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Abstract: Intrusion detection systems (IDSs) are crucial for computer security, as they identify and counteract malicious 
activities within computer networks. Anomaly-based IDSs, specifically, use classification models trained on historical data to 
detect these harmful activities. This paper proposes an enhanced IDS based on 3-level training and testing of machine learning 
models, feature selection, resampling, and normalization using Decision Tree, Gaussian Naïve Bayes, K-Nearest Neighbours, 
Logistic Regression, Random Forest, and Support Vector Machine. In the first stage, the six models are trained and evaluated 
using the original datasets after pre-processing. In the second stage, the models are built and tested with a resampled version of 
the dataset using the Synthetic Minority Oversampling Technique (SMOTE). In the third stage, the models are trained and tested 
with a dataset that has been both resampled and normalized using the standard scaling method. We employ the feature 
importance technique using the random forest model to select the essential features from NSL-KDD and UNSW-NB15 datasets. 
The results of our study surpass previous related research, with the decision tree achieving an accuracy, precision, recall, and F1 
score of 99.99% on the UNSW-NB15 dataset. Additionally, the decision tree recorded an accuracy of 99.98%, precision of 
99.97%, recall of 99.97%, and F1 score of 99.99% on the NSL-KDD dataset. 
Keyword: Intrusion detection, Data analysis, UNSW-NB15 dataset, NSL-KDD dataset, Machine learning 
 

I. INTRODUCTION 
Over the past decade, the surge in interest and advancements in internet and communication technologies has made network security 
a critical research area. It employs tools such as firewalls, antivirus software, and intrusion detection systems (IDS) to protect the 
network and its associated assets in cyberspace. Among these tools, network-based intrusion detection systems (NIDS) are 
particularly vital for maintaining security by continuously monitoring network traffic for malicious and suspicious activities (Teresa, 
1993). The concept of IDS was first introduced by Jim Anderson in 1980. Since then, numerous IDS products have been developed 
and refined to meet the evolving demands of network security (Herve et al., 1993). Significant technological advancements in recent 
years have led to a substantial increase in network size and the number of applications managed by network nodes. Consequently, a 
vast amount of critical data is generated and exchanged across various network nodes. Ensuring the security of this data and the 
nodes has become increasingly challenging due to the proliferation of new attacks, whether through the mutation of existing attacks 
or the emergence of novel ones. Nearly every node within a network is susceptible to security threats. For instance, a data node can 
be crucial for an organization, and any compromise of its information could severely impact the organization’s market reputation 
and financial stability. Current IDSs have proven inadequate in detecting a variety of attacks, including zero-day attacks, and in 
reducing false alarm rates (FAR) (Hoque et al., 2012). This highlights the need for an efficient, accurate, and cost-effective NIDS to 
provide robust network security. To develop effective intrusion detection systems (IDS), researchers have explored the potential of 
machine learning (ML) and deep learning (DL) techniques. These techniques, which fall under the broader category of artificial 
intelligence (AI), focus on extracting valuable information from large datasets (Ramjee et al., 2020). Anomaly detection is crucial 
for identifying and preventing security attacks, as network traffic anomalies can indicate potential intrusions. Traditionally, early 
research and most commercially available IDS have predominantly relied on signature-based methods. However, the main challenge 
with these methods is the need for continuous updates to the signature database with new attack signatures, making them unsuitable 
for real-time network anomaly detection. Consequently, there has been a shift towards employing machine learning classification 
techniques for anomaly detection (Zaman & Lung, 2018a). In the past decade, ML and DL have gained popularity in network 
security, largely due to the development of powerful graphics processing units (GPUs) (Lew et al., 2019). Both ML and DL excel at 
identifying useful features from network traffic and distinguishing between normal and abnormal activities based on learned 
patterns. ML-based IDS heavily relies on feature engineering to extract relevant information from network traffic (Najafabadi et al., 
2015), whereas DL-based IDS can automatically learn complex features from raw data without the need for feature engineering, 
thanks to their deep architectures (Dong & Wang, 2016). 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue VII July 2024- Available at www.ijraset.com 
     

658 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

In the past decade, researchers have proposed numerous ML- and DL-based solutions to enhance the efficiency of NIDS in 
detecting malicious attacks. However, the significant growth in network traffic and the accompanying security threats have created 
substantial challenges for NIDS in effectively identifying malicious intrusions. Research on applying DL methods to NIDS is 
expanding, and there remains considerable potential to further explore this technology to improve intrusion detection within 
networks. 
In this research, we demonstrate that addressing class imbalance and applying data normalization, along with feature selection, can 
significantly enhance the accuracy of anomaly-based IDS. The reasoning for using these techniques is based on the observed 
success of similar architecture models in related research, which have demonstrated exceptional performance metrics for ML 
models. 
 
Our contributions to the cyber-security domain are as follows: 
1) We use the classic NSL-KDD and UNSW-NB15 as benchmark datasets and conduct detailed analysis and data cleaning 
2) We employ the feature importance technique for feature selection to achieve a precise and accurate representation for the IDS 

problem. This approach acknowledges that not all features are equally significant or relevant in detecting intrusions. 
3) The issue of data imbalance and data normalization were addressed to achieve better performance, generalization, 

interpretability, and computational efficiency, leading to more reliable and accurate predictions. 
The remainder of the paper is organized as follows: Section 2 reviews previous related research. Section 3 provides a detailed 
methodology of the proposed anomaly-based IDS framework. Section 4 discusses the experimental results. Finally, conclusions are 
drawn in Section 5. 
 

