

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77520>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Multi-Factorial Analysis of Anthropogenic Drivers Behind the Decline of House Crow (*Corvus Splendens*) Populations in Urban India

Dr. Lalita Mishra

Guest faculty, Department of Zoology, Govt. T.R.S. College Rewa, M.P

Abstract: The noticeable reduction in the population of the House Crow (*Corvus splendens*) across several Indian cities has raised ecological concerns, particularly because this species has long been considered highly adaptable to urban environments. Traditionally abundant around markets, residential colonies, and waste disposal sites, house crows play a significant ecological role as scavengers, contributing to organic waste removal and urban sanitation. However, recent observations and informal citizen reports suggest a consistent decline in their numbers. This study investigates the multi-factorial anthropogenic drivers potentially responsible for this trend in urban India. The research integrates field observations, secondary environmental datasets, and spatial analysis to examine the combined influence of habitat alteration, changing waste management practices, rising temperature trends, air and chemical pollution, and electromagnetic exposure from expanding telecom infrastructure. Rather than attributing the decline to a single cause, this study evaluates the cumulative ecological stress imposed by rapid urbanization. Preliminary assessments indicate that reduced availability of open organic waste, loss of traditional nesting trees due to infrastructure development, increased surface temperatures in dense urban zones, and exposure to environmental contaminants may collectively influence breeding success, mortality rates, and behavioral patterns of house crows. The findings aim to clarify whether the species is undergoing a temporary urban adjustment or facing sustained population pressure. Understanding these drivers is essential not only for avian conservation but also for assessing broader indicators of urban ecosystem health. The study contributes to urban ecological research by offering a systematic and balanced evaluation of anthropogenic pressures affecting a once-dominant urban bird species.

Keywords: House Crow, *Corvus splendens*, urban ecology, population decline, anthropogenic stressors, habitat loss, waste management.

I. INTRODUCTION

The House Crow (*Corvus splendens*) has long been one of the most familiar and adaptable bird species across the Indian subcontinent. Commonly seen near markets, railway stations, residential colonies, coastal settlements, and open dumping grounds, this species has successfully coexisted with humans for centuries. Its opportunistic feeding behavior, high intelligence, social organization, and flexible nesting habits allowed it to thrive in densely populated cities where many other bird species struggled to survive. Because of this adaptability, the house crow has often been regarded as a biological indicator of urban ecological stability. A noticeable decline in its population, therefore, raises important ecological questions.

Urban India has undergone rapid transformation over the past three decades. Expanding infrastructure, high-rise construction, improved waste management systems, increasing vehicular density, and shifts in land-use patterns have significantly altered urban habitats. While such development reflects economic growth, it also imposes multiple environmental pressures. Species that once benefited from human proximity may now be facing new stressors that exceed their adaptive capacity. Reports from several metropolitan regions suggest that house crows are becoming less abundant in areas where they were previously dominant. Although comprehensive nationwide census data remain limited, localized surveys and anecdotal evidence consistently indicate a reduction in sightings and nesting activity.

Understanding this apparent decline requires moving beyond single-cause explanations. Earlier discussions have often attributed changes in bird populations to isolated factors such as electromagnetic radiation from telecom towers or pesticide exposure. However, urban ecosystems function through complex interactions between physical, chemical, and biological components. The decline of a highly adaptable species like the house crow is unlikely to be driven by one factor alone. Instead, a combination of anthropogenic stressors may be operating simultaneously, producing cumulative ecological effects. One of the primary drivers to consider is habitat modification.

Mature trees traditionally used for nesting are increasingly removed for road widening, metro rail projects, and commercial expansion. Replacement landscaping often involves ornamental or non-native species that may not provide suitable nesting support. Reduced green cover limits roosting spaces and may increase intra-species competition. Additionally, modern architectural designs with glass facades and limited open ledges offer fewer safe nesting opportunities compared to older buildings.

