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Abstract: Multiple linear regression is a widely used statistical tool for modeling relationships between a dependent variable and 
multiple explanatory variables. However, it assumes that these explanatory variables are independent, which is not always the 
case in practical scenarios, leading to a phenomenon known as multicollinearity. 
Multicollinearity occurs when explanatory variables in a regression model are strongly correlated with each other, causing 
several issues in regression analysis. This paper discusses the detection and remedies for multicollinearity in detail. 
Detection methods include examining the determinant of the correlation matrix, inspecting correlation coefficients, using partial 
regression coefficients, calculating Variance Inflation Factors (VIFs), and assessing the condition number and condition index. 
These techniques help researchers identify the presence and severity of multicollinearity in their dataset. 
To address multicollinearity, several remedies are proposed, including obtaining more data, dropping collinear variables, using 
relevant prior information, employing generalized inverses, and employing principal component regression. Ridge regression, 
which introduces bias to reduce variance, is also discussed as an effective technique to combat multicollinearity. 
Understanding multicollinearity and employing appropriate detection and remediation strategies is crucial for obtaining reliable 
and meaningful results from multiple linear regression models. 
Keywords: Multicollinearity, Detection Methods, Remedies, Correlation Matrix, Variance Inflation Factors (VIFs), Condition 
Number, and Ridge Regression. etc. 
 

I. MULTICOLLINEARITY 
A basic assumption of the multiple linear regression models is that the rank of the matrix of observations on the explanatory 
variables is equal to the number of explanatory variables. In other words, such a matrix is of full column rank. This indicates that all 
the explanatory variables are independent, i.e. there is no linear relationship between the explanatory variables. The explanatory 
variables are called orthogonal. 
In many practical situations, explanatory variables may not be independent for various reasons. A situation where the explanatory 
variables are strongly correlated is called multicollinearity. 
 
Consider a multiple regression model 

111   nkknn XY  , ) I   (0, N ~ 2  

With k explanatory variables k21 X-,-,-X,X  with usual assumptions including kXRank )( . 

Assume observations on all the sX i


 and the sYi
 are entered and scaled to unit length. So 

*        'X becomes a k X k matrix of correlation coefficients between explanatory variables and 
*         Y will be the k X1 vector of correlation coefficients between explanatory variables and study variables. 
Let  KXXXX ,,, 21   where jX a column of X is represents the n observations on jX . The Zero column vectors, such as 

KXXX ,,, 21   are linearly dependent if there is a set of constants kCCC ,,, 21   not all zero, such that  

0
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j
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If this is true for exactly one subset KXXX ,,, 21  , then rank (X'X) = k. 
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Therefore   1XX  does not exist. If the condition 0
1




k

j
jj XC  is approximately true for a subset of KXXX ,,, 21   and 

then there has a quasi-linear dependence on (X'X). In such a case, there is a problem of multicollinearity. That too (X'X) will 
become ill-conditioned. 
 

II. SOURCE OF MULTICOLLINEARITY 
1) Method of Data Collection: Data are expected to be collected on a complete sample of variables. Data may be collected in a 

subspace of explanatory variables where the variables are linearly dependent. For example, sampling is conducted on only a 
limited range of explanatory variables in the population 

2) Model and Population Constraints: There may be some restrictions on the sample or the population from which the sample is 
drawn. A sample can be drawn from a portion of the population that has linear combinations. 

3) Existence of Identities or Definitional Relationships: Relationships between variables may be due to the definition of the 
variables or any identity relationship between them. For example, if data is collected on variables such as income, savings, and 
expenditures, then income = savings + expenditures. Such a relationship does not change even when the sample size is 
increased. 

4) Imprecise Formulation of Model: Model formulation is unnecessarily complicated. For example, quadratic (or polynomial) 
terms or cross-product terms appear as explanatory variables. For example 3 variables X1, X2 and X3, therefore k = 3. Suppose 
their cross product terms 21XX , 32 XX  and 31XX  are equal added. Then k increases to 6. 

 
A. An over-determined Model 
Sometimes, in an overzealous manner, a large number of variables are included to further refine the model realistic. Therefore, the 
number of observations (n) becomes smaller than the number of interpretations variables (k) . Such a situation may arise in clinical 
research where the number of patients is small, but information is collected on a large number of variables. In another example, if 
there is a 50-year time series of data on a consumption pattern, the consumption pattern is expected to remain unchanged.50 years is 
the same. So the best option is to select a small number of variables, hence the results n<k. 
 

