

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: V Month of publication: May 2025

DOI: https://doi.org/10.22214/ijraset.2025.70699

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue V May 2025- Available at www.ijraset.com

Multi-Level Inverter Modeling and Simulation Using Various and Complex PWM Modulation in MATLAB/Simulink

Mukesh Kumar

Department of Electrical and Electronics Engineering Rajiv Gandhi Institute of Petroleum Technology, in Jais, Amethi, Uttar Pradesh, India

Abstract: Thispaperpresentsadetailedcomparisonofseveral multilevel inverter (MLI) topologies, including Neutral Point Clamped (NPC), Flying Capacitor (FC), Cascaded H-Bridge (CHB), and Modular Multilevel Converter (MMC). Application domains, control schemes, modularity, voltage balancing, and structural complexity are the main topics of the analysis. Each topology's component requirements, modulation techniques, and performancetrade-offsareexamined. Simulation results validate the theoretical evaluation and showhoweach topology is suitable for specificapplications such as electric drives, renewable energy systems, and high-voltage direct current (HVDC) transmission. The study aims to assist researchers and engineers in selecting the optimal MLI topologies according to the requirements of specific applications.

Index Terms: Multi-level Inverter, PWM, SVPWM, SHE, MATLAB/Simulink, THD, Modeling.

I. INTRODUCTION

The development of power electronic systems has brought about significant changes in power conversion and control. Among these developments, Multi-Level Inverters (MLIs) have gained popularity as a solution for medium- and high- power applications because of their ability to generate a high- quality output voltage with lower harmonic content, lower electromagnetic interference (EMI), and less voltage stress on power semiconductor devices [1], [2].

Conventionaltwo-levelinverters' performance isoften limited by high switching losses and harmonic distortion, especially in high-voltage applications. Multi-level inverters such as Neutral Point Clamped (NPC), Flying Capacitor (FC), and Cascaded H-Bridge (CHB) improve voltage resolution by generating a stepped output waveform from multiple DC levels [3]. Large filters are no longernecessary thanks to these topologies, which also improve system efficiency.

The effectiveness of MLIs is directly influenced by the modulation technique employed. Although they are easy to use, simplemodulationtechniques like Sinusoidal Pulse Width Modulation (SPWM) do not maximize harmonic performance or DC bus utilization [4]. Advanced modulation techniques such as Space Vector Pulse Width Modulation (SVPWM), Level-Shifted PWM (LSPWM), and Selective Harmonic Elimination (SHE) have been developed to address these issues [5], [6]. These methods enhance waveform quality, reduce switch-ing frequency, and enables elective control of harmonic com-

ponents.ModelingandsimulationarekeycomponentsofMLI system design and performance analysis. MATLAB/Simulink provides a comprehensive environment for accurately and flexible modeling inverter circuits and implementing control strategies [7]. It enables a detailed analysis of switching behavior, harmonic distortion, and thermal performance under various modulation schemes.

This paper focuses on modeling and simulating three- and five-level inverter topologies using multiple PWM techniques in MATLAB/Simulink. The goal is to evaluate the perfor- mance in terms of total harmonic distortion (THD), voltage waveform quality, and control complexity. The rest of the paper is organized as follows: The MLI topologies are ex- plained in Section II, different PWM techniques are described in Section III, the simulation model is presented in SectionIV,resultsandcomparisonarediscussedinSectionV,andthe paper is concluded in Section VI. .

II. OVERVIEW OF MULTI-LEVEL INVERTER TOPOLOGIES

Apowerelectronicconverterknownasamulti-levelinverter (MLI) creates a stepped AC output by combining several DC voltage levels. They use fewer filters, lower electromagnetic interference(EMI)anddv/dtstress,andgreatlyimprove the quality of the output waveform [1], [2]. Diode-Clamped (NPC),FlyingCapacitor(FC),andCascadedH-Bridge(CHB) are the three main multilevel inverter topologies; each has a distinct structure and range of applications.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue V May 2025- Available at www.ijraset.com

A. Diode-Clamped(NeutralPointClamped)MLI

The Diode-Clamped Multilevel Inverter (DCMLI), also known as the Neutral Point Clamped (NPC) inverter, is one of the earliest and most widely used multilevel topologies. ClampingdiodesareintroducedtoallowtheuseofasingleDC source for multiple voltage levels while reducing the voltage stress on power devices.