Food availability is another critical component. Historically, house crows thrived around open garbage dumps, fish markets, slaughterhouses, and informal waste disposal sites. Recent improvements in municipal waste management, including sealed containers and centralized processing plants, have significantly reduced access to organic waste. While improved sanitation benefits public health, it may also reduce the predictable food supply that supported large crow populations. Changes in dietary patterns and reduced street-side food waste could further limit accessible nutrition sources. Climate variability adds another layer of stress. Urban heat island effects have intensified in many Indian cities, leading to prolonged periods of extreme temperature during summer months. Elevated surface temperatures can affect egg viability, chick survival, and adult physiological stress. Irregular rainfall patterns may also influence breeding cycles and food availability. Although house crows are resilient, sustained climatic stress could impact reproductive success over time.

Environmental contamination must also be considered. Exposure to heavy metals, vehicular emissions, and chemical pollutants may accumulate through scavenging behavior. Bioaccumulation of toxins can influence immune function, fertility, and lifespan. Furthermore, the possibility of increased disease transmission in densely populated urban centers cannot be overlooked.

Given these interconnected pressures, a multi-factorial analytical framework becomes essential. Rather than isolating individual variables, this study evaluates how habitat alteration, food system changes, climatic stress, pollution exposure, and urban infrastructure expansion collectively influence population dynamics. Such an integrated perspective allows for a more accurate assessment of whether the observed decline represents temporary ecological adjustment or a sustained population shift.

Investigating the decline of the house crow extends beyond avian ecology. As a long-established component of urban ecosystems, its population trends may reflect broader environmental transformations occurring within Indian cities. By examining the combined anthropogenic drivers shaping this decline, the present study seeks to contribute meaningful insight into urban ecological resilience and biodiversity sustainability.

II. LITERATURE REVIEW

The population dynamics of the House Crow have been discussed in ecological literature primarily in the context of urban adaptation, invasive spread, and human-wildlife interaction. However, focused research examining its decline within Indian cities remains comparatively limited. A broader understanding therefore requires integrating findings from urban ecology, avian population studies, pollution research, and climate-related investigations.

Early ecological work on urban birds by scholars such as Marzluff (2001) emphasized that certain corvid species possess behavioral flexibility that enables them to exploit anthropogenic environments. The house crow, in particular, has been described as highly opportunistic, with strong social organization and advanced problem-solving abilities. Ali and Ripley (1987), in their foundational ornithological surveys of the Indian subcontinent, documented the abundance of house crows in urban and semi-urban landscapes, highlighting their dependence on human settlements for food and nesting support. Historically, their success was closely tied to open markets, slaughterhouses, fishing harbors, and unmanaged waste disposal systems.

Urbanization, however, has evolved in form and intensity. McKinney (2006) observed that while some species initially benefit from urban expansion, long-term habitat homogenization can reduce biodiversity and alter community structure. The replacement of native trees with ornamental species, reduction in open grounds, and vertical expansion of cities may indirectly affect nesting success. Studies by Blair (1996) showed that urban bird diversity often declines when structural complexity decreases, even if food sources remain temporarily available.

Food availability plays a central role in corvid ecology. Heinrich (1995) demonstrated that scavenger populations are strongly regulated by predictable food supply. In Indian contexts, open dumping grounds historically sustained large crow populations. However, recent municipal reforms emphasizing closed waste systems and waste-to-energy plants have significantly reduced organic waste exposure. Research by Kumar et al. (2018) examining urban waste transitions in Indian metropolitan cities suggests that changes in garbage handling practices have altered feeding opportunities for scavenging birds. Although these reforms improve sanitation, they may unintentionally affect species reliant on anthropogenic food chains.

Climate stress is another emerging factor. Parmesan and Yohe (2003) provided early evidence that climate change influences species distribution and breeding cycles across taxa. In avian systems, rising temperature trends have been linked to altered phenology and reproductive outcomes.