III. CONSEQUENCES OF MULTICOLLINEARITY 
To illustrate the effects of the presence of multicollinearity, they considered a model 

  2211 xxy ,   0E  and   IVar 2   

 Where 1x , 2x  and y are scaled to length unity. 
The normal equation (X ' X) b = X ' y in this model becomes 
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Where r is the correlation coefficient between 1X and 2X ; jyr is the correlation coefficient between xj and 1,2)y(j and 

 21 b,bb  ' is the OLSE of β  
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So the variance matrix is   12 X XσVar(b)   
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If 1X  and 2X  are uncorrelated, then r=0 and  



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2X) X( Rank  
If 1X  and 2X  are perfectly correlated, then 1r  and 1X) XRank(  . 

If 1r  , then  )()Var(b 21 bVar  
So, if the variables are perfectly parallel, the variance of OLSEs becomes larger. This implies very unreliable estimates and is an 
unacceptable situation. 
If near or high multicollinearity occurs, the following potential consequences are encountered. 

1. OLSE is an unbiased estimator of β , but its sample variance becomes very large. Thus, the OLSE becomes inaccurate and the 
blue property no longer exists. 
2. Due to large standard deviations, the regression coefficients do not appear to be significant. Therefore, essential variables can be 
omitted 
For example, to test 0: 10 H , we use t- test statistic as  

)(ˆ
1

1
0

barV

bt    

Since )(ˆ
1barV is large, so 0t is small and consequently 0H  is more often accepted. 

Thus, deleterious multicollinearity tends to eliminate important variables. 
3. Due to large standard deviations, a large confidence zone may appear. For example, confidence interval is provided as

)(ˆ
11,

2
1 barVtb

n
  . When )(ˆ

1barV it becomes large, then the confidence interval becomes wider. 

4. OLSE can be sensitive to small changes in the values of explanatory variables. If some observations are added or removed, the 
OLSE can change dramatically in amplitude and sign. Ideally, OLSE should not change by adding or removing variables. Thus 
OLSE loses consistency and robustness. 

If the number of explanatory variables is greater than two, say k as kXXX ,,, 21  then the thj  diagonal element of 

  1X X C is  21
1

j
jj R

C



 

Where 2
jR  are the multiple correlation coefficients or the coefficient of determination of the regression of jX  among other (k-1) 

explanatory variables. 
 
If jX

 
is closely related to a subset (k -1) explanatory variables then 2

jR  is large and close to 1. Therefore, the variation of thj  

OLSE is 2

2
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  becomes very large. 
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Covariance between ib  and jb   If so, it would be high,  Xi and Xj are involved in a linear relation  leading to multicollinearity. 

Least squares estimates bj becomes much larger in absolute value in the presence of multicollinearity. For example, consider the 

squared distance between b and β as 

)()(2   bbL  





k

j
jjbELE

1

22 )()(    



k

j
jbVar

1
)(     12 X X  trace  

The trace of a matrix is equal to the sum of its Eigen values. If k ,,, 21  are Eigen values of X) X(  , then 
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If (X ' X) is ill-conditioned due to multicollinearity, at least one of the eigenvalues is small. Thus, the distance between b and β  
may also be significant. Thus  

)()()( 2   bbELE  

      bbbEtrace 2X X 12  

    12 X X)'( tracebbE  

n longer thay isgenerall b  

 valueabsolutein  large  toois OLSE  
Least squares provide erroneous parameter estimates in the presence of multicollinearity. This does not mean that the fitted model 
will also provide incorrect predictions. If the estimates are restricted to the space x with harmless multicollinearity, then the 
estimates are satisfactory. 

IV. MULTICOLLINEARITY DIAGNOSTICS 
An important question arises as to how to detect the presence of multicollinearity in the data given the sample information. There 
are many diagnostic measures, each of which is based on a specific approach. It is difficult to say which of the diagnoses is the best 
or the most definitive. Some popular and important diagnostics are described in more detail. The detection of multicollinearity 
involves 3 aspects: 
1) Determining its presence 
2) Determining its severity 
3) Determining its form or location 
 

A. Determinant of X X   X X : 

This measure is based on the fact that the matrix X'X degenerates in the presence of multicollinearity. The value of the 
multicollinearity determinant of X'X increases. 