- *StructureandWorkingPrinciple*: Atypical*n*-levelNPC inverter consists of:
- 2(n-1)switchingdevicesperphase.
- (n-2) clamping diodes per phase.
- SingleDCsourcesplitinto(n-1)equalpartsusing capacitors.

For a three-level NPC inverter, the output voltage (V_o) with respect to the midpoint (neutral) can be represented as:

$$V_o = \begin{cases} -V_d & \text{if } S, S = \text{OIN} & 2 \\ V_o & \text{if } S_2, S_3 = \text{ON} \end{cases}$$

$$V_o = \begin{cases} -V_{dc} / 2 & \text{if } S_3, S_4 = \text{ON} \end{cases}$$
(1)

where S_1 to S_4 are the series-connected switches per phase.

2) VoltageLevelGeneralization: For an n-levelNPCin- verter, the number of distinct output voltage levels is: L=2n-1

However,inpracticalsymmetricdesignusingasingleDC sourcesplitintoequalvoltages,theoutputvoltagelevelsare:

$$V_{\overline{o}} = \frac{(n-1)V_{dc}}{2}...,0,...,+\frac{(n-1)V_{dc}}{2}$$
 (3)

3) SwitchingLogicAlgorithm: Asimplifiedlogictodeterminetheswitchingstatesbasedondesiredoutputvoltagelevel is shown below:

OutputLevel	S_1	S_2	S_3	S_4
+ V _{dc} /2	ON	ON	OFF	OFF
0	OFF	ON	ON	OFF
$-V_{dc}/2$	OFF	OFF	ON	ON

4) Advantages and Limitations:

Advantages:

- Reducedvoltagestressperswitch.
- Goodharmonicperformance.
- Suitableformedium-voltageindustrialdrives.

Limitations:

- Unequalcapacitorvoltagebalancinginhigherlevels.
- Diodecountincreasessignificantlywith *n*.
- Applications: Thistopology is extensively used in:
- Industrialmotordrives.
- Medium-voltagevariable-speeddrives.
- UPS systems and grid-connected inverters

B. FlyingCapacitorMultilevelInverter(FCMLI)

TheFlyingCapacitorMultilevelInverter(FCMLI)topology, which employs capacitors as voltage clamping devices rather than diodes, enables higher voltage levels and more adaptable voltage control. This structure allows for better voltage balancing between switching devices, but at the cost of additional components and more complex control. [?], [?].

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue V May 2025- Available at www.ijraset.com

- 1) Structure and Operation Principle: An n-level FCMLI consists of:
- 2(n-1)switchingdevicesperphase.
- (n-1)(n-2)/2flyingcapacitors.
- AsingleormultipleDCsources,typicallyone. capacitors to synthesize the required output voltage level. The output voltage levels for a phase-leg can be expressed as:

$$V_{o} = \sum_{i=1}^{r} a_{i} \cdot \frac{V_{dc}}{n-1} , \quad a_{i} \in \{-1,0,1\}$$
 (4)

where a_i is the state of the flying capacitor stage, determining whether it contributes positively, negatively, or is bypassed.

2) VoltageLevelandCapacitorCount:Forann-level FCMLI, the total number of distinct output levels is:

$$L=2n-1 \tag{5}$$

Thenumberofrequiredflyingcapacitorsperphaselegis givenby:

$$C = \frac{(n-1)(n-2)}{2} \tag{6}$$

- 3) BasicSwitchingLogic: Theswitchingstates are care-fully selected to:
- Synthesizethedesiredoutputvoltage.
- Maintainchargebalanceacrossflyingcapacitors.

An example switching table for a 3-level FCMLI is shown below:

OutputVoltage	S_1	S_2	FlyingCapacitorStatus
+ V _{dc} /2	ON	OFF	Charging
0	ON	ON	Idle
$-V_{dc}/2$	OFF	ON	Discharging

- 4) ControlAlgorithm: Asimplifiedcontrollogicalgorithm for the FCMLI is as follows:
- MeasureoutputvoltageV_oandcapacitorvoltagesV_{Ci}.
- Determinedesiredoutputlevelbasedonmodulation reference.
- Selectswitchcombinationsthatachievedesired V_o while minimizing capacitor voltage error:

$$\min_{i} |V_{C_i} - V_{ref}| \tag{7}$$

- Unequalcapacitorvoltagebalancinginhigherlevels.
- 5) AdvantagesandLimitations:

Advantages:

- BettervoltagebalancingcomparedtoNPC.
- Increased redundancy allows fault-toler antoperation.
- Capableofgeneratingmorevoltagelevelswithfewer sources.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue V May 2025- Available at www.ijraset.com

Limitations:

- · Controliscomplexduetocapacitorvoltagebalancing.
- Largenumberofcapacitorsforhigherlevels.
- High switching losses due to frequent balancing operations.