II. REVIEW OF RELATED WORK 
Anomaly-based intrusion detection systems (IDS) were first introduced by Anderson in 1980. (Javaid et al., 2016). Since then, 
anomaly detection has been extensively covered in numerous surveys and review articles.  
Researchers have employed various machine learning algorithms and utilized different publicly available datasets in their studies to 
improve detection outcomes. (Anjum & Chowdhury, 2024) proposed a model for developing a network intrusion detection system 
that classifies test data as either malicious or benign using a decision tree algorithm with the Change Control Identifiers (CCIDS) 
2017 dataset. They utilized a label encoder to convert categorical features and applied Recursive Feature Elimination (RFE) for 
feature selection. The model achieved 99% accuracy, 99.9% precision, and a false positive rate (FPR) of 0.1%. In another 
development, (Mahfouz et al., 2020) introduced an ensemble and adaptive classifier model to improve accuracy and reduce the false 
alarm rate in intrusion detection systems (IDSs) by using the Game Theory and Cyber Security (GTCS) dataset to identify network 
intrusions. The dataset was normalized and encoded to transform categorical data into a format suitable for machine learning 
algorithms. Feature selection was conducted using the InfoGainAttributeEval algorithm. Data imbalance issues were addressed, and 
the experiments were performed using WEKA. Six machine learning classifiers were employed in the study: Naive Bayes (NB), 
logistic regression, multilayer perceptron (neural network), SMO (SVM), IBK (k-nearest neighbor), and J48 (decision tree). 
Additionally, a seventh classifier, which is a voting ensemble combining multilayer perceptron, IBK, and J48, was used. The 
experimental results were evaluated based on accuracy, true positive rate (TPR), false positive rate (FPR), precision, recall, F-
measure, and receiver operating characteristic (ROC) area. The voting ensemble method demonstrated the highest performance, 
achieving an accuracy of 98.99%. (Khammassi & Krichen, 2017) proposed a model for developing a network intrusion detection 
system using the KDD99 and UNSW-NB15 datasets. They pre-processed the datasets and extracted important features using the 
GA-LR wrapper method. Classification was performed using three decision tree classifiers: C4.5, Random Forest, and Naïve Bayes 
Tree. For the KDD99 dataset, the optimal subset consisted of 18 features, achieving an accuracy of 99.90%, a detection rate (DR) of 
99.81%, and a false alarm rate (FAR) of 0.105% with the Random Forest classifier. For the UNSW-NB15 dataset, the optimal 
subset consisted of 20 features, achieving an accuracy of 81.42% and a FAR of 6.39% with the C4.5 classifier. The author of 
(Çavuşoğlu, 2019) developed a hybrid and layered Intrusion Detection System (IDS) utilizing a combination of machine learning 
and feature selection techniques to achieve high performance in detecting various attack types using the NSL-KDD dataset. The 
process began with pre-processing operations, including transformation and normalization of the dataset. Feature selection was then 
performed using CfsSubsetEval and WrapperSubsetEval algorithms to identify the most important features. The machine learning 
techniques employed were: Random Forest (RF) algorithm for DOS and Probe attacks, a stacking method combining RF, J48, and 
Naive Bayes algorithms for R2L attacks, and J48 and Naive Bayes algorithms for detecting normal-traffic in U2R attacks. The 
experiments were conducted using Weka.  
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The proposed system demonstrated an average accuracy of 99.86% across all attack types. (Yang et al., 2019) proposed an intrusion 
detection model that combines an improved conditional variational AutoEncoder (ICVAE) based on specific intrusion categories 
with a deep neural network (DNN), referred to as ICVAE-DNN, using the NSL-KDD and UNSW-NB15 datasets. The process 
begins with data pre-processing, feature mapping, and normalization, followed by training the ICVAE. The DNN is then used to 
generate and detect new attacks. The classification performance of ICVAE-DNN was evaluated, achieving an accuracy of 85.97% 
on NSL-KDD (KDDTest+), 75.43% on NSL-KDD (KDDTest-21), and 89.05% on UNSW-NB15. The work of (Gao et al., 2019) 
introduced a MultiTree algorithm and an adaptive ensemble learning model using the NSL-KDD dataset. The dataset underwent 
pre-processing through label and one-hot encoding, followed by standardization. Feature selection was performed using PCA. The 
MultiTree algorithm achieved an accuracy of 84.2%, while the adaptive voting algorithm achieved a final accuracy of 85.2%. (Fang 
et al., 2020) proposed a machine learning approach for detecting intrusion information using an Elman neural network and SVM for 
noise data elimination, utilizing the KDD Cup’99 dataset. The system is composed of four modules: machine learning, network 
packet capture, misuse rule processing, and data pre-processing. Results indicated that the neighbour classification algorithm based 
on robust SVM achieved a detection rate of 87.3% with a false alarm rate of 0. For data containing noise, the robust SVM-based 
neighbour classification algorithm achieved a detection rate of 70.9% with a false alarm rate of 0. In a related development, (Zaman 
& Lung, 2018b) introduced six commonly used machine learning techniques (K-Means, K-Nearest Neighbours – KNN, Fuzzy C-
Means – FCM, Support Vector Machine – SVM, Naïve-Bayes – NB, Radial Basis Function – RBF, as well as a Voting Ensemble 
method combining these six algorithms for detecting network traffic anomalies using the Kyoto 2006+ dataset. The RBF 
classification technique demonstrated the best performance metrics, achieving 97.54% accuracy, a precision of 0.92, a recall of 
0.9583, and an ROC value of 0.9741. The research of (Liu et al., 2021) investigated the application of machine learning and deep 