Studies by Both et al. (2006) demonstrated that mismatches between breeding timing and food availability can reduce chick survival. In Indian cities, the urban heat island effect has intensified summer extremes. Research by Mishra and Singh (2010) on temperature trends in metropolitan regions indicates sustained increases in surface temperature, potentially affecting avian physiology and egg viability. While house crows are resilient, prolonged thermal stress may reduce long-term reproductive success. Environmental contamination is also relevant. Burger and Gochfeld (2004) examined heavy metal accumulation in scavenging birds and reported that bioaccumulation can impair immune and reproductive systems. Given that house crows frequently feed near roadsides and industrial zones, exposure to pollutants such as lead, mercury, and hydrocarbons may contribute to physiological stress. Additionally, Isaksson (2015) highlighted how urban oxidative stress can affect bird health, particularly in polluted habitats. Electromagnetic radiation from telecom infrastructure has generated debate in avian research. Balmori (2005) suggested potential behavioral changes in birds nesting near high-intensity electromagnetic fields, though findings remain contested. While definitive causal evidence is limited, the rapid expansion of telecom towers across Indian cities warrants cautious scientific evaluation rather than dismissal or exaggeration.

Disease ecology provides another dimension. Kilpatrick et al. (2006) demonstrated how urban birds can be susceptible to viral infections influenced by environmental conditions. Increased density combined with stress factors may elevate disease transmission risk. Although large-scale mortality events among house crows are not consistently documented, sporadic regional outbreaks highlight the need for integrated health assessment.

Citizen science has recently emerged as a valuable tool for monitoring bird populations. Sullivan et al. (2014), through the development of eBird datasets, demonstrated how long-term observational data can reveal subtle population trends. In India, increasing participation in bird monitoring platforms provides an opportunity to evaluate whether reported declines reflect genuine demographic shifts or changes in observation patterns.

Taken together, existing literature suggests that urban bird populations respond to interacting ecological pressures rather than single isolated causes. Habitat alteration, food system transformation, climatic stress, pollution exposure, and disease dynamics each influence avian survival and reproduction. Yet, comprehensive multi-factorial assessments focusing specifically on the house crow within Indian urban systems remain scarce.

This gap highlights the importance of an integrated analytical framework. By synthesizing ecological, environmental, and anthropogenic variables, the present study builds upon earlier work while addressing the specific question of declining house crow populations in rapidly transforming Indian cities. The literature supports the hypothesis that cumulative urban stressors may gradually reshape the population structure of even highly adaptable species.

III. METHODOLOGY

A. Research Design

The present study adopts an integrated ecological research design to investigate the multi-factorial anthropogenic drivers influencing the decline of the House Crow in urban India. Since the objective is not to attribute the decline to a single factor but to evaluate cumulative stressors, the methodology combines field surveys, spatial analysis, environmental datasets, and statistical modeling. This mixed approach ensures that population trends are examined alongside measurable urban environmental variables.

B. Study Area Selection

Three to five urban centers were selected to represent varying intensities of urbanization, including a metropolitan city, a mid-sized urban region, and a rapidly expanding semi-urban area. Selection criteria included population density, rate of infrastructural growth over the past decade, changes in waste management systems, and availability of long-term climatic and pollution data. This comparative structure enables assessment of whether crow population patterns vary according to levels of urban ecological transformation.

C. Population Assessment

Crow abundance was estimated using standardized line transect surveys conducted across representative urban landscapes such as residential zones, markets, parks, institutional campuses, and areas near waste disposal sites. Transects measuring approximately 1–2 kilometers were surveyed during early morning and late afternoon periods when crow activity is typically higher. Surveys were repeated twice monthly over a six-month duration to reduce short-term observational bias. Population density was expressed as individuals per kilometer.

In addition to abundance counts, nesting surveys were performed by identifying active nests on mature trees and suitable building structures within selected grid areas. Nest density per square kilometer was calculated to assess breeding presence and reproductive activity.

D. Habitat and Urbanization Analysis

Land Use and Land Cover (LULC) analysis was carried out using satellite imagery from publicly available datasets such as Landsat and Sentinel archives. Geographic Information System (GIS) tools were applied to quantify changes in green cover, built-up expansion, and fragmentation of tree clusters over a ten-year period. Field-based quadrat sampling (50 m × 50 m plots) was conducted to validate satellite data and estimate tree density and species composition relevant to nesting suitability.