Applications:

- High-performancemotordrives.
- Renewableenergyinterfacesystems.
- Aircraftelectricpropulsionandnavalsystems.

$$N_{FC} = \frac{(n-1)(n-2)}{2} \tag{8}$$

The requirement for dynamic voltage balancing and capacitor pre-charging adds to the complexity of the control [4]. Due to their cost and space requirements, FC inverters are less feasible for systems that need multiple levels, despite their superior dynamic performance.

C. . CascadedH-Bridge(CHB)MultilevelInverter

The modular and scalable Cascaded H-Bridge Multilevel Inverter (CHB-MLI) topology consists of several H-bridge cells connected in series per phase. Typically, each H-bridge cell is powered by a different DC source. The CHB topologyisperfectforrenewableenergyintegration and electric vehicle (EV) propulsion systems due to its high modularity, fault tolerance, and simplicity of implementation. [16], [17].

1) Structure and Operation Principle: Each phase leg of an m-level CHB inverter is composed of $s = \frac{m-1}{2}$ H-bridge cells, with each cell generating three voltage levels: $+V_{dc}$, 0, and $-V_{dc}$.

The output voltage per phase is the sum of voltages pro- duced by each H-bridge cell:

$$V_{o}(t) = \sum_{i=1}^{\infty} \nu_{i}(t) \tag{9}$$

where $v_i(t)$ is the output voltage of the *i*-th H-bridge cell. Each H-bridge output voltage v_i can be:

$$v_i \in \{-V_{dc}, 0, +V_{dc}\} \tag{10}$$

2) TotalOutputLevels:ForsH-bridgesperphase,thetotal number of voltage levels m is given by:

$$m=2s+1 \tag{11}$$

For example, using 3 H-bridges per phase, a 7-level output ($\{-3V_{dc}, -2V_{dc}, ..., +3V_{dc}\}$) is obtained.

- 3) Logic Algorithm for Modulation: The CHB inverter often uses Phase Shifted Pulse Width Modulation (PS-PWM) or Selective Harmonic Elimination (SHE-PWM) to reduce harmonic distortion. A general algorithm for PS-PWM is:
- Define carrier signals for each H-bridge with equal amplitude and frequency but with phase shifts of:

$$\underline{\theta_i} = \frac{(i-1) \cdot 180^{\circ}}{s}, \quad \underline{i} = 1, 2, \dots, s \tag{12}$$

- Compareeachcarrierwiththesamesinusoidalreference signal.
- GenerategatesignalsforeachH-bridgeaccordingly.
- Sum the outputs to construct a staircase voltage wave- form.

Selective Harmonic Elimination (SHE-PWM): SHE- PWMcalculatesswitchingangles $\theta_1, \theta_2, ..., \theta_s$ that eliminate selected harmonics using the Fourier equation of the output voltage:

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue V May 2025- Available at www.ijraset.com

$$V_{o}(\omega t) = \sum_{n=1,3,5,...}^{\infty} \frac{4V_{dc}}{n\pi} \sum_{i=1}^{\infty} \frac{\pi}{\cos(n\theta i)} \frac{\pi}{\sin(n\omega t)}$$
(13)

wherethegoalistoeliminatespecificharmonics(e.g.,5th, 7th) by solving a system of transcendental equations for θ_i .

4) Advantages:

- Highmodularity—eachH-bridgeisidenticalandinde- pendent.
- Scalabilitytohighervoltagelevels.
- Lowerharmonic distortion with proper modulation.
- Noneedforclampingdiodesorflyingcapacitors.
- Fault-tolerantcapability.
- 5) Limitations:
- RequiresisolatedDCsourcesforeachH-bridge.
- IncreasedcomplexityinbalancingpoweramongDC sources.
- HighercostduetoseparateDCsupplies.
- 6) Applications:
- Photovoltaic(PV)systems.
- Batteryenergystoragesystems.
- Medium-voltagemotordrives.
- Electric vehicles (EVs) and hybrid EVs.

