDB, Express, React, and Node.js. This approach will provide maximum control over both the front-end and back-end layers, thereby enabling extensive customization and scalability. The second prototype will be developed on a widely adopted CMS platform such as WordPress or Drupal, relying on themes and plug-ins for rapid deployment and ease of administration.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Both systems will implement a common set of baseline features, including user registration and authentication, event and content management, feedback submission, and accessibility compliance consistent with WCAG standards. This controlled design will ensure that observed differences in performance and usability can be attributed to architectural choice rather than functional discrepancies.

PROPOSED METHODOLOGY

To ensure that the prototypes achieve reliability and quality, the study will employ a multi-level software testing process. Unit testing will be used to validate the correctness of individual components, such as the authentication module and content submission forms. Integration testing will focus on verifying the interaction between modules to confirm that workflows, such as registration integrated with event creation, operate smoothly. System testing will be conducted to assess end-to-end functionality, ensuring that the prototypes conform to overall requirements. Performance testing will examine responsiveness, load handling, and scalability under varying levels of simulated user traffic. Usability testing will complement these technical tests by observing participants as they complete tasks such as event creation or content search, with measures of task completion time, error frequency, and user satisfaction serving as key indicators.

A diverse participant group will be recruited to ensure representation across age groups, digital literacy levels, and socio-economic backgrounds. Approximately fifty participants will be engaged, with equal exposure to each prototype, so that differences in engagement and usability can be fairly compared. Such diversity is critical for evaluating inclusivity, since decentralized communities are often composed of members with widely varying levels of technological proficiency. Participants will be asked to complete core tasks within the portals, after which they will provide structured feedback on their experience, particularly regarding ease of use, trust, and perceived inclusivity.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Evaluation will be conducted using both quantitative and qualitative measures. Technical metrics such as system uptime, error rate, response time, and throughput will be gathered using automated monitoring tools. Usability will be measured through completion rates and standardized instruments such as the System Usability Scale, while inclusivity will be assessed in terms of accessibility compliance and adaptability to participants with lower levels of digital literacy. Engagement will be examined by tracking patterns of participation, including login frequency, content contributions, and involvement in community discussions. Quantitative data will be subjected to statistical analysis, including independent samples t-tests and ANOVA, to detect significant differences between the two prototypes. Qualitative feedback from participants will be gathered through semi-structured interviews and open-ended survey questions, followed by thematic analysis to identify recurring patterns and perceptions. By integrating quantitative and qualitative findings, the study will achieve triangulation, thereby enhancing the validity of its conclusions.

Ethical considerations will guide every stage of the research. Participants will be fully informed about the purpose of the study and their rights prior to involvement, and written consent will be obtained. Privacy and confidentiality will be strictly maintained, with all personal data anonymized. Furthermore, the prototypes will be designed with accessibility in mind, ensuring that individuals with disabilities are not excluded from participation. These ethical safeguards will ensure that the research upholds principles of fairness, respect, and inclusivity, aligning with the broader objective of fostering equitable digital participation.

IV. EXPECTED RESULTS AND DISCUSSION

The anticipated outcomes of this study emerge from the comparative design of the prototypes and the layered methodology employed. It is expected that the full stack prototype will display a higher degree of customization and interactivity because of the granular architectural control offered by frameworks such as MERN. Such architectures are likely to demonstrate strong scalability and extensibility, particularly during load and stress testing, indicating their suitability for environments anticipating rapid growth in user numbers and diverse feature requirements. However, this strength may be counterbalanced by the higher technical complexity associated with full stack systems, which requires sustained developer expertise and can translate into greater maintenance costs. For communities with limited technical resources, such requirements may present barriers to long-term sustainability.

In contrast, the CMS-based prototype is expected to show advantages in rapid deployment and ease of administration. The use of platforms such as WordPress or Drupal allows community managers with limited technical knowledge to configure, update, and maintain the portal without substantial reliance on specialized developers. These characteristics reduce the barrier of entry for digitally marginalized groups, thereby fostering inclusivity. The CMS approach is also expected to be positively evaluated in terms of accessibility and perceived ease of use, especially by participants with lower digital literacy. Nonetheless, these gains may come at the expense of extensibility. The reliance on pre-defined plug-ins and themes often restricts deep customization, making it more difficult to implement advanced semantic features or specialized governance functions as community needs evolve.