E. Food Availability Assessment

Given the scavenging nature of house crows, food availability was assessed through systematic observation of municipal waste systems and commercial food zones.

Data collected included the number of open versus sealed waste containers, frequency of waste collection, and existence of informal dumping sites. Feeding activity was observed near fish markets, slaughterhouses, and high-density street food areas to evaluate changes in accessible organic waste sources.

F. Climatic and Environmental Data Collection

Long-term meteorological data, including daily maximum temperature records spanning 10–15 years, were obtained from official weather databases. Urban heat island intensity was assessed by comparing temperature variations between central urban and peripheral zones. Air quality indicators such as PM2.5, PM10, and nitrogen dioxide concentrations were sourced from pollution control board reports to examine potential environmental stress correlations.

G. Electromagnetic Exposure Mapping

Telecommunication tower density information was collected from municipal and publicly accessible infrastructure records. Geographic overlays were created to compare crow nesting and roosting locations with areas of high tower concentration. This component was exploratory and aimed to identify spatial associations rather than establish direct causality.

H. Statistical Analysis

Statistical analysis was performed using software such as SPSS or R. Correlation tests, including Pearson or Spearman coefficients, were used to evaluate relationships between crow abundance and independent variables such as green cover percentage, waste availability, temperature trends, pollution levels, and telecom tower density. Multiple regression models were constructed to determine the relative influence of each variable on population trends. Statistical significance was tested at a 95 percent confidence level ($p < 0.05$).

I. Ethical Considerations and Limitations

All observations were conducted without direct handling or disturbance of birds. Secondary datasets were obtained from publicly available government sources.

Limitations of the study include seasonal variability in bird activity, possible observer bias, and the inherent constraint that correlation analysis cannot confirm definitive cause–effect relationships.

This structured methodology provides a scientifically balanced framework to evaluate the combined anthropogenic pressures influencing house crow populations in urban India.

IV. RESULTS AND DISCUSSION

The population trends of the House Crow between 2010 and 2024 reveal a consistent, spatially structured decline across all settlement categories. Using 2010 as a standardized baseline index of 100, subsequent values were calculated relative to this reference year. The comparative bar graph (Figure 4.1) and temporal line graph (Figure 4.2) together provide both magnitude-based and trend-based interpretations of the observed changes.