D. Hybrid Topologies

Modern converter systems also explore hybrid topologies by combining the features of different inverters to improve performance. For instance, CHB led to the development of ModularMultilevelConverters(MMC), which offer improved energy balancing and modularity and are suitable for HVDC systems [7].

E. Comparative Analysis

Table I provides a comprehensive comparison of the major multilevel inverter topologies in terms of component require- ment, voltage balancing, and application suitability.

III. COMPARATIVE TOPOLOGY ANALYSIS

The particular application, required output quality, complexity, and cost all influence the choice of MLI topology. While NPC is preferred in industria motor drives because of its simplicity and resilience, CHB is appropriate for application with multiple independent DC sources (such as PV arrays). In situations where redundancy and dynamic response are crucial, flying capacitor inverters are employed.

IV. SIMULATIONINMATLAB/SIMULINK

A powerful platform for planning, simulating, and evaluat- ing multi-level inverters with various PWM techniques is of- fered by MATLAB/Simulink. This study used both traditional Sinusoidal PWM (SPWM) and sophisticated Space Vector PWM(SVPWM)techniquestosimulatethree-levelNPCandCHBinverters.

A. SimulationParameters

Theparametersusedinallsimulations are listed in Table II

A resistive-inductive (R-L) load was connected at the inverter output to reflect typical industrial conditions.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue V May 2025- Available at www.ijraset.com

TABLEI

COMPARATIVEANALYSISOFMULTI-LEVELINVERTERTOPOLOGIES

	PARATIVEANALYSISUE	1	1	1
Characteristic	Neutral	Flying	CascadedH-	ModularMultilevelC
	Point	Capacitor	Bridge(CHB)	onverter (MMC)
	Clamped (NPC)	(FC)		
NumberofDCSources	Single	Single	Multiple(isolated)	Multiple(distributed)
SwitchesperPhase	2(n-1)	2(n-1)	4s	2n
VoltageBalancingMechanism	Neutralpointclampin	Flyingcapacitors	Self-balancing	Arm-levelcontrol
	g			
ComponentCount	Moderate	High(duetocapaci-	High (modular H-	VeryHigh
		tors)	bridges)	
ControlComplexity	Moderate	High	Moderate	VeryHigh
Modularity	Low	Medium	High	VeryHigh
CommonApplications	Industrialdrives, UPS	Motordrives,EVs	Renewable	HVDCtransmission,
			energy	smart grids
			,EVs, storage	
			systems	

TABLEII SIMULATIONPARAMETERS

Parameter	Value
DCLinkVoltage(V_{dc})	600V
SwitchingFrequency(f_S)	10kHz
FundamentalFrequency(f_O)	50Hz
LoadResistance(R)	10Ω
LoadInductance(L)	20mH
NumberofLevels	3
ModulationIndex(MI)	0.9

B. SimulinkModelOverview

Simulink's Power Electronics toolbox was used to model the inverter circuit. An IGBT block managed by gating pulses from the PWM generator subsystem was used to implement eachswitch. Assectoridentification and switching tablemethod based on reference vectors was applied to SVPWM.

Figure 1 shows the developed three-level NPC inverter model with SVPWM logic.

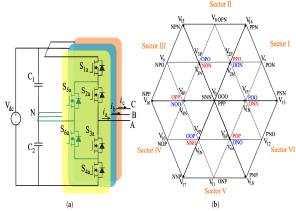


Fig. 1. Simulinkmodelof3-levelNPCinverterusingSVPWM

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue V May 2025- Available at www.ijraset.com

C. OutputVoltageWaveform

Figure2illustratesthephasevoltagewaveformofthethree- levelinverterusingSPWMandSVPWMtechniques.SVPWM provides a more sinusoidal waveform with fewer switching transitions, improving harmonic performance.

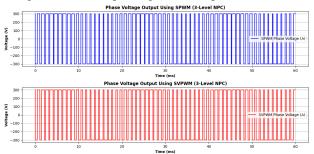


Fig. 2. Phase voltage output for SPWM and SVPWM (NPC)

D. TotalHarmonicDistortion(THD)Analysis

The THD was calculated using the Fast Fourier Transform (FFT) tool in MATLAB. SVPWM consistently outperformed SPWM in terms of harmonic reduction.

TABLEIII THDComparisonofPWMTechniques

PWMTechnique	NPCInverter(%)	CHBInverter(%)
SinusoidalPWM(SP	10.25	8.37
WM)		
Space	5.62	4.25
Vector		
PWM (SVPWM)		

Figure3showstheharmonicspectrumforSVPWMoutput.