learning for detecting intrusions in imbalanced network traffic. It introduced a novel algorithm called Difficult Set Sampling 
Technique (DSSTE) aimed at addressing the class imbalance issue in NSL-KDD and CSE-CIC-IDS2018 datasets. The experimental 
results demonstrated that the DSSTE approach outperformed other sampling methods. Specifically, AlexNet achieved the highest 
performance on the NSL-KDD dataset with an accuracy of 0.8284, precision of 0.8394, recall of 0.8278, and F1 score of 0.8166. On 
the other hand, Mini-VGGNet achieved the best results on the CSE-CIC-IDS2018 dataset with an accuracy of 0.9699, precision of 
0.9746, recall of 0.9697, and F1 score of 0.9704. (Tama et al., 2019) introduced an enhanced Intrusion Detection System (IDS) 
utilizing a hybrid feature selection technique and ensembles of two-level classifiers. The study evaluates the proposed system on 
several datasets: KDDTrainC (used for training), KDDTestC and KDDTest-21 (as separate test sets), along with UNSW-NB15train 
and UNSW-NB15test. The classifiers were implemented using the RWeka library. Comparative analysis with existing methods 
demonstrated superior performance of the proposed system: KDDTestC achieves an accuracy of 85.797%, false positive rate (FPR) 
of 11.7%, recall of 86.8%, and precision of 88.0%. KDDTest-21 shows an accuracy of 72.52%, FPR of 18.00%, recall of 72.00%, 
and precision of 85.00%. UNSW-NB15test exhibits an accuracy of 91.27%, FPR of 8.90%, recall of 91.30%, and precision of 
91.60%. The authors of (Binghao & Guodong, 2018) developed an Integrated Intrusion Detection Model (IDM) termed LA-GRU, 
combining imbalanced learning techniques with a Gated Recurrent Unit (GRU) neural network. They enhanced the model with a 
modified version of the Local Adaptive Synthetic Minority Oversampling Technique (LA-SMOTE) to address imbalanced traffic, 
followed by applying the GRU neural network based on deep learning principles for anomaly detection using the NSL-KDD dataset. 
Experimental results demonstrated that the LA-GRU model excelled not only in detecting high-frequency attacks such as DOS 
(99.16%) and Probe (99.20%), but also achieved significant performance in detecting low-frequency attacks. Specifically, detection 
rates of 98.34% for R2L and 98.61% for U2R were achieved, surpassing all other IDMs and establishing new benchmarks in 
experimental outcomes. Its best overall performance are: 99.04% accuracy, 98.92% detection rate and false alarm rate of 0.134%.  
(Sarker et al., 2020) introduced the IntruDTree, a machine-learning-based security model designed for intrusion detection. This 
model initially assessed and ranked the security features of the NSL-KDD dataset based on their importance. It then constructed a 
generalized tree-based intrusion detection model utilizing these key features. When comparing the results of this experiment to other 
studies that employed popular machine learning models, it is clear that IntruDTree outperformed previous efforts. The model 
achieved an accuracy, precision, recall, and F1 score of 98.00%. The work of (Verma & Ranga, 2020) explored the use of single and 
ensemble classifiers for protecting IoT systems against DoS attacks, utilizing the CIDDS-001, UNSWNB15, and NSL-KDD 
datasets to benchmark and evaluate the performance of machine learning classifiers for IDS in IoT. Hyperparameter tuning for all 
classifiers was conducted using RandomizedSearchCV. The machine learning models examined in this research included: Random 
Forest (RF), AdaBoost (AB), Gradient Boosted Machine (GBM), Extreme Gradient Boosting (XGB), Extremely Randomized Trees 
(ETC), Classification and Regression Trees (CART), and Multi-Layer Perceptron (MLP). These datasets were used to perform Hold 
Out and Cross Fold Validation tests on the classifiers.  
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While assessing the performance results from Hold Out Validation, it was observed that RF had the highest accuracy (94.94%) and 
specificity (91.6%). GBM excelled in sensitivity (99.53%), while XGB performed best in terms of the AUC metric, achieving 
98.76%. It was noted that the performance of all classifiers improved with 10-Fold Cross Validation compared to their performance 
with Hold Out Validation. CART achieved the highest accuracy (96.74%), AB had the highest specificity (97.5%), and both RF and 
XGB showed the best sensitivity (97.31%). For the AUC metric, XGB was the top performer with a score of 98.77%. (Injadat et al., 
2021) introduced a novel multi-stage, optimized ML-based NIDS framework designed to reduce computational and time 
complexity. It examined the impact of oversampling techniques, identified the minimal suitable sample size for training models, and 
compared two feature selection techniques: information gain and correlation-based methods. The study also investigated different 
ML hyper-parameter optimization techniques and assessed their effects while maintaining detection performance, using the CICIDS 
2017 and UNSW-NB 2015 datasets. The classifiers used in the experiments were KNN and RF. Various hyper-parameter 
optimization methods were explored, including Random Search (RS), Particle Swarm Optimization (PSO), Genetic Algorithm 
(GA), and Bayesian Optimization algorithms (BO) with two types: Gaussian Process (GP) and Tree Parzen Estimator (TPE). The 
results demonstrated that the BO-TPE-RF method achieved the highest detection accuracy for both datasets and both feature 
selection algorithms, with detection accuracies of 99.99% and 100%, respectively. Lastly, (Agarwal et al., 2021) proposed an 
optimal algorithm capable of efficiently learning patterns of suspicious network activities in the shortest processing time to 
accurately classify attacks, using three machine learning classification algorithms—Naïve Bayes (NB), Support Vector Machine 
(SVM), and K-nearest Neighbour (KNN)—with the UNSW-NB15 dataset. The experimental results indicated that SVM achieved 
the highest performance accuracy of 97.78% following data pre-processing and model training. 
 