The discussion of these results emphasizes that the comparison is unlikely to identify a universally superior approach. Instead, trade-offs between control and accessibility will become evident. The full stack approach may be empowering for technically proficient communities, but exclusionary for those lacking the necessary expertise. By contrast, the CMS approach offers inclusivity and ease of participation but can constrain long-term adaptability and functional growth. These trade-offs highlight the fundamentally sociotechnical nature of architectural choices in adaptive web portal design. Decisions about architecture are not only technical decisions but also governance choices that shape who can participate, who can manage, and how sustainable the system becomes.

In terms of contributions to software testing, this research demonstrates that reliability and quality assurance in community-facing web applications cannot be addressed through technical testing alone. The methodological emphasis on unit, integration, system, performance, and usability testing will reveal that different architectures require distinct emphases in testing practice. Full stack applications demand more comprehensive unit and integration testing to ensure correctness of the many custom-built components, while CMS-based applications will likely reveal vulnerabilities related to plug-in compatibility and third-party updates. Usability testing will further highlight differences in how participants engage with the prototypes, offering insights into human-centered measures of reliability. This expansion of software testing practice underscores the need for evaluation frameworks that move beyond technical stability to include inclusivity, trustworthiness, and user engagement as dimensions of software quality.

Finally, the study is expected to open avenues for future research in hybrid architectural models. By combining the accessibility of CMS with the extensibility of full stack frameworks, it may be possible to design adaptive portals that are both inclusive and capable of evolving with community needs. Moreover, the integration of semantic web technologies and AI-driven personalization may enable smarter, more context-aware engagement, aligning technical development with social innovation. In this way, the findings extend the scope of software testing and methodological approaches in web portal research, reinforcing the importance of balancing technical robustness with socio-technical inclusivity.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

V. CONCLUSION

This study has proposed a methodological framework for evaluating adaptive web portals developed through full stack frameworks and content management systems (CMS). The comparative approach outlined demonstrates that architectural choices in web development are not merely technical decisions but also socio-technical ones with direct implications for inclusivity, accessibility, and long-term sustainability. The results anticipated suggest that while full stack development offers greater scalability, extensibility, and technical control, it is accompanied by higher maintenance demands and a steeper learning curve that may exclude communities with limited resources. Conversely, CMS-based solutions emphasize rapid deployment and inclusivity, lowering technical barriers to entry but limiting customization and extensibility as community needs evolve.

By embedding rigorous software testing techniques—spanning unit, integration, system, performance, and usability testing—this study highlights the importance of ensuring reliability and quality not only in technical terms but also in human-centered dimensions such as inclusivity and governance. In doing so, the research extends the traditional scope of software testing frameworks, encouraging the inclusion of socio-technical reliability as an evaluative lens. The study further underscores that no single approach provides a universal solution. Instead, adaptive portals may benefit from hybrid strategies that combine the accessibility of CMS platforms with the scalability and flexibility of full stack development. Such models could better align with the diverse governance models and digital literacy profiles of decentralized communities.

The broader implication of this work is that adaptive web portals represent more than a technological innovation; they are infrastructures for collective participation, cultural exchange, and community governance. By advancing methodological approaches that balance technical rigor with inclusivity, this research contributes to the evolving discourse on digital platforms as sociotechnical systems. Future research should explore hybrid models, semantic web integration, and AI-driven personalization to further refine adaptive web portal design. Ultimately, the contribution of this study lies in demonstrating that software testing methodologies can be expanded to evaluate not only the reliability of systems but also the trustworthiness and inclusivity that sustain long-term community engagement.