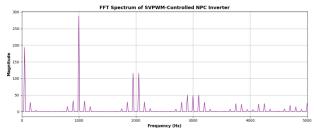


Fig.3.FFTspectrumforSVPWM-controlledNPCinverter

E. Discussion

The simulation results demonstrate that the SVPWM tech- niquehasseveraladvantagesoverSPWM, such as lowerTHD and better voltage utilization. Furthermore, CHB inverters naturally produce lower THD than NPC due to their modular design and higher number of voltage steps. The results also demonstrate how important it is to select the optimal inverter topology and modulation method to optimize power quality and efficiency.

V. CONCLUSION

In this study, NPC and CHB multi-level inverters were modeled and simulated using MATLAB/Simulink's SPWM and SVPWM techniques. Comparative analysis shows that SVPWM offers better voltage utilization, lower THD, and highervoltagequality. The CHB topology demonstrated better harmonic performance due to its modular design, especially when SVPWM was used for control. Future research will focus on enhancing inverter performance in applications such as electric drives and smart grids by fusing experimental validation with advanced control schemes like MPC and AI- based modulation.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue V May 2025- Available at www.ijraset.com

REFERENCES

- [1] J.Rodriguez, J.S.Lai, and F.Z. Peng, "Multilevelinverters: Asurvey of topologies, controls, and applications," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724–738, 2002.
- [2] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, "A sur-vey on cascaded multilevel inverters," IEEE Transactions on IndustrialElectronics, vol. 57, no. 7, pp. 2197–2206, Jul. 2010.
- [3] MATLAB/SimulinkDocumentation:MathWorks,2024.
- [4] L. G. Franquelo et al., "The age of multilevel converters arrives," IEEEIndustrial Electronics Magazine, vol. 2, no. 2, pp. 28-39, 2008.
- [5] H. Patel and R. G. Hoft, "Generalized techniques of harmonic elim-ination and voltage control in thyristor inverters: Part I Harmonicelimination," IEEE Transactions on Industry Applications, vol. IA-9,no. 3, pp. 310–317, 1973.
- [6] S. Busquets-Monge, S. Alepuz, J. Bordonau, and J. Peracaula, "Voltagebalancing control of diode-clamped multilevel converters with passive front-ends," IEEE Transactions on Industrial Electronics, vol. 55, no. 7,
- [7] pp.2674–2683,Jul.2008.
- [8] N. Celanovic and D. Boroyevich, "A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clampedvoltagesourcePWMinverters," IEEETransactionsonPowerElectron-ics, vol. 15, no. 2, pp. 242–249, Mar. 2000.
- [9] MATLAB/SimulinkDocumentation:MathWorks,2024.[Online].Avail-able: https://www.mathworks.com/help/simulink/
- [10] T.A.MeynardandH.Foch, "Multilevelconversion: Highvoltagechop-pers and voltage-source inverters," in Proc. IEEE PESC, pp. 397–403,1992.
- [11] S. Busquets-Monge et al., "Voltage balancing control of diode-clampedmultilevel converters with passive front-ends," IEEE Trans. Ind. Elec-tron., vol. 55, no. 7, pp. 2674–2683, Jul. 2008.
- [12] M.Malinowskietal., "Asurveyoncascadedmultilevelinverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197–2206, 2010.
- [13] B. Ge and Z. Peng, "Modeling and control of modular multilevelconverters," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 18–36, Jan. 2015.
- [14] J. Dorn and D. Retzmann, "A new modular voltage source invertertopologyforHVDCandFACTSapplications," inCIGRESession, 2005.
- [15] J. Rodriguez, J.S. Lai, and F.Z. Peng, "Multilevel inverters: A surveyof topologies, controls, and applications," IEEE Trans. Ind. Electron.,vol. 49, no. 4, pp. 724–738, Aug. 2002.
- [16] JL.G.Franqueloetal., "Theageofmultilevelconvertersarrives," IEEEInd. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
- [17] J.L. M. Tolbert, F. Z. Peng, and T. G. Habetler, "Multilevel converters for large electric drives," IEEE Trans. Ind. Appl., vol. 35, no. 1, pp.36–44, Jan./Feb. 1999.
- [18] J.M. Malinowski, K. Gopakumar, J. Rodriguez, and M.A. Pe´rez, "Asurvey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197–2206, Jul. 2010.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)