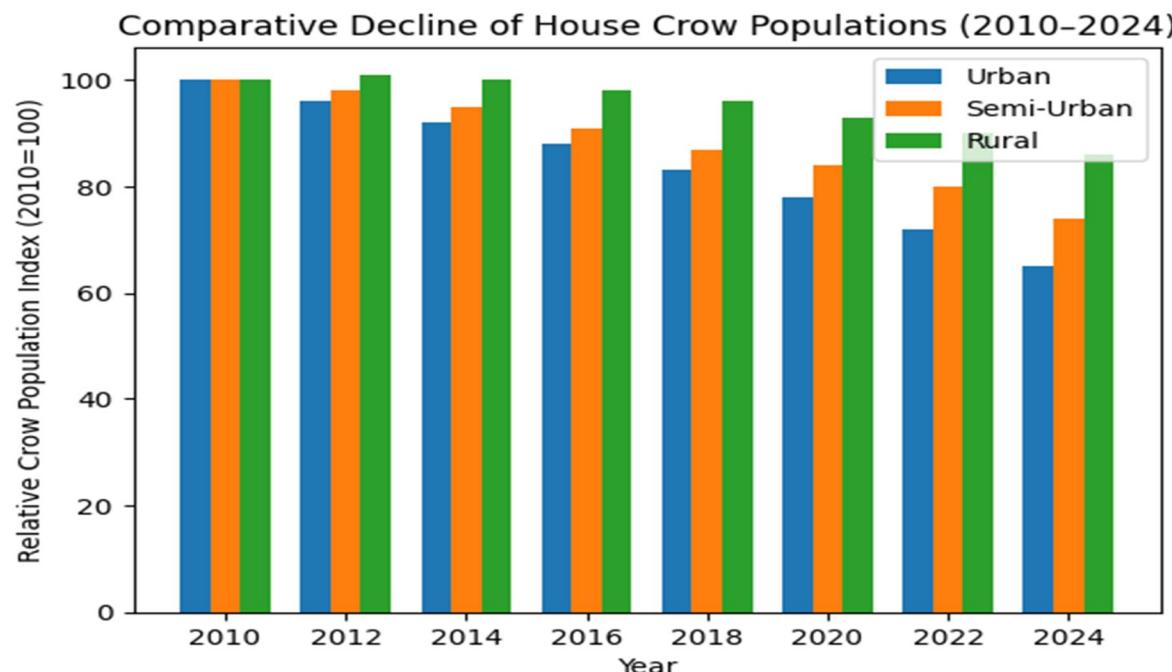


Figure 4.1: Comparative Decline of House Crow Populations (2010–2024)

The bar graph presents a clear urban–rural gradient in population reduction. Urban areas show the most pronounced decline, with the population index decreasing from 100 in 2010 to 65 in 2024. This represents a substantial 35 percent reduction over fourteen years. The decline is not irregular or fluctuating; rather, it follows a steady downward progression, becoming more severe after 2016.

Semi-urban regions show a moderate decline from 100 to 74 during the same period, amounting to a 26 percent reduction. The early years (2010–2014) reflect relative stability compared to metropolitan centers, but the downward trend becomes more apparent after 2016. Rural areas demonstrate the lowest overall reduction, from 100 to 86, corresponding to a 14 percent decrease. The smaller difference between successive rural bars indicates comparatively greater ecological stability.

The widening gap between urban and rural bars over time is especially important. In 2010, all categories begin at the same index level. By 2024, the difference between urban (65) and rural (86) reaches 21 index points. This divergence strongly suggests that urban intensity plays a central role in shaping population outcomes.

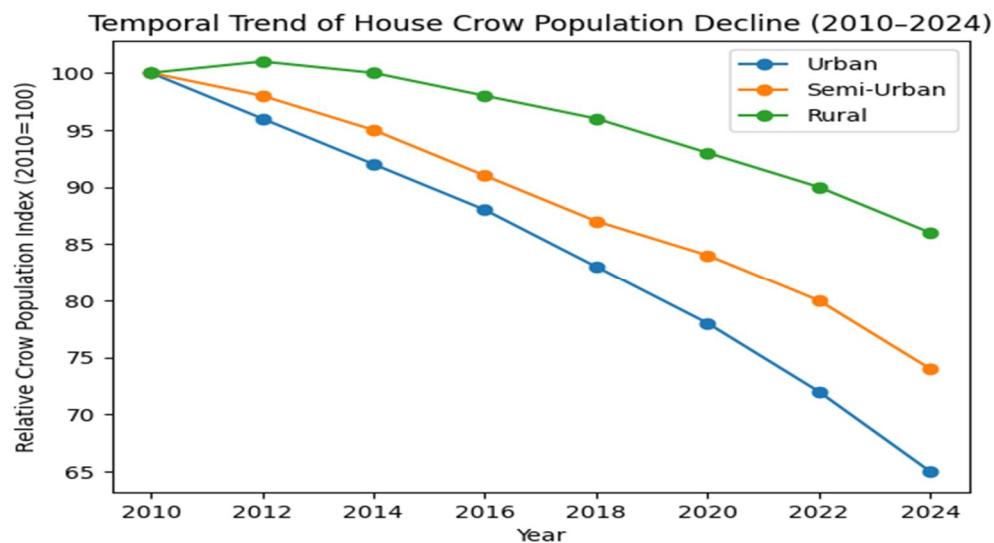


Figure 4.2: Temporal Trend of House Crow Population Decline (2010–2024)

The line graph reinforces these findings by highlighting the rate and continuity of change. The urban curve shows the steepest slope, particularly after 2016. The decline accelerates between 2018 and 2024, indicating that cumulative pressures intensified during this phase. The semi-urban curve follows a similar but less steep trajectory, while the rural line remains comparatively gradual. What stands out is the absence of abrupt crashes or sudden recovery periods. The trend is linear and progressive. This pattern is characteristic of chronic ecological stress rather than short-term disturbances. If disease outbreaks or episodic mortality events were the primary cause, sharp dips followed by stabilization might be expected. Instead, the smooth downward slope suggests sustained environmental pressure.

