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Abstract: There are different types of landscape throughout the world which is not readily or directly approachable for human 
being but their analysis to uncover factual information has become necessary for forming important decision when developing 
any fresh project. The geographical and landscape scenes can be adequately represented through hyperspectral images captured 
using remote sensors. The data in the images can potentially be both vast and intricate to analyze and it is essential to 
consistently perform adequate pre-processing. In this work, we have put up the use of deep learning and transfer learning for 
object prediction in hyperspectral data. There are mainly two algorithms that have been implemented in this research. The first 
method is based on Multi-Scale Deep CNN (Convolutional Neural Network) which takes hyperspectral data with varying sizes as 
the input to detect pixels whose intensity spreads uniformly over many wavelengths or may vary rapidly. Secondly, hyperspectral 
image sources are not readily available and can be expensive and there are also possibilities for high analysis complexity in the 
research, so a Transfer Learning based algorithm is applied to the DCNN model. Superior performance in accuracy was noted 
in the evaluation with respect to the F1 score and recall values for different objects fluctuate between 0.8 to 1.0. Further, we 
conducted a comparative study, pitting the proposed method against other state-of-the-art target prediction methodologies. 
Keywords: Hyperspectral Imaging, Deep Learning, Convolutional Neural Network, Multiscale Deep CNN, Transfer Learning 
 

I. INTRODUCTION 
Remote sensing technology has been an integral element in computer vision research over the years. Remote sensors pos- sess the 
capability to capture vast expanses of the Earth’s geo- graphical area, presenting opportunities for the comprehensive analysis of 
overall conditions in the given area. Hyperspectral images are composed of a multitude of bands which encom- pass the full 
spectrum of wavelengths in the electromagnetic spectrum. Henceforth, the data include substantial spectral and spatial details to 
effectively characterize individual objects. Hy- perspectral data analysis can offer diverse facts about the land- scape suitable for 
decision making process. The information gathered through the research have been incorporated into nu- merous everyday 
applications [1]. The traditional methods like RGB (Red, Green, Blue) image processing are not sufficient to process such data. 
Earth observation data have an extensive number of entities, covering minerals, soils, vegetation, and the like. and manual processing 
and differentiating such objects is beyond the capacity of the human eye [2][3]. So, an automated mechanism is required for effective 
processing, feature extrac- tion and object predictions. 
Dimensional reduction is one of the key phase in hyperspec- tral data analysis. In hyperspectral data, every pixel is situated at 
numerous contiguous narrow wavelength bands, and a sig- nificant portion of them exhibit high correlation with each other [4]. Thus, 
the complexity of analyzing these data is increased unnecessarily when accounting for the overlapping features of various 
dimensions. De-correlating these bands or features is the main goal of dimensionality reduction, aiding in the separa- tion and 
processing of valuable bands [5] as indicated in Figure 1. One of the widely adopted techniques for dimensionality re- duction is PCA 
(Principal Component Analysis), which lever- ages data variance for reduction of the number of wavelength bands within the 
dataset. However, PCA struggles to efficiently utilize local features due to the low signal-to-noise ratios it en- counters [6]. Thus, the 
efficiency of hyperspectral data analysis is compromised, leading to a decrease in performance. Tech- niques like regression-based 
dimensionality reduction, Multidi- mensional Spacing (MDS) and Locality Projection Pursuit (PP) have also been in existence over 
the years [7][8]. 

Figure 1: Dimensionality Reduction 
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Beyond dimensionality reduction, the primary focus of re- search lies in the crucial areas of classification and prediction techniques 
[9]. Across the years, researchers have devised numerous techniques in these domains. In the early stages of development, 
methods such as Constrained Signal Detector (CSD), Orthogonal Subspace Projection (OSP), and Adaptive Subspace Detector 
(ASD) were introduced [10]. With the con- tinuous evolution of neural networks and deep learning, tech- niques based on neural 
network have also become a promi- nent choice [11]. With its learning and non-linear discrimina- tion ability, it excels in producing 
highly efficient results. In the realm of supervised techniques, CNN stands out for its ef- fectiveness and high-quality performance. 
Different manifes- tations of CNN have been developed over time, each with its own merits and drawbacks relative to others[12]. 
In the fast- paced evolution of modern neural networks, the landscape has witnessed the introduction of more optimized models 
featuring deeper layers for enhanced learning. 
 