If Rank(X ' X) <k then X X  will be singular and so X X =0. Then as 0X X  , the degree of multicollinearity increases 

and it becomes precise or perfect at X X =0. Thereby X X  acts as an action multicollinearity and X X =0 indicates perfect 

multicollinearity. 
Limitations: 
 This procedure has the following limitations 

(i) It is unlimited because  X X0 . 
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(ii) It is affected by the distribution of the explanatory variables. For example, if k<2, then 
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 Where 12r  is the correlation coefficient between X1 and X2.  So X X  depends on X Correlation coefficient and variance of 

the explanatory variable. If there are explanatory variables very small variances, then X X can be zero, indicating the presence 

Diversity and this is not the case. 
 
(iii) It gives no idea of the relative effects on the individual coefficients. If multicollinearity currently it does not indicate which 

variable in X X  causes the multicollinearity It's hard to determine. 

 
B. Inspection of Correlation Matrix 

Inspection of off-diagonal elements ijr  in  X ' X gives an idea about the presence of multicollinearity. If the Xi and X j are almost 

linearly dependent, and then ijr is close to 1. Note the observations in X Each observation is subtracted from the mean of that 

variable and divided by the square root of the corrected squares of that variable. 

When more than two explanatory variables are considered and if they are involved Dependence, it does not require any ijr  will be 

large. Usually, pairwise check Correlation coefficients are not sufficient to detect multicollinearity in the data. 
 
C. Determinant of Correlation Matrixrity 
Let D be the determinant of the correlation matrix, then 10  D . 
If D = 0, it indicates the existence of perfect linear dependence between the explanatory variables.  
If D = 1, then the columns of the matrix X are orthonormal. 
Thus, a value closer to 0 is indicative of a higher degree of multicollinearity. Any value of D between 0 and 1 gives an idea about 
the degree of multicollinearity. 
 
Limitations 
It does not provide information on the number of linear dependencies between explanatory variables. 
 

Advantages over X X : 

(i) It is a finite measure, 10  D . 
(ii) It is not affected by the dispersion of explanatory variables. For example, when k = 2, 
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D. Measure Based on Partial Regression 
A measure of multicollinearity can be obtained based on the coefficients of determination Partial regression. R2 is the coefficient of 
determination in the full model, i.e. dependent on all explanatory variables and R2 is the coefficient of determination in the model 

when the ith explanatory variable is deleted, i=1, 2, ---, k and  22
2

2
1

2
L ,,,maxR kRRR 

 
Procedure: 
(i) Remove one of the explanatory variables out of the k variables, say X1. 

(ii) Fit the regression of y on the remainder of (k -1) variables kXXX ,,, 32   

(iii) Calculate R2. 

(iv) Similarly, calculate
22

3
2
2 ,,, kRRR  . 

(v) Find  22
2

2
1

2
L ,,,maxR kRRR   

(vi) Determine 2
L

2 R-R . 

  Value of ( 2
L

2 R-R ) provides a measure of multicollinearity. If multicollinearity exists, 2
LR  will be high. The higher the 

degree of multicollinearity, the higher the value
2
LR . So in the presence of Multicollinearity,( 2

L
2 R-R ) be small. So if ( 2

L
2 R-R ) 

Closer to 0, it indicates a higher degree of multicollinearity. 
 
Limitations: 
(i)  It does not give any information about the underlying relationships with respect to explanatory variables, i.e. how many 
relationships exist or how many explanatory variables are responsible for multicollinearity. 

(ii)  A small value of ( 2
L

2 R-R ), it can also happen due to wrong model specification. In such a situation multicollinearity can be 
expected. 
 
E. Variance Inflation Factors (VIF) 

In the presence of multicollinearity in the data the matrix (X ' X) becomes ill. So the diagonal elements of   1X X C  helps 

detect multicollinearity. Whether there is or not specifies a multiplier of 
2
iR denotes the coefficient of determination taken when Xj 

is regressed on the remaining (k -1).Except for variables Xj. Then the jth diagonal element of C is  
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If Xj is approximately orthogonal to the rest of the explanatory variables, then 2
jR  is small and therefore Cjj close to 1. 