However, there are some drawbacks noted in the reviewed studies: 
1) Utilization of only one ML model and Dataset: Relying solely on a single machine learning model and dataset in intrusion 

detection systems is inadequate for achieving high accuracy in detecting harmful traffic and maintaining a low false positive 
rate across all types of attacks 

2) Using High-Dimensional Datasets Without Employing Feature Selection Techniques: as a result of this situation, the processing 
times are prolonged and the desired performance may not be achieved 

3) False Positives and False Negatives: NIDS can generate false alarms (false positives) or miss actual intrusions (false 
negatives), leading to inefficiencies and potential security risks. 

4) High Volume of Alerts: NIDS often generates a large number of alerts, overwhelming security teams and making it challenging 
to prioritize and respond to real threats promptly. 

5) Complexity of Network Traffic: Network traffic can be complex, especially in large and diverse networks, making it difficult for 
NIDS to accurately detect and classify malicious activities. 

6) Resource Intensive: NIDS can be resource-intensive, requiring significant computational power and network bandwidth to 
analyse and monitor network traffic effectively. 

To overcome several of these constraints, the proposed study implements and evaluates the effectiveness of six state-of-the-art ML 
models and utilized two prominent NIDS datasets for the network intrusion detection and classification system. This was achieved 
by tackling class imbalance, applying data normalization, and employing feature selection techniques to improve the accuracy of 
anomaly-based IDS. 

III. METHODOLOGY 
In this section, we begin by providing a conceptual overview of the proposed framework. Following that, we delve into the specifics 
of the techniques we have implemented, including label encoding, feature selection, one-hot encoding, data balancing/resampling, 
normalization, and the classification models used. 
 
A. Conceptual Framework of IDS 
The network intrusion detection datasets utilized in this research are NSL-KDD (training & testing) and UNSW-NB15 (training & 
testing). The pre-processing steps performed on these datasets include label encoding, one-hot encoding, and feature selection. The 
training and testing of the machine learning models were conducted in three distinct stages. In the first stage, the models were 
trained and tested using datasets that has been pre-processed and undergone one-hot encoding. In the second stage, the models were 
trained and tested with datasets that had been one-hot encoded and balanced using the Synthetic Minority Oversampling Technique 
(SMOTE) to address data imbalance. In the third stage, the models were trained and tested with datasets that had been one-hot 
encoded, balanced, and normalized using the standard scaling method as depicted in Figure 1.  
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Six state-of-the-art machine learning models were considered for this work: Decision Tree (DT), Gaussian Naïve Bayes (GNB), K-
Nearest Neighbours (KNN), Logistic Regression, Random Forest (RF), and Support Vector Machine (SVM) for comparison of the 
efficacy of the three different stages of training and testing these models. The proposed conceptual framework performed binary 
classification, categorizing network signals as either “normal” or “attack”. 
 
B. Label Encoding 
Label encoding is a machine learning technique used to convert categorical data, represented as labels or strings, into numerical 
format. In this process, each unique category is assigned a distinct integer, transforming categorical values into numerical ones. The 
primary goal is to make the data suitable for machine learning algorithms that need numerical input. Label encoding is particularly 
useful for categorical data with an inherent order or ranking, making it ideal for ordinal categorical data. Ordinal data is a type of 
categorical data where there is a clear order or ranking, indicating that one category is greater or smaller than another (Sunny, 2024). 
In this study, label encoding was used to transform all categorical features of the datasets into their numerical equivalents before 
performing feature selection. The label encoding algorithm is written as Algorithm 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A conceptual framework for the proposed anomaly-based IDS 
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Algorithm 1: Label Encoding 
Algorithm LabelEncoding(C): 
    Input:  
        C - a categorical dataset or column with n samples 
    Output:  
        L - an array of integer labels corresponding to the categorical values in C      
    # Step 1: Identify unique categories 
    U <- Unique(C)     
    # Step 2: Create a mapping of unique categories to integer labels 
    M <- Dictionary() 
    for i from 0 to Length(U) - 1: 
        M[U[i]] <- i     
    # Step 3: Transform the data 
    L <- [] 
    for v in C: 
        L.append(M[v])     
    # Step 4: Return the encoded labels 
    return L 

 
C. Feature Selection  
Feature selection is a process of acquiring a subset from an original feature set according to a certain feature selection criterion, 
which selects the relevant features of the dataset (Cai et al., 2018). In other words, it reduces the number of columns or variables 
that are redundant and irrelevant in a dataset normally before constructing the predictive models. The purpose of implementing 
feature selection is to improve model’s accuracy, save computational time and cost, as the machine learning methods will have 
difficulty in dealing with the large number of input features (Kumar, 2014) and causing overfitting problems. Here in this work, we 
utilize the feature importance or variable importance technique for feature selection to achieve a precise and accurate representation 
for the IDS problem. This method accounts for the fact that not all features are significant or relevant in detecting intrusions. 
 