II. RELATED WORK 
Target prediction is a binary class classification technique. The prediction process for target pixels involves the utilization of 
statistical information derived from the background pixels [13]. The performance metrics for these methods are entirely determined 
by distance measurements. Srivastava et al. [14] introduced an efficient method for differentiating target pix- els from background 
pixels, leveraging unsupervised transfer learning techniques. 
William et al.’s approach [15], which is among the early state-of-the-art prediction techniques, involves the application of the 
Constrained Energy Minimization (CEM) technique for mapping mine tailings distribution. Other approach like Spec- tral Angle 
Mapper (SAM) computes the angle difference be- tween the target spectrum and the reference spectrum vectors to assess their 
similarity. A single target SAM is transition to mul- tiple targets SAM for discriminating tree species based on the reflectance of each 
species’s leaves [16]. Furthermore, Kwon et al. [17] demonstrated the use of a kernel-based, non-linear form of match filter for 
predicting targets in hyperspectral data. In a comparative study, Tiwari et al.[18] evaluated SAM alongside four prediction 
algorithms: Spectral Co-Relation Method (SCM), Independent Component Analysis (ICA), Or- thogonal Subspace Projection 
(OSP) and Constrained Energy Minimization (CEM). Hyperspectral data in real time is known for its high non-linearity and it can 
introduce difficulties for the linear analysis methods mentioned above, potentially causing a decrease in performance. An Ensemble-
based Constrained En- ergy Minimization (ECEM) technique was put forth by Zhao et al. [19] in 2019, aiming to enhance the 
ability to discrim- inate non-linearity in the data and improve the generalization prowess of the detector. This detector is an extension 
of the ear- lier CEM model, employing numerous learners for effectively learning and predicting. 
As computing technology has advanced in recent years, neu- ral networks have become increasingly crucial in the explo- ration of 
hyperspectral imagery. Deep Learning (DL) has proven highly advantageous for analyzing data falling in the RGB spectrum, with 
numerous models applied successfully to achieve optimal performance. On the other hand, hyperspectral image, taken by airborne 
sensors and satellites, presents pixel values across multiple wavelength ranges, posing numerous challenges for achieving a 
comprehensive and accurate anal- ysis. Nonetheless, there has been continuous innovation and significant evolution in deep 
learning has occurred since 2017 [20]. 
In transitioning from traditional approaches to Deep Learn- ing neural networks, a pivotal change is the adoption of a fully 
connected architecture, departing from the conventional classi- fier [21]. The models are mathematically structured in a more 
suitable manner, such as in Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). In CNNs [22], layers 
are designed to perform feature extraction and generate suitable inputs for subsequent stages of analysis. The archi- tectural 
development began with a uni-dimensional structure, referred to as 1D CNN, and then advanced into 2D and 3D structures. RNNs 
operate by storing information from previous steps, which is then employed in the processing of subsequent data. RNN 
demonstrated efficient capability in modeling de- pendencies, whether short-term or long-term within the data’s spatial and spectral 
composition, enabling accurate classifica- tion of hyperspectral imagery [23]. The utility of these models extends to semi-supervised 
and unsupervised learning scenar- ios. 
In his work, Barrera et al.[24] employs a 2D convolutional architecture to effectively discern the internal characteristics of fruits and 
vegetables using hyperspectral data. It surpasses tra- ditional classifiers, such as SVM. In 2019, Freitas et al. ex- plored a 3D deep 
CNN for predicting target in maritime surveil- lance [25]. Typically, the availability of hyperspectral im- agery data is constrained, 
potentially impacting the effective- ness of classification or detection models. Obtaining hyper- spectral data tailored to specific 
locations or requirements can be prohibitively expensive. To address these challenges, trans- fer learning is employed in deep neural 
networks, offering a solution to mitigate the limitations imposed [26]. Despite the diverse wavelength ranges at which various 
hyperspectral data may be captured, there exists common spectral and spatial in- formation among them. Leveraging this shared 
information, knowledge learned from one dataset can be efficiently applied to predict unknown elements in different data.  
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I 

This approach not only facilitates effective prediction but also significantly contributes to reducing the computational complexity of 
the learning model. This study introduces some models and al- gorithms aimed at mitigating the challenges encountered. The 
proposed methods encompass detection techniques using deep neural networks, as outlined in the research. 
 