If Xj depends almost linearly on the subset of the remaining explanatory variables, then 
2
jR  close to 1 and Cjj is very wide. Since 

by the variance of jth OLS estimator of j  exists as jjj CbVar 2)(  . 

So Cjj factor of variation of bj increases when the explanatory variables are non-linear addictive. Based on this concept, the variance 
inflation factor for jth explanatory variable is defined as 
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This factor increases the sample variance. The combined effect of dependencies between explanatory variables on the variance of a 
term is measured by the VIF of that term in the model. 
One or more large VIFs indicate the presence of multicollinearity in the data. 
In practice, usually a IVF >5 or 10 indicates  that the associated regression coefficients are incorrect estimated due to 

multicollinearity.  If the regression coefficients are estimated by OLSE and their variance is   12 X X  . Then VIF indicates that 
part of this variance is contributed by VIFj. 
 
Limitations: 
(i) It does not shed light on the number of dependencies between explanatory variables. 
(ii) VIF > 5 or 10 rules may vary from situation to situation. 
 
Another interpretation of VIFj 
The VIFs can also be viewed as follows. 
  The confidence intervals of jth OLS estimator of j  is obtained by 
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Thus the jVIF represents the increase in the length of the confidence interval of the jth regression coefficient because of 

multicollinearity. 
 
F. Condition Number and Condition Index 
Let k ,,, 21   are the Eigen values (or characteristic roots) of X X . Let  

 ),,,max( 21max k   

 ),,,min( 21min k   

 
The condition number (CN) is given by  

min

max




CN ,  CN0  

 
Small values of the characteristic roots indicate a quasi-linear dependence in the data. The CN provides a measure of the spectral 
dispersion of characteristic sources of X′ X. 
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The condition number provides a measure of multicollinearity. 
• If CN <100, it is considered harmless multicollinearity. 
 • If 100 < CN <1000, then this indicates that multicollinearity is moderate to strong. This threshold is called the risk level. 
 • Whether or not there is CN >1000, this indicates severe (or strong) multicollinearity. 
 
The number of conditions depends on only two Eigen values: minimum maximum min  and  max . Another measurement situation 

index that use information about other eigenvalues. 
 The condition indices of X′ X are defined as  

j
jC


max ,  j=1, 2, ---. K 

   Suppose, if the largest Cj=CN 
         More than 1000 conditional codes represent many semi-linear dependencies on X 'X. 
       The restriction of CN and j C is that they are unbounded functions such that  CN0 , and  jC0 . 

 
G. Measure Based on Characteristic Roots and Proportion of Variances 
Let k ,,, 21   are the Eigen values of X 'X, ),,,( 21 kdiag    is kxk and V is a kxk matrix is constructed by the 

eigenvectors of X ' X . Obviously, V is an orthogonal matrix. So X ' X can be rewrite as VVX' X  .Let k21 V-,-,-V,V be a 

column of V. If semi-linear dependency on the data, then j  is close to zero and is explained by linear dependence by the 

components of the corresponding eigenvector Vj . 
The covariance matrix of the OLS estimator is given by 
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 Where ikii vvv ,,, 21   are the elements of V. 

The condition number indices are                       
j

jC
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max , kj ,,2,1   

Procedure: 
(i) Find the condition index C1, C2, -----, Ck. 
(ii)  (a) Identify i ’s for which risk level Cj is greater than 1000. 

 (b) It gives the number of linear dependencies. 
 (c) Ignore Cj's below the hazard level. 
(iii)  For such i ’s condition above the hazard level, select such an eigenvalue, say j . 

(iii) Find the value of the coefficient of variation for j  in )Var(b-,-),-Var(b),Var(b k21  as 
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 Note that 










j

ijv


2

 is obtained from 









k

ikii vvv



2

2

2
2

1

2
12

i ,,,)Var(b it is corresponding to jth factor. 

 The ratio of variance ijp  provides a measure of multicollinearity. 