REFERENCES

- [1] Al-Badi, A., Tarhini, A., & Al-Sawaei, S. (2017). Utilizing social media to encourage domestic tourism in Oman. International Journal of Business and Management, 12(4), 84–94. https://doi.org/10.5539/ijbm.v12n4p84
- [2] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices architecture enables DevOps: Migration to a cloud-native architecture. IEEE Software, 33(3), 42–52. https://doi.org/10.1109/MS.2016.64
- [3] Bozkurt, A. (2020). Educational technology research patterns in the pre- and post-COVID-19 era: A bibliometric analysis. Asian Journal of Distance Education, 15(1), 183–209.
- [4] Fowler, M., & Lewis, J. (2014). Microservices: A definition of this new architectural term. ThoughtWorks. https://martinfowler.com/articles/microservices.html
- [5] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Keele University.
- [6] Nash, C. (2019). Accessibility and digital inclusion: Implications for higher education. Research in Learning Technology, 27, 1–13. https://doi.org/10.25304/rlt.v27.2114
- [7] Pressman, R. S., & Maxim, B. R. (2020). Software engineering: A practitioner's approach (9th ed.). McGraw-Hill Education.
- [8] Sharma, R., & Sehgal, R. (2019). Comparative analysis of CMS and framework-based web applications. International Journal of Computer Applications, 178(6), 10–15. https://doi.org/10.5120/ijca2019918733
- [9] Sommerville, I. (2016). Software engineering (10th ed.). Pearson.
- [10] Zhou, Y., Leung, H., & Zhang, B. (2018). A systematic review of software fault prediction studies. Information and Software Technology, 95, 41–61. https://doi.org/10.1016/j.infsof.2017.11.013
- [11] J. Viji Gripsy, "Biological software for recognition of specific regions in organisms," Bioscience Biotechnology Research Communications, vol. 13, no. 1, pp. —, Mar. 2020. doi: 10.21786/bbrc/13.1/54.
- [12] J. Viji Gripsy and A. Jayanthiladevi, "Energy hole minimization in wireless mobile ad hoc networks using enhanced expectation-maximization," in Proc. 2023 9th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Mar. 2023, pp. 1012–1019. doi: 10.1109/ICACCS57279.2023.10112728
- [13] J. Viji Gripsy and A. Jayanthiladevi, "Energy optimization and dynamic adaptive secure routing for MANET and sensor network in IoT," in Proc. 2023 7th Int. Conf. Comput. Methodol. Commun. (ICCMC), Feb. 2023, pp. 1283–1290. doi: 10.1109/iccmc56507.2023.10083519.
- [14] S. Karpagavalli, J. V. Gripsy, and K. Nandhini, "WITHDRAWN: Speech assistive Tamil learning mobile applications for learning disability children," Materials Today: Proceedings, Feb. 2021. doi: 10.1016/j.matpr.2021.01.050.
- [15] J. Viji Gripsy, "Trust-based secure route discovery method for enhancing security in mobile ad-hoc networks," Int. J. Sci., Eng. Technol., vol. 13, no. 1, Jan. 2025. doi: 10.61463/ijset.vol.13.issue1.147.
- [16] J. Viji Gripsy, N. A. Selvakumari, L. Sheeba, and B. Senthil Kumaran, "Transforming student engagement through AI, AR, VR, and chatbots in education," in Chatbots in Educational Leadership and Management, Feb. 2025, pp. 73–100. doi: 10.4018/979-8-3693-8734-4.ch004.
- [17] A. S. Vijendran and J. V. Gripsy, "Enhanced secure multipath routing scheme in mobile ad hoc and sensor networks," in Proc. 2nd Int. Conf. Current Trends Eng. Technol. (ICCTET), Jul. 2014. doi: 10.1109/icctet.2014.6966289.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- [18] K. V. Greeshma and J. V. Gripsy, "RadientFusion-XR: A hybrid LBP-HOG model for COVID-19 detection using machine learning," Biotechnol. Appl. Biochem., Jul. 2025. doi: 10.1002/bab.70020.
- [19] T. Divya and J. V. Gripsy, "Lung disease classification using deep learning 1-D convolutional neural network," Int. J. Data Min., Model. Manage., 2025. doi: 10.1504/ijdmmm.2025.10066898.
- [20] J. Viji Gripsy, "Hybrid deep learning framework for crop yield prediction and weather impact analysis," Int. J. Res. Appl. Sci. Eng. Technol., Aug. 2025. doi: 10.22214/ijraset.2025.73800.
- [21] J. Viji Gripsy and K. R. Kanchana, "Relaxed hybrid routing to prevent consecutive attacks in mobile ad-hoc networks," Int. J. Internet Protocol Technol., vol. 16, no. 2, 2023. doi: 10.1504/ijipt.2023.131292.
- [22] J. Viji Gripsy, M. Sowmya, N. Sharmila Banu, D. Kumar, and B. Senthilkumaran, "Qualitative research methods for professional competencies in educational leadership," in Research Methods for Educational Leadership and Management, May 2025, pp. 213–236. doi: 10.4018/979-8-3693-9425-0.ch009.