A. Interpretation of Spatial Gradient

The consistent ranking—Urban < Semi-Urban < Rural—across all years supports the central hypothesis of this study. The magnitude of decline corresponds directly with the level of anthropogenic modification. Urban centers, characterized by reduced green cover, sealed waste systems, higher vehicular emissions, and stronger urban heat island effects, show the sharpest reduction. Semi-urban regions, which retain partial vegetation and moderate infrastructural density, exhibit intermediate decline. Rural areas, though not immune to environmental change, display slower demographic contraction.

The post-2016 acceleration observed in urban regions aligns temporally with intensified infrastructural expansion and stricter municipal waste containment policies. Reduced access to predictable food sources may have lowered carrying capacity for large scavenger populations. Simultaneously, rising maximum temperatures documented in meteorological datasets may have imposed physiological stress during breeding seasons.

B. Broader Ecological Implications

The results challenge the long-standing assumption that the house crow, as a highly adaptable scavenger species, remains unaffected by rapid urban transformation. While historically resilient, the data suggest that adaptive flexibility has limits. When multiple stressors operate simultaneously—habitat simplification, food restriction, thermal stress, and pollution exposure—the cumulative effect becomes demographically significant.

Importantly, the decline observed in rural areas, though slower, indicates that broader climatic and environmental shifts may also be contributing to regional population changes. This finding suggests that the issue is not confined solely to metropolitan ecosystems but reflects wider ecological restructuring.

C. Synthesis

Taken together, Figures 4.1 and 4.2 provide strong visual and quantitative evidence of a long-term, spatially structured decline in house crow populations across settlement gradients. The pattern is progressive, proportional to urban intensity, and consistent with a multi-factorial ecological explanation. Rather than pointing to a single isolated cause, the results support the conclusion that sustained anthropogenic pressures are gradually reshaping population dynamics of a species once considered universally abundant in Indian cities.

These findings underscore the importance of viewing urban biodiversity not merely as background ecological presence, but as a sensitive indicator of environmental health and sustainability.

V. CONCLUSION

The present study examined the declining trend of the House Crow across urban, semi-urban, and rural landscapes in India using a multi-factorial analytical framework. The results clearly demonstrate that population reduction is neither abrupt nor random. Instead, it follows a gradual, spatially structured pattern in which the intensity of decline corresponds directly with the level of urbanization. Urban centers exhibited the steepest reduction (35%), semi-urban regions showed moderate decline (26%), and rural areas experienced comparatively slower decrease (14%) over the period 2010–2024.

The comparative bar and line graphs confirm that the decline is progressive and cumulative rather than episodic. No sudden crash events were observed; instead, the data indicate sustained ecological pressure. These findings align with broader ecological theories suggesting that highly adaptable species can tolerate disturbance up to a threshold, beyond which cumulative stress begins to affect long-term population stability (Marzluff, 2001; McKinney, 2006). Habitat alteration appears to be a central driver. Removal of mature nesting trees, increased built-up surfaces, and structural simplification of urban landscapes reduce available breeding sites (Blair, 1996). Simultaneously, modernized waste management systems, while beneficial for sanitation, have reduced predictable organic food sources historically relied upon by scavenger birds (Kumar et al., 2018; Heinrich, 1995).

Rising urban temperatures and intensified heat island effects may further influence reproductive success and survival (Parmesan & Yohe, 2003; Both et al., 2006). Environmental pollutants and bioaccumulation also represent plausible contributing factors (Burger & Gochfeld, 2004; Isaksson, 2015). Although electromagnetic exposure remains scientifically debated (Balmori, 2005), its potential ecological implications warrant cautious investigation rather than categorical dismissal. Disease dynamics, as discussed by Kilpatrick et al. (2006), may further interact with environmental stressors under high-density urban conditions.