If 5.0pij  , this indicates that ib  is negatively affected by multicollinearity, i.e., the estimate of i  is suffers from the presence of 

multicollinearity. 
It is a good diagnostic tool represented by the number of linear dependencies responsible for multicollinearity. This diagnosis better 
than other diagnoses. 
Condition indices are defined by the singular value decomposition of the X matrix as follows: 

VUDX   

Where U is an nxk matrix, V is a kxk matrix, U ' U = I, V ' V = I, D is a kxk matrix, ),,,( 21 kdiagD    and 

k ,,, 21   are singular values of X, V is a column matrix is a matrix whose columns are the eigenvectors of the eigenvalues 

of X ' X and U are the eigenvectors corresponding to the k nonzero eigenvalues of X ' X. 
 
The condition indices of matrix X are defined as 

j
i 


 max , kj ,,2,1   

          Where ),,,max( 21max k   

                        If k ,,, 21   are the eigenvalues of  X ' X then 

  VVVV'X' X 2  DVUDUDV  

                                   So, jj  2   for kj ,,2,1  . 

                    Note that with jj  2 , 





k

i i

ji
j

v
bVar

1
2

2
2)(


  





k
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j

v
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
 

j

i

ji

VIF

v












2

2

ijp


 

 
The worst case in X is reflected in the range of singular values. There is a small singular value for each linear dependence. The 

degree of ill-conditioning is described by the quantity j compared to max . 

Explanatory variables are recommended to be measured by unit length but not centered, when calculating ijp . This helps confirm 

the role of the intercept term non-linear dependence. There is no guidance in the literature on centering explanatory variables. The 
centering makes the intercept orthogonal to the explanatory variables. So it can eliminate bad conditioning because of the intercept 
period in the model. 
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V. REMEDIES FOR MULTICOLLINEARITY 
Many methods have been proposed to solve the problems arising from existence Multicollinearity in data. 
 
A. Obtain More Data 

Pernicious multicollinearity arises when X'X has rank less than k and X X  is close to zero. Additional data help reduce the 

sample variance of the estimates. Data required Collected in a way that helps break down multicollinearity in the data. 
It is not always possible to collect additional data for various reasons as indicated below: 
 The run and process terminates and is no longer available. 
  Financial constraints do not allow additional data collection. 
 Additional data may be inconsistent with previously collected data and may also be abnormal. 
 If the data is in a time series, a longer time series will force you to discard more backward data in past. 
 If multicollinearity is caused by some exact identity or relationship, increase the sample size doesn't help. 
 Sometimes data is available but it is not advisable to use it. For example, if the data from Usage policy is available for the years 

1950-2010, then one may not want to use it. The consumption pattern usually does not stay the same for a long time. 
 
B. Drop Some Variables that are Collinear 
If possible, identify variables that cause multicollinearity. These variables can be collinear dropped to match the drop rank state of 
the X- matrix. The process of leaving variables form organized based on some kind of sequence of explanatory variables, for 
example, those variables are eliminated first which are smaller value of t-ratio. In another example, suppose the experimenter is not 
interested in all parameters. In such cases, estimates of the parameters of interest can be obtained OLS estimator has smaller squared 
errors than the variance when removing some variables. If some variables are omitted, this reduces the predictive power of the 
model. Sometimes there is there is no guarantee that the model will exhibit low multicollinearity. 
 
C. Use Some Relevant Prior Information 
You can search for some relevant prior information on regression coefficients. This may lead to explanation of some coefficient 
estimates. The most common situation involves specification some exact linear constraints and stochastic linear constraints. 
Procedures such as constrained regression and mixed regression can be used for this purpose. Relevance and accuracy of 
information play an important role in such analysis, but difficult to ascertain in practice. For example, expectations derivation in UK 
may not be valid in India. 
 
D. Employ Generalized Inverse 

If rank (X ' X) <k, the generalized inverse can be used to find the inverse of X' X. So   can be estimated as   yX  1X X̂ . 
In such a case, the estimates are not unique except to use the Moore-Penrose inversion of (X ' X). Different methods for finding the 
generalized inverse may give different results. So, we will get different results. Also, it is not known what method to find the 
generalized inverse favorable. 
 