D. One-Hot Encoding 
Categorical variables are frequently used in machine learning and data analysis. Examples include colours, gender, or age groups, 
which have a limited number of distinct values. However, most machine learning algorithms require numerical input, and 
categorical variables are not numerical. Therefore, we need to encode these categorical variables into a numerical format. One 
common approach is one-hot encoding, which transforms categorical data into binary data, where each category is represented by a 
binary value. A binary vector, with a length equal to the number of categories, is created for the entire categorical variable. For 
example, if your categorical variable has three categories like “red”, “green”, and “blue”, the one-hot encoding representation will 
have three dimensions, each corresponding to one of the categories. In one-hot encoding, the dimension that represents the category 
to which an observation belongs is assigned a binary value of 1, while all other dimensions are assigned a binary value of 0 
(Tutorials Point, 2024). This study utilized the “pd.get_dummies()” function from the Pandas library in Python to transform 
categorical data into a format suitable for machine learning algorithms, enhancing their predictive performance. 
 
E. Data Balancing 
Imbalanced datasets are a common challenge for machine learning practitioners dealing with binary classification problems. This 
issue often occurs in real-world business applications such as fraud detection, spam filtering, rare disease discovery, network 
intrusion detection systems, and hardware fault detection. A widely used method to tackle this problem is the Synthetic Minority 
Oversampling Technique (SMOTE) (Swastik, 2024). SMOTE is crafted to address imbalanced datasets by creating synthetic 
instances for the minority class. This study highlighted the importance of SMOTE in handling class imbalances, specifically 
emphasizing its role in enhancing classifier model performance. Through its ability to reduce bias and capture crucial features of the 
minority class, SMOTE leads to improved predictive accuracy and overall model performance. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue VII July 2024- Available at www.ijraset.com 
     

663 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

F. Data Normalization  
Dataset normalization plays a crucial role in pre-processing, particularly for classification tasks. It involves transforming dataset 
attributes into compatible values, facilitating faster operations and higher success rates. This study utilized Standard Scaler 
normalization to harmonize the dataset attributes (Çavuşoğlu, 2019). Standard Scaler is a feature scaling technique provided by the 
sklearn.preprocessing module in the Scikit-learn library in Python. It standardizes features by removing the mean and scaling to unit 
variance. This means that the resulting distribution of the features will have a mean of 0 and a standard deviation of 1. Standardizing 
the features is a common requirement for many machine learning algorithms. Algorithms that compute distances between data 
points, such as k-nearest neighbours (KNN) or support vector machines (SVM), can benefit from standardized data. It ensures that 
each feature contributes equally to the result, avoiding dominance by features with larger scales. 
Mathematically, the transformation is given by: 
Xscaled =

ଡ଼ିஜ
஢ 

           (1) 
where μ is the mean of the feature values and σ is the standard deviation. 
 
G. ML Models 
Machine learning (ML) models are a subset of artificial intelligence (AI) that encompass various methods and algorithms enabling 
machines to learn automatically through mathematical models, extracting valuable information from large datasets (Teresa, 1993; 
Xin et al., 2018). The key ML models utilized in this study include Decision Tree (DT), Gaussian Naïve Bayes (GNB), K-Nearest 
Neighbors (KNN), Logistic Regression, Random Forest (RF), and Support Vector Machine (SVM). 
 
1) Decision Tree (DT) 
DT are fundamental supervised machine learning algorithms used for both classification and regression by making a series of 
decisions (rules). The model is structured like a conventional tree with nodes, branches, and leaves. Each node signifies an attribute 
or feature, each branch represents a decision or rule, and each leaf indicates a possible outcome or class label (Sahani et al., 2018). 
The DT algorithm automatically selects the optimal features to construct the tree and performs pruning to eliminate irrelevant 
branches, preventing overfitting. The most common DT models include CART, C4.5, and ID3 (Rai et al., 2016). 
 
2) Gaussian Naïve Bayes (GNB) 
Gaussian Naive Bayes is a variant of the Naive Bayes method that handles continuous attributes by assuming the data features 
follow a Gaussian distribution throughout the dataset. In the Sklearn library, Gaussian Naive Bayes is a classification algorithm for 
normally distributed continuous features based on the Naive Bayes algorithm. This classifier is rooted in Bayes Theorem from 
probability theory and excels at predicting the correct class for the given features. The term “naive” refers to the algorithm’s 
assumption that all features are independent of each other, an assumption that may not hold true in real-world scenarios. (Geeks for 
Geeks, 2024). 
 
3) K-Nearest Neighbours (KNN) 
KNN is a straightforward supervised machine learning algorithm that uses “feature similarity” to predict the class of a given data 
sample. It classifies a sample based on its proximity to its neighbours by measuring the distance between them. The performance of 
the KNN model is influenced by the parameter k. A very small k value can lead to overfitting, while a very large k value may cause 
misclassification of the sample instance (Zhang et al., 2019). 
 
4) Logistic Regression 
Logistic regression is a supervised machine learning algorithm designed for binary classification tasks, predicting the probability of 
an outcome, event, or observation. This model generates a binary outcome, limited to two possibilities such as yes/no, 0/1, or 
true/false. It examines the relationship between one or more independent variables and categorizes data into distinct classes. Logistic 
regression is commonly used in predictive modeling to estimate the mathematical probability of an instance belonging to a specific 
category. For example, a 0 might represent a negative class and a 1 a positive class.  
This algorithm is especially useful for binary classification problems where the outcome variable falls into one of two categories (0 
or 1) (Vijay, 2024). 
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5) Random Forest (RF) 
The Random Forest Algorithm is a highly popular supervised machine learning algorithm used for both classification and regression 
tasks. Similar to how a forest is composed of numerous trees, a random forest’s robustness increases with the number of trees it 
contains.  
The greater the number of trees, the higher the algorithm’s accuracy and problem-solving capability. Random Forest is a classifier 
that consists of several decision trees applied to different subsets of the dataset, and it averages their results to enhance predictive 
accuracy. This algorithm is based on the concept of ensemble learning, which combines multiple classifiers to tackle complex 
problems and improve model performance (Simplilearn, 2024). 
 