- [23] J. Viji Gripsy and A. Jayanthiladevi, "Optimizing secure routing for mobile ad-hoc and WSN in IoT through dynamic adaption and energy efficiency," in Intelligent Wireless Sensor Networks and the Internet of Things, May 2024, pp. 45–65. doi: 10.1201/9781003474524-3.
- [24] A. S. Vijendran and J. Viji Gripsy, "RECT zone based location-aided routing for mobile ad hoc and sensor networks," Asian J. Sci. Res., vol. 7, no. 4, pp. 472–481, Sep. 2014. doi: 10.3923/ajsr.2014.472.481.
- [25] T. Divya and J. Viji Gripsy, "Machine learning algorithm for lung cancer classification using ADASYN with standard random forest," Int. J. Data Min. Bioinformatics, 2025. doi: 10.1504/ijdmb.2025.10065391.
- [26] J. Viji Gripsy and T. Divya, "Lung cancer prediction using combination of oversampling with standard random forest algorithm for imbalanced dataset," in Algorithms for Intelligent Systems, 2024. doi: 10.1007/978-981-97-3191-6_1.
- [27] J. Viji Gripsy and K. R. Kanchana, "Relaxed hybrid routing to prevent consecutive attacks in mobile ad-hoc networks," Int. J. Internet Protocol Technol., vol. 16, no. 2, 2023. doi: 10.1504/ijipt.2023.10056776.
- [28] J. V. Gripsy, N. A. Selvakumari, S. S. Hameed, and M. J. Begam, "Drowsiness detection in drivers: A machine learning approach using Hough circle classification algorithm for eye retina images," in Applied Data Science and Smart Systems, Jun. 2024, pp. 202–208. doi: 10.1201/9781003471059-28.
- [29] A. S. Vijendran and J. Viji Gripsy, "Performance evaluation of ASMR with QRS and RZLSR routing scheme in mobile ad-hoc and sensor networks," Int. J. Future Gener. Commun. Netw., vol. 7, no. 6, Dec. 2014. doi: 10.14257/ijfgcn.2014.7.6.05.
- [30] J. Viji Gripsy, R. Kowsalya, T. Thendral, A. SenthilKumar, J. T. Mesia Dhas, and L. Sheeba, "Integrating AI and blockchain for cybersecurity insurance in risk management for predictive analytics in insurance," in Harnessing Data Science for Sustainable Insurance, Jul. 2025. doi: 10.4018/979-8-3373-1882-0.ch013.
- [31] R. Kowsalya, J. Viji Gripsy, C. V. Banupriya, and R. Sathya, "Social impact of technology for sustainable development: A digital distraction detection approach," in Lecture Notes in Networks and Systems, 2025, pp. 245–256. doi: 10.1007/978-981-96-6063-6_22.
- [32] J. Viji Gripsy and M. Sasikala, "Nature-inspired optimized artificial bee colony for decision making in energy-efficient wireless sensor networks," in Advances in Computational Intelligence and Robotics, May 2024, pp. 89–104. doi: 10.4018/979-8-3693-2073-0.ch006.
- [33] J. Viji Gripsy and A. S. Kavitha, "Survey on environmental issues of green computing," Indian J. Appl. Res., vol. 4, no. 2, pp. 156–160, Oct. 2011. doi: 10.15373/2249555x/feb2014/34.
- [34] K. V. Greeshma and J. Viji Gripsy, "A review on classification and retrieval of biomedical images using artificial intelligence," in Internet of Things, 2021, pp. 23–38. doi: 10.1007/978-3-030-75220-0_3.
- [35] J. Viji Gripsy, M. Sasikala, and R. Maneendhar, "Classification of cyber attacks in Internet of Medical Things using particle swarm optimization with support vector machine," in Lecture Notes in Networks and Systems, 2024, pp. 301–315. doi: 10.1007/978-3-031-61929-8 26.
- [36] J. Viji Gripsy, B. Lukose, L. Sheeba, J. T. M. Dhas, R. Jayasree, and N. V. Brindha, "Enhancing cybersecurity insurance through AI and blockchain for proactive risk management," in Advances in Computational Intelligence and Robotics, May 2025, pp. 349–376. doi: 10.4018/979-8-3373-1977-3.ch012.
- [37] M. Mehala and J. V. Gripsy, "Voice based medicine remainder alert application for elder people," Int. J. Recent Technol. Eng. (IJRTE), vol. 8, no. 6, Mar. 2020, PP: 2284-2289 doi: 10.35940/ijrte.f7731.038620.
- [38] J. Viji Gripsy, "A hybrid RFR-BiLSTM framework for social media engagement and web traffic prediction," Int. J. Sci. Res. Comput. Sci., Eng. Inf. Technol., Volume 11, Issue 4, Aug. 2025. doi: 10.32628/cseit25111691.
- [39] G. Bharathi, R. N. M. Vidhya, J. V. Gripsy, J. Mythili, and D. Suganthi, "DRBRO–Dynamic reinforcement based route optimization for efficient route discovery in mobile ad-hoc networks," Int. J. Res. Publ. Rev., vol. 6, Issue 2, Feb. 2025, pp 1804-1806. doi: 10.55248/gengpi.6.0225.0768.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)