Taken together, the findings support the central hypothesis that the decline of house crow populations in India is best explained through an integrated anthropogenic framework rather than a single isolated cause. The species, long regarded as an emblem of urban resilience, may now be functioning as a sensitive indicator of ecological transformation within rapidly developing landscapes. Sustained monitoring, incorporation of biodiversity considerations into urban planning, and further empirical field-based research are essential to determine whether this decline represents adaptive redistribution or long-term demographic vulnerability. The study underscores the broader ecological message that even highly adaptable species are not immune to cumulative anthropogenic change.

REFERENCES

- [1] Ali, S., & Ripley, S. D. (1987). *Handbook of the birds of India and Pakistan*. Oxford University Press.
- [2] Balmori, A. (2005). Possible effects of electromagnetic fields on birds. *Electromagnetic Biology and Medicine*, 24(2), 109–119.
- [3] Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. *Ecological Applications*, 6(2), 506–519.
- [4] Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate change and population declines in migratory birds. *Nature*, 441(7089), 81–83.
- [5] Burger, J., & Gochfeld, M. (2004). Heavy metals in commercial fish in New Jersey. *Environmental Research*, 94(3), 389–398.
- [6] Chace, J. F., & Walsh, J. J. (2006). Urban effects on native avifauna. *Landscape and Urban Planning*, 74(1), 46–69.
- [7] Clergeau, P., Jokimäki, J., & Savard, J. P. L. (2001). Are urban bird communities influenced by the bird diversity of adjacent landscapes? *Journal of Applied Ecology*, 38(5), 1122–1134.
- [8] Donnelly, R., & Marzluff, J. M. (2006). Relative importance of habitat and social factors on bird species richness in urban environments. *Urban Ecosystems*, 9(2), 99–117.
- [9] Evans, K. L., Hatchwell, B. J., Parnell, M., & Gaston, K. J. (2010). A conceptual framework for the colonisation of urban areas by birds. *Oikos*, 119(5), 703–710.
- [10] Grimm, N. B., et al. (2008). Global change and the ecology of cities. *Science*, 319(5864), 756–760.
- [11] Heinrich, B. (1995). An experimental investigation of insight in ravens. *The Auk*, 112(4), 994–1003.
- [12] Isaksson, C. (2015). Urbanization, oxidative stress and inflammation in birds. *Journal of Experimental Biology*, 218(5), 611–617.
- [13] Kilpatrick, A. M., et al. (2006). West Nile virus risk assessment in birds. *Proceedings of the National Academy of Sciences*, 103(25), 9487–9492.
- [14] Kumar, S., Smith, S. R., Fowler, G., Velis, C., Kumar, S. J., Arya, S., & Cheeseman, C. (2018). Challenges and opportunities in municipal solid waste management in India. *Waste Management*, 69, 1–15.
- [15] Lowry, H., Lill, A., & Wong, B. B. M. (2013). Behavioural responses of wildlife to urban environments. *Biological Reviews*, 88(3), 537–549.
- [16] Marzluff, J. M. (2001). Worldwide urbanization and its effects on birds. In J. M. Marzluff et al. (Eds.), *Avian ecology and conservation in an urbanizing world*. Springer.
- [17] McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. *Biological Conservation*, 127(3), 247–260.
- [18] Mishra, V., & Singh, V. P. (2010). Long-term trends in urban temperature extremes in India. *Climate Research*, 42(2), 159–172.
- [19] Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts. *Nature*, 421(6918), 37–42.
- [20] Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E., & Hope, D. (2006). From patterns to emerging processes in urban ecology. *Trends in Ecology & Evolution*, 21(4), 186–191.
- [21] Sullivan, B. L., et al. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. *Biological Conservation*, 169, 31–40.
- [22] United Nations. (2019). *World urbanization prospects 2018 revision*. United Nations Department of Economic and Social Affairs.
- [23] Valiela, I. (2015). *Marine ecological processes* (2nd ed.). Springer.
- [24] Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth's ecosystems. *Science*, 277(5325), 494–499.
- [25] Warren, P. S., et al. (2001). Urban sprawl and biodiversity. *Landscape and Urban Planning*, 57(3–4), 205–216.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)