6) Support Vector Machine (SVM) 
Support Vector Machine (SVM) is a supervised machine learning algorithm that relies on the concept of a maximum-margin 
hyperplane in an n-dimensional feature space. It can address both linear and nonlinear problems. For nonlinear problems, SVM 
employs kernel functions to map low-dimensional input vectors into a high-dimensional feature space. Then, it determines an 
optimal maximum-margin hyperplane, which serves as the decision boundary, using the support vectors (Chen et al., 2005), (Devi & 
Suganthe, 2018). For Network Intrusion Detection Systems (NIDS), the SVM algorithm can improve efficiency and accuracy by 
accurately distinguishing between normal and malicious classes (Yan & Han, 2018), (Ghanem et al., 2017). 
 

IV. EXPERIMENT RESULT AND DISCUSSION 
For this study, six advanced machine learning models were selected: Decision Tree (DT), Gaussian Naïve Bayes (GNB), K-Nearest 
Neighbours (KNN), Logistic Regression, Random Forest (RF), and Support Vector Machine (SVM). These models were used to 
compare the effectiveness of the three different stages of training and testing. 
 
A. Benchmark Datasets 
We chose NSL-KDD and UNSW_NB15 as the benchmark datasets for this experiment.  
 
1) NSL-KDD Dataset 
The NSL-KDD dataset is an improved version of the original KDD Cup 1999 dataset, widely used in network intrusion detection 
research. The version utilized here is in .csv format and can be accessed at (Kaggle, 2021). It includes 42 attributes (including the 
target variable) with 125,973 instances in the training set and 22,544 instances in the test set.  
The target variable, referred to as “labels”, in the training set consists of “normal” and 21 different attack types: (“normal”, 
“neptune”, “warezclient”, “ipsweep”, “portsweep”, “teardrop”, “nmap”, “satan”, “smurf”, “pod”, “back”, “guess_passwd”, 
“ftp_write”, “multihop”, “rootkit”, “buffer_overflow”, “imap”, “warezmaster”, “phf”, “land”, “loadmodule”, “perl”).  
In the test set, the “labels” feature includes “normal” and 35 attack types: (“normal”, “portsweep”, “neptune”, “smurf”, “satan”, 
“apache2”, “teardrop”, “guess_passwd”, “ipsweep”, “warezclient”, “nmap”, “warezmaster”, “mscan”, “back”, “pod”, “httptunnel”, 
“processtable”, “mailbomb”, “snmpguess”, “saint”, “multihop”, “snmpgetattack”, “buffer_overflow”, “xsnoop”, “imap”, “ps”, 
“rootkit”, “land”, “xterm”, “sendmail”, “phf”, “loadmodule”, “perl”, “xlock”, “ftp_write”, “named”). 
 
2) UNSW_NB2015 Dataset 
The second dataset considered is the University of New South Wales’s network intrusion dataset (UNSW-NB2015) generated in 
2015. The dataset is a hybrid of real modern network normal activities and synthetic attack behaviours. The data was collected 
through two different simulations conducted on two different days, namely January 22 and February 17, 2015. The resulting dataset 
consists of 2,540,044 instances and 49 features (1 class feature and 48 statistical features) representing the different characteristics 
of a network traffic request such as source and destination details, duration, protocol used, and packet size. These instances are 
labelled as follows: 2,218,761 normal instances and 521,283 attack instances.   
The specific version used for this work is a partition from this dataset, configured as a training set and testing set, namely, 
UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv respectively having a total of 45 features each. The number of 
records in the training set is 175,341 and the testing set is 82,332 records from different types of attack and normal (Moustafa & 
Slay, 2015).  
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B. Data Pre-processing 
The details of the pre-processing operations performed on the two datasets are outlined below: 
1) NSL-KDD Dataset 
As detailed in Section 4.1.1, the NSL-KDD dataset comprises 42 attributes (including the target variable) with 125,973 instances in 
the training set and 22,544 instances in the test set. The target variable, known as “labels,” includes “normal” and 21 distinct attack 
types in the training set, whereas the test set’s “labels” feature consists of “normal” and 35 different attack types. All attacks not 
present in both the training and test sets were removed, leaving only 21 attacks common to both sets. Since the default structure of 
the “labels” attribute in NSL-KDD is multi-class classification, all the attacks were combined into a single feature named “attack”. 
Consequently, the “labels” attribute now has only two classes: “normal” and “attack.” This is further detailed in Table 1. The dataset 
contains no null values. Four attributes in the dataset are categorical: “protocol_type”, “service”, “flag” and “labels.” The “labels” 
attribute, which has been merged into two classes (“normal” and “attack”), was converted into numeric variables (0 and 1) using a 
label encoder. The other three categorical attributes were converted using one-hot encoding. 
The feature importance or variable importance feature selection technique was used to identify and retain only the important 
features of the dataset that contributed to the target variable. Irrelevant features were discarded prior to model training. 
2) UNSW_NB2015 Dataset 
In this case, no merging of attacks was necessary since the dataset was originally labelled in a binary manner. The dataset has no 
null values. Under the “service” attribute in both the training and test sets, the first sub-service option denoted by (-) without a valid 
name was removed. Regarding the “state” attribute, only sub-services common to both the training and test sets were retained, while 
sub-services not present in both sets were deleted. Four features of the dataset, namely “proto”, “service”, “state” and “attack_cat,” 
which were categorical, were converted to numerical equivalents using one-hot encoding. Only important features were identified 
and used for model training. 