III. PROPOSED TARGET PREDICTION MODEL 
While all previous CNN models have been designed to ac- cept inputs of fixed sizes, the proposed deep CNN approach has been 
specifically developed to accommodate variable in- put sizes. This is achieved by configuring various CNN stacks, each tailored to 
handle different input sizes, yet sharing com- mon parameters, allowing them to operate concurrently. The outputs from the diverse 
CNN stacks are integrated through a layer, and predictions are subsequently conducted on the con- solidated output. The parallel 
model here with varied input dimensions proves beneficial in the extraction of extremely low- level features in comparison to other 
CNN architectures. Subsequently, transfer learning is applied to the CNN, enhancing its ability to leverage the learned features for 
improved performance. The weights and already trained parameters from a pre- existing model are utilized to train and predict on a 
different dataset in transfer learning, leading to a significant reduction in the computational overhead of constructing a neural 
network model with vast amounts of data. The volume of data samples for training is also maximize with transfer learning. 
 
A. Multiscale deep CNN 

Figure 2: Multiscale Deep CNN’s Architecture 
 

Three distinct input sizes are selected and processed through distinct convolutional layers, resulting in the generation of di- verse 
feature formats for the subsequent prediction process. The features can be represented mathematically as 

Fi =     ∑ 
 
x j × (Aj × Bj × S ) (1) 

j=0 
where I = Image Size, x = Input, 
A × B = Filters/Kernel Size, S = Number of Wavelength. Pooling is a down sampling operation to reduce the size of the feature input. 
Here, the maxPool method is used to select the maximum pixel from the pooling area. It is calculated as 
               x j = maxi∈Aj (xi)                                                              (2) 
 
where A j = jth pooling region, 
i = index of the pixel in the pooling region 
A dense activation layer is added to give non-linearity prop- erties to our model. The output is given as 

         f (xi) = max(0, xi)                                                          (3) 
 
The outputs generated by the three layers are merged within the concatenate or stacking layer, and the combined result is employed 
for training and predicting of targets. 
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B. Transfer Learning 
The approach is segmented into two stages: 
1) Stage 1: Pre-Training 
Initially, the proposed CNN undergoes training using a source data. Typically, the source data contains a greater amount of spectral 
and spatial characteristics compared to our target data. Subsequently, the output and fully connected layers are removed. The result 
produced from the outstanding layer is employed for subsequent stages. The weights obtained at this point are frozen and will be 
utilized during fine tuning process. The output feature of the pre-training part is the concatenation of the features obtained using the 
three convolutional kernels. It is calculated as 

FT = concat(F1, F2, F3) (4) 
where F1, F2, F3 are flattened features obtained using kernel size 3 X 3, 5 X 5 and 7 X 7 respectively 

 
2) Stage 2: Fine Tuning 
Fine tuning is performed on our target data leveraging the previously saved model. A fully connected layer is added and training of 
the data is done only with this layer incorporating the weights of the pre-trained model. The transfer learning model is represented in 
figure 3. 

Figure 3: Transfer Learning 
 
The softmax function for predicting the output is calculated as 
                           퐴(푦) =   ( )

∑  ( )
                         (5) 

 
where y = Input Vector, yi = ith Element of the Input Vector 
exp(yi) = Standard Exponential Functions 
n = Number of Classes 
In general, the model frequently results in extensive training parameters, posing a risk of overfitting. Therefore, L2 regu- larization 
is incorporated into the dense layer to address this concern. 
 

IV. DATASETS 
Three hyperspectral data sets with different pixel composi- tions and different number of wavelength bands used in this research are 
illustrated in this section. The data is sourced from the Remote Sensing Laboratory, School of Surveying and Geospatial 
Engineering. 
 
A. Jasper Ridge 
The hyperspectral data comprises of 512*614 pixels with 224 bands. Notably, the data is characterized by four primary end 
members: tree, water, soil, and road. Figure 5 shows the image and ground truth of the data. 
 
 
 
 
 
 
 

(a) Image (b) Ground Truth 
Figure 4: Jasper Ridge Data 
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B. Indian Pines 
It has 145*145 pixels and 224 wavelength bands. There are sixteen objects embedded in the dataset. The image and ground truth is 
visualised in Figure 4 (a) and (b) respectively. 
 

 
 
 
 
 
 

(a) Image (b) Ground Truth 
Figure 5: Indian Pines Data 

 
C. San Diego 
The dataset encompasses diverse objects, including buildings, farmlands and runways. Specifically, three aircraft within the dataset 
are chosen as targets. The data itself is structured with dimensions of 200*200 pixels and comprises 189 spectral bands. The data is 
visualised in Figures 6(a) and 6(b). 