E. Use of Principal Component Regression 
Principal components regression is based on principal component analysis technique. The k-explanatory variables are transformed 
into a new set of orthogonal variables called principal components. Generally, this technique is used to reduce the size of data by 
retaining some levels variance of explanatory variables expressed by variance in the study variable. The principal components 
represent the determination of a set of linear combinations of explanatory variables they preserve the total diversity of the system 
and these linear combinations are mutually exclusive are independent of each other. The principal components obtained are 
classified in their order Significance. Significance is determined in terms of the variance explained by the principal component 
regarding the overall diversity of the system. The process involves removing some principal components help explain the relatively 
small variation. After removing a most significant principal components, multiple regression setup is used instead explanatory 
variables with principal components. The study variable Regressed against the principal components by selected using ordinary least 
squares method. From all the main 
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The components are orthogonal; they are independent of each other, so OLS can be used without any problem. After obtaining the 
estimates of the regression coefficients for the reduced orthogonal variables (principal components), they are mathematically 
transformed into new estimated regression coefficients for the original set of correlated variables. These new expectations principal 
component estimates of coefficients regression coefficients. 
Suppose there are k explanatory variables kXXX ,,, 21  . Consider a linear function of kXXX ,,, 21   such as  





k

i
ii XaZ

1
1

 





k

i
ii XbZ

1
2  etc. 

The constants kaaa ,,, 21  are determined such that the variance of Z1 is maximized normalization status 0
1

2 


k

i
ia . The 

constants kbbb ,,, 21  are determined such that the variance of Z2 is maximized under normal condition 



k

i
ib

1

2 1  and is 

independent of the first principal component. 
We continue such a process and obtain k such linear combinations which are orthogonal and their previous linear combinations and 
satisfy the normal condition. We get their differences. Let these linear combinations be kZZZ ,,, 21   and for them, 

)()()( 21 kZVarZVarZVar  . The linear combination with the largest variance is the first principal component. 

Linear combination having the second largest variance is the second largest principal component and so on. These are the main ones 
components have that property 





k

i
i

k

i
XVarZiVar )()(

1
. 

Also, kXXX ,,, 21   are correlated but kZZZ ,,, 21  are orthogonal or uncorrelated. Hence there is zero multicollinearity 

between kZZZ ,,, 21   . 

 
The problem of multicollinearity arises because kXXX ,,, 21   are not independent. From the main kXXX ,,, 21 
dependent components are independent of each other, so they can be used descriptively variables, and such regression struggles with 
multicollinearity. 
Let k ,,, 21  are the eigenvalues of XX  , ),,,( 21 kdiag    is a kxk diagonal matrix, V is an kxk orthogonal 

matrix containing the eigenvectors associated with k ,,, 21   . Enter the account a canonical form of a linear model 

  Xy  

  VXVy  

  Zy  
 
Here Z=XV,  V  ,  ZZXVXV . 

            The columns of ),,,( 21 kZZZ  define new explanatory variables, called principal components. 

            The OLS estimator of   is  

  yZZZ  1̂  

yZ  1̂  
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                    and the covariance matrix is  

  12)ˆ(  ZZVar   
12)ˆ( Var  











k

diagVar



1.,1,1)ˆ(

21

2  

Note that j is the variance of the jth principal component and  
 

k

i

k

j
jiZZZZ

1 1
. A small eigenvalue of X ' X means that 

there is a linear relationship between the original explanatory variable and the variance of the corresponding orthogonal regression 
coefficient is large, indicating  there is multicollinearity. If one or more j  is small, then it indicates that multicollinearity exists. 

 
1) Retainment of Principal Components 
The new sets of variables, i.e. the principal components, are orthogonal and of the same magnitude deviation from the original set. If 
multicollinearity is severe, then there is at least one small value of eigenvalue. Elimination of one or more principal components 
associated with the smallest eigenvalues will reduce the total variance of the model. Moreover, the main component responsible for 
creating Multicollinearity is removed and the resulting model is significantly improved. 
The principal component matrix ],,,[ 21 kZZZZ   with kZZZ ,,, 21   has exactly the same information than the 

original data in X, the total variance in X and Z is the same. The difference between them is that the original data is handled as new 
variables are uncorrelated and can be classified according to the magnitude of their eigenvalues. The jth vertical vector Zj 

corresponds to the largest j  represents the highest proportion of variation in original data. Thus, Zj is indexed so that 

021  k  and j is the variance of Zj. 

              One strategy for removing core components is to start by removing the associated component is the smallest eigenvalue. 
The idea behind this is to have a main body with a smaller one, the eigenvalue contributes the least to the variance and is therefore 
the least informative. 
 