Table 1: Pre-processed “labels” Attribute of NSL-KDD Dataset 
NSL-KDD Dataset 

S/N train['labels'].value_counts() test['labels'].value_counts() 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

normal             67343 
neptune            41214 
satan               3633 
ipsweep             3599 
portsweep           2931 
smurf               2646 
nmap                1493 
back                 956 
teardrop             892 
warezclient          890 
pod                  201 
guess_passwd          53 
buffer_overflow       30 
warezmaster           20 
land                  18 
imap                  11 
rootkit               10 
loadmodule             9 
ftp_write              8 
multihop               7 
phf                    4 
perl                   3 

normal             11245 
neptune             6654 
satan                698 
smurf                540 
ipsweep              479 
guess_passwd         411 
portsweep            371 
warezmaster          279 
back                 227 
nmap                 206 
warezclient          107 
teardrop             104 
pod                   35 
buffer_overflow       17 
multihop               9 
rootkit                4 
loadmodule             4 
imap                   2 
land                   2 
ftp_write              2 
phf                    1 
perl                   1 

 TOTAL           125,971        TOTAL             21,398 
 NORMAL           67,343 NORMAL            11,245 
 ATTACK           58,628 ATTACK            10,153 
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C. Evaluation Metrics 
This section details the evaluation metrics used to measure the performance of the ML models in this study. These metrics are 
derived from the various attributes of the Confusion Matrix, a two-dimensional matrix that provides information about the actual 
and predicted classes (Deng et al., 2016). The evaluation metrics include: 
 True Positive (TP): Instances correctly identified as an attack by the classifier. 
 False Negative (FN): Instances incorrectly predicted as normal. 
 False Positive (FP): Instances incorrectly classified as an attack. 
 True Negative (TN): Instances correctly classified as normal. 
 
The diagonal elements of the confusion matrix represent correct predictions, while the off-diagonal elements indicate incorrect 
predictions made by the classifier. Table 2 illustrates these attributes of the confusion matrix. Additionally, the various evaluation 
metrics used in this study are: 
1) Accuracy 
Accuracy quantifies the ratio of correct predictions to the total number of predictions, calculated by dividing the number of correct 
predictions by the total predictions made. 
Accuracy = ே௨௠௕௘௥ ௢௙ ஼௢௥௥௘௖௧ ௉௥௘ௗ௜௖௧௜௢௡௦

்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௉௥௘ௗ௜௖௧௜௢௡௦
= ்௉ା்ே

்௉ାி௉ା்ேାிே
     (2) 

 
 
2) Precision 
Precision measures the accuracy of positive predictions by determining the proportion of correct positive results (True Positives, 
TP) divided by the total number of positive results (TP + False Positives, FP) predicted by the classifier. 
Precision = ே௨௠௕௘௥ ௢௙ ஼௢௥௥௘௖௧ ௉௢௦௜௧௜௩௘ ோ௘௦௨௟௧௦

்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௉௢௦௜௧௜௩௘  ோ௘௦௨௟௧௦
= ்௉

்௉ାி௉
     (3) 

 
3) Recall 
Recall indicates the proportion of correctly predicted positive instances out of all the positives that the model could have identified. 
It’s calculated by dividing True Positives (TP) by the sum of True Positives and False Negatives (FN) in the dataset. Unlike 
precision, which focuses on accurately predicted positives among all positive predictions, recall sheds light on missed positive 
predictions. 
Recall = ே௨௠௕௘௥ ௢௙ ஼௢௥௥௘௖௧ ௉௢௦௜௧௜௩௘௦

ே௨௠௕௘௥ ௢௙ ௔௟௟ ௉௢௦௜௧௜௩௘௦
= ்௉

்௉ାிே
       (4) 

 
4) F1 Score 
The F1 Score aims to strike a balance between precision and recall by computing their harmonic mean. It serves as a measure of a 
test’s accuracy, with a maximum value of 1 indicating perfect precision and recall alignment. 
F1 Score = Harmonic Mean of Precision and Recall = 2 x  ௉௥௘௖௜௦௜௢௡ ௑ ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟
= ଶ்௉

ଶ்௉ାி௉ାிே
 (5) 

Table 2: Confusion Matrix 
  Predicted Class 
  Normal (0) Attack (1) 
Actual Class Normal (0) TN FP 
 Attack  (1) FN TP 

 
D. Results 
We implemented all the methodologies using the Python programming language, running on Anaconda’s Jupyter Notebook, 
utilizing Scikit-learn, a widely adopted machine learning library for predictive data analysis, and executed on a Windows PC. Here, 
we present our findings on the performance of each model across three training and testing stages: the original one-hot encoded 
datasets, one-hot encoded datasets with SMOTE, and one-hot encoded datasets with SMOTE and scaling. The results are 
summarized in Table 3, where the performance of these six ML models is evaluated using four key metrics: accuracy, precision, 
recall, and F1 score.  
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From Table 3, it is clear that both the decision tree and random forest exhibit identical performance, achieving 99.99% across all 
four metrics during each of the three stages of training and testing with the UNSW-NB15 dataset. The only exception is in the NSL-
KDD dataset, where the decision tree slightly outperforms the random forest with an accuracy of 99.98% compared to the random 
forest’s 99.97%. A close examination of Table 3 also reveals that all six ML classifiers in this experiment achieve their best 
performance in both datasets during the third stage, where the models are trained and evaluated on the dataset version that has 
undergone balancing (SMOTE) and scaling. Figures 2 and 3 respectively display the performances of the balanced and scaled 
versions of the two datasets on the six machine learning models. 
 