(a) Image (b) Ground Truth 
Figure 6: San Diego Data 

 
V. PERFORMANCE METRICS 

We used the following metrics for measuring the perfor- mance of models used in our research. 
1) True Positive (TP): It refers to the outcome where a target pixel is accurately identified as a target. 
2) False Positive (FP): Here, a background pixel is identified as a target pixel. 
3) True Negative (TN): It refers to the outcome where a back- ground pixel is accurately identified as a background. 
4) False Negative (FN): Here, a target pixel is identified as a background pixel. 
5) Accuracy: It represents the proportion of accurate predic- tions out of the total predictions made by the model. It signifies the 

overall correctness of the model. It is calcu- lated as 
 

Accuracy =  (TP + TN)  
(TP + TN + FP + FN)                         (6) 

 
6) Precision: It indicates the quality of target detection of the model. It is given by 

 

Precision = TP (7) 
(TP + FP) 

 
7) Recall: It is the percentage of target data that are correctly detected from the total number of target data. It is calcu- lated as 
 

Recall =  TP  
               (TP + TN)                                (8) 
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8) F1 score: It combines precision and recall to give the over- all accuracy of the model. 

F1score = (2 ∗ Precision ∗ Recall) 

(Precision + Recall)                                     (9) 
9) ROC (Receiver Operating Characteristic) Curve: It is a graphical representation that illustrates the performance of a model at all 

classification thresholds. 
 

VI. EXPERIMENTAL RESULTS 
The methods in our research are implemented using Python 3.11 with TensorFlow and Keras. Additional frameworks, such as 
Spectral Python, Pysptools, Sklearn, and Numpy, have been used. The results are computed on a Windows operating system equipped 
with an Intel i5 CPU operating at 2.40 GHz, along with an NVIDIA GeForce 820M graphics card. 
 
A. Multiscale Deep CNN 
The multi-scale deep CNN is employed for analysis on the Indian Pines dataset. It has sixteen end members. After im- plementing 
the de-noising and dimensionality reduction tech- nique, the analysis was carried out using a reduced set of 96 bands. The multi-
scale architecture incorporates the three lay- ers of feature extraction, with input sizes of 5*5*96, 7*7*96, and 9*9*96, respectively. 
Prediction map of multiscale deep CNN is manifested in Figure 7. Table 1 gives the precision, recall and F1 score of every target 
predicted. 

 
Figure 7: Prediction Map of Multiscale DCNN 

 
Table 1: Performance Report with Multiscale DCNN 

 Precision Recall F1 score 
Tree .956 .958 .956 
Water .999 .999 .999 
soil .794 .792 .792 
Road .918 .956 .936 

   .920 
 
B. Transfer Learning 
The model is pre-trained using the Indian Pines dataset as the source data, primarily selected due to its larger sample size with larger 
composition of spectral and spatial information. Follow- ing the application of noise removal and reduction of dimen- sion, 51 bands 
are utilized for pre-training stage. In fine tuning, the result from the above pre-training stage serves as the input. A layer for 
prediction is appended atop the pre-training model for refinement. Then, training of the Jasper Ridge dataset is conducted utilizing 
the parameters and weights derived from pre-training stage. 

Figure 8: Prediction Map (With transfer learning) 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue II Feb 2024- Available at www.ijraset.com 
     

 
105 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Table 2: Performance Report with transfer learning 
 Precision Recall F1 score 

Tree .956 .981 .968 
Water .999 .999 .999 
soil .926 .808 .862 
Road .999 .999 .999 

   .957 
 
The prediction result using transfer learning is shown in Fig- ure 8. Table 2 gives the performance report. ROC obtained us- ing only 
multiscale DCNN and with transfer learning is given in Figure 9 (a) and (b) respectively. 
 
 
 
 
 
 
 
 
 
 

(a) 
 

(b) 
Figure 9: ROC obtain using a) Multiscale DCNN b) Transfer Learning 

 
In contrast to the multiscale deep CNN, the utilization of transfer learning has resulted in improved precision and recall for 
individual end members, leading to an overall increase in model accuracy. Apart from this, Transfer Learning also re- duces the 
training time. In the present experimental setup, the multiscale deep CNN takes approximately 7.83 seconds for one epoch, 
whereas the transfer learning model completes one epoch in a significantly shorter time, around 1.57 seconds. 
 