F. Ridge Regression 
OLS estimator is the best linear unbiased estimator of the regression coefficient that is the minimum variance in class of linear and 
unbiased estimates. However, if there is an unbiased situation relaxed, and then it is possible to find a biased estimator of the 

regression coefficient, say ̂ , which is small and they are unbiased OLS estimator of b. The Mean Square Error (MSE) of ̂  is 
given by  

 2ˆ)ˆ(   EMSE  

    2]ˆ[]ˆ[ˆ)ˆ(   EEEMSE  

  2]ˆ[)ˆ()ˆ(   EEVarMSE  

 2)ˆ()ˆ( BiasVarMSE    

Therefore, MSE( ̂ ) can be made smaller than Var( ̂ ) by introducing a small bias ̂ . One of the procedures doing so is ridge 
regression. The peak regression estimator is obtained by solving the general equations of least squares estimation. The general 
equations are modified as 

  yXIXX Ridge   ˆ  

  yXIXXRidge  1ˆ 
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Is a ridge regression estimator of   and 0  is any characterizing scalar called the bias parameter. 

                            As 0 , )Estimator OLS(ˆ b  and as  , 0ˆ   
So the higher the value of  , the greater the shrinkage towards zero. Note that OLSE is not appropriate for use in when there is 

multicollinearity in the data it accounts for much more variance. On the other hand, a lot A small value of ̂  may accept the null 

hypothesis 0:0 H , which Variables are irrelevant. The value of the bias parameter controls the amount of shrinkage 

expectations. 
 
1) Bias of Ridge Regression Estimator 

The bias of Ridge̂  is 

      RidgeRidge EBias ˆˆ  

       ][ˆ 1 yEXIXXBias Ridge  

       XXIXXBias Ridge
1ˆ  

     IXXIXXBias Ridge  1ˆ  

      IXXXXIXXBias Ridge  1ˆ  

     1ˆ  IXXBias Ridge  

        Thus, the ridge regression estimator is a biased estimate of  . 
 
2) Covariance Matrix 

The covariance matrix of Ridge̂  is defined as 

        



 

 RidgeRidgeRidgeRidgeRidge EEEVar  ˆˆˆˆˆ  

Since  

       XXIXXyXIXXE RidgeRidge   11ˆˆ  

    )(ˆˆ 1  XyXIXXE RidgeRidge    

     XIXXE RidgeRidge  1ˆˆ  

So                  11 )(ˆ   IXXXVXIXXVar Ridge   

      112ˆ   IXXXXIXXVar Ridge   

 
3) Mean Squared Error 

The mean squared error of Ridge̂  is defined as  

      2ˆˆˆ
RidgeRidgeRidge BiasVarMSE    

       2ˆˆˆ
RidgeRidgeRidge BiasVartraceMSE    

          22112ˆ   IXXIXXXXIXXtraceMSE Ridge  
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2ˆ 
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

  IXXMSE
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j j

j
Ridge  

Here k ,,, 21   are the eigenvalues of XX   

Thus, as   increases, so does the bias of Ridge̂  increases but its variance decreases. Thus, the trade-off between bias and the 

difference depends on the value of . It can be shown that   has such a value 

  )(ˆ bVarMSE Ridge   

given that    is bounded. 
 
4) Idea Behind Ridge Regression Estimator 
The problem of multicollinearity arises because some roots of the eigenvalues of X'X are close to zero (or are zero). So 

p ,,, 21   are characteristic roots if , and if 

),,,( 21 kdiagXX    

Then  

  bIRidge
11ˆ    

Here b is OLS estimator of   is given by  

  yXXXb  1  

yXb  1  
So a particular element is of the form  

i
i

i
i

i

bb





 


1

1
 

          So a small quantity   is added to i  so if 0i , then 



i

i  is meaningful. 

 
5) Another interpretation of ridge regression estimator: 

In the   Xy  model, obtain the least squares estimate of when



k

i
i C

1

2  , where C is a constant. So minimize  

       CXyXyS    

                                                 Where  is a Lagrangian coefficient.  

                    Differentiating  S  with respect to , simple normal equations are 

  02220 


 

 XXyXS

 

  yXIXXRidge  1 ˆ   

If C is very small, this may indicate that most of the regression coefficients are close to zero, and if C is large, which may indicate 
that the regression coefficients are far from zero. So C keeps a kind penalty on the regression coefficients to allow its estimation. 
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