Table 3: Comparison results of the three stages of training and testing the six models 
Model 

 
NSL-KDD Dataset UNSW-NB15 Dataset 

Acc Pre Rec F1 Acc Pre Rec F1 
DT (Ogiginal Dataset) 99.95 99.94 99.95 99.94 99.95 99.94 99.95 99.97 
DT+SMOTE 99.97 99.95 99.96 99.97 99.98 99.97 99.98 99.96 
DT+SMOTE+Scaled 99.98 99.97 99.97 99.99 99.99 99.99 99.99 99.99 
         
GNB (Ogiginal Dataset) 52.34 52.48 98.57 68.49 79.26 99.82 71.58 83.37 
GNB+SMOTE 49.86 49.93 98.54 66.28 85.43 99.18 71.45 83.06 
GNB+SMOTE+Scaled 99.92 99.98 99.85 99.92 99.99 99.95 99.96 99.96 
         
KNN (Ogiginal Dataset) 96.17 94.08 98.94 96.45 89.10 88.56 97.61 92.86 
KNN+SMOTE 96.02 93.50 98.92 96.14 83.69 78.40 92.99 85.07 
KNN+SMOTE+Scaled 96.87 95.74 98.11 96.91 99.92 99.96 99.89 99.92 
         
LR (Ogiginal Dataset) 85.79 83.66 90.66 87.02 77.42 83.37 86.09 84.71 
LR+SMOTE 85.00 83.39 88.61 85.92 82.00 79.18 86.87 82.85 
LR+SMOTE+Scaled 99.93 99.92 99.96 99.95 99.96 99.94 99.97 99.96 
         
RF (Ogiginal Dataset) 99.94 99.94 99.94 99.93 99.95 99.94 99.95 99.97 
RF+SMOTE 99.96 99.95 99.96 99.96 99.98 99.97 99.98 99.96 
RF+SMOTE+Scaled 99.97 99.97 99.97 99.99 99.99 99.99 99.99 99.99 
         
SVM (Ogiginal Dataset) 52.60 52.58 55.52 68.92 80.76 79.73 98.57 88.16 
SVM+SMOTE 50.24 90.91 00.53 01.06 85.00 96.82 72.38 82.83 
SVM+SMOTE+Scaled 99.74 99.92 99.56 99.74 99.86 99.79 99.94 99.86 

 

 
Figure 2: Performance of models on NSL-KDD Dataset 
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Figure 3: Performance of models on UNSW-NB15 Dataset 

 
Table 4: Performance benchmark with some of the existing approaches on NSL-KDDtest 

Reference Feature Selection Acc Pre Rec F1 
(Çavuşoğlu, 2019) CfsSubsetEval and 

WrapperSubsetEval 
99.86 - 99.96 - 

(Yang et al., 2019) - 85.97 97.39 77.43 86.27 
(Gao et al., 2019) PCA 85.20 86.50 85.20 84.90 
(Liu et al., 2021) - 82.84 83.94 82.78 81.66 
(Yan & Han, 2018) - 99.04 - - - 
(Sarker et al., 2020) Random Forest Algorithm 98.00 98.00 98.00 98.00 
(Tavallaee et al., 2009) - 82.02 - - - 
(Ma & Shi, 2021) SMOTE 82.09 84.11 82.09 82.43 
(Bedi et al., 2021)  80.00 96.80 97.40 90.70 
(Tama et al., 2019) Hybrid 91.27 96.60 91.30 - 
Proposed Study Random Forest Algorithm 99.98 99.97 99.97 99.99 

 
Table 5: Performance benchmark with some of the existing approaches on UNSW-NB15test 

Reference Feature Selection Acc Pre Rec F1 
(Yang et al., 2019) - 89.08 86.05 98.90 90.61 
(Tama et al., 2019) Hybrid 91.27 91.60 91.30 - 
(Khammassi & Krichen, 
2017) 

GA-LR Wrapper Method 81.42 - - - 

(Agarwal et al., 2021) - 97.78 - - - 
(Zong et al., 2018) Information Gain 85.78 - - - 
(Souhail Et. Al., 2019) Recursive Feature Elimination & 

Random Forests 
86.00 - - - 

(Bagui et al., 2019) k-means clustering & correlation-
based 

99.59 - - - 

(Jing & Chen, 2019) - 85.99 - - - 
(Kasongo & Sun, 2020) XGBoost algorithm 90.85 83.91 98.38 90.00 
Proposed Study Random Forest Algorithm 99.99 99.99 99.99 99.99 

As demonstrated in Tables 4 and 5, our proposed study exhibits higher accuracy compared to other related research studies. 
Consequently, our proposed method is more generalizable to imbalanced network traffic. 
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V. CONCLUSION 
This paper introduces a novel method for an anomaly-based intrusion detection system, which involves a three-level process of 
training and testing machine learning models, including feature selection, resampling, and normalization. The models utilized in this 
study are Decision Tree, Gaussian Naïve Bayes, K-Nearest Neighbors, Logistic Regression, Random