C. A Comparative Study Using ECEM and SAM 
Two recent approaches, ECEM and SAM are taken for com- parison with our model. ECEM is based on the classical CEM 
algorithm. Here, a number of CEM detectors are cascaded with sigmoid nonlinear transformation in order to improve the 
nonlinear discrimination ability of the model. In SAM, a matching process involves calculating the n-dimensional angle between 
pixels and reference spectra.  
The computation of spectral similarity involves treating two spectra as vectors in a space with a dimensionality matching the number 
of bands and calculating the angle between them. Closer proximity to the reference spectra is indicated by smaller angles. Pixels 
beyond the designated maximum angle threshold in radians will not undergo classification. The fundamental implementation of 
both algorithms is executed, and the outcomes are analyzed. 
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1) Prediction results on Jasper Ridge data using ECEM are shown in figure 10 and the prediction result using SAM is shown in 
figure 11. 

 
 

 
 
 
 
 
 
 

(a) (b) 

(c)                                              (d) 
Figure 10: Predicted Targets (ECEM) a) Tree b) Water c) Soil d) Road 

 
 

 

 
 

(a) (b) 

 
(c) (d) 

Figure 11: Predicted Targets (SAM) a) Tree b) Water c) Soil d) Road 
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Table 3: Performance Comparison of ECEM, SAM and Proposed w.r.t F1 score  
 
 
 
 
 
 
 
 
Table 3 gives the comparison of the F1 score of predicted targets using SAM, ECEM and proposed method. The result of the above 
predictions are visualize using the ROC around the F1 score which is given in Figure 12. 
 

(a) 
 

 

 
(b) 

 

(c) 
Figure 12: a) ECEM b) SAM c) Proposed 

Targets SAM ECEM Proposed 
Tree .9949 .9993 .968 
Water .9993 .9992 .999 
soil .5860 .5879 .862 
Road .9982 .9988 .999 

 .8946 .8963 .957 
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2) Prediction Results on San Diego Data 
Figure 13 represents the prediction result on San Diego data using ECEM, SAM, and our Proposed Model. Table 4 gives the 
underlying F1 score of the result. 

 
a. (b) (c) 

Figure 13: Predicted Results a) ECEM b) SAM c) Proposed 
 

Table 4: Performance Report w.r.t F1 score 
 SAM ECEM Proposed 

Target .8069 .9995 .9998 
 
In both datasets, the overall performance experienced enhancement through the implementation of our proposed method. In Jasper 
Ridge, apart from soil, the performance was largely uniform across all targets. This occurrence can be mostly attributed to the 
original data, where the radiance of the soil’s pixels was inherently low, and their resemblance with some other different target. 
Nevertheless, the accuracy get significantly enhanced by adopting the proposed model. As for San Diego data, ECEM and the 
proposed method exhibit a similar level of performance. ECEM, as evidenced in pre- vious results, has attained a very high 
accuracy, focusing pre- dominantly on the detection of single targets. When evaluat- ing both computational efforts and 
performance, our proposed model demonstrates a distinct superiority in detecting objects within hyperspectral data. 
 

VII. CONCLUSIONS AND FUTURE WORK 
The complexity of hyperspectral data, with its multiple layers of information, presents a significant challenge during process- ing and 
the extraction of specific information. In this study, the prediction of objects has been conducted using hyperspectral data of the 
Earth’s landscape. The application of a multiscale deep CNN classifier on hyperspectral data proved to be more efficient in 
comparison to existing CNN-based algorithms. Fur- thermore, a transfer learning model was integrated into the mul- tiscale deep 
CNN. The post-transfer learning performance was evaluated, comparing precision, recall, and F1 score with the original multiscale 
deep CNN. The results indicated an over- all enhancement in accuracy. Moreover, transfer learning con- tributed to a noteworthy 
reduction in computational complex- ity. The results obtained from the proposed work were further compared with those of other 
recent methods for target predic- tion. In subsequent studies, enhancing the robustness of pre- processing and dimensionality 
reduction can be achieved by de- termining the object type in individual bands using the radiance values. Exploring the use of kernel-
based methods may prove beneficial. Additionally, we can configure the transfer learning model to extract insights from multiple data 
sources through the incorporation of different datasets, thereby enriching features’s diversity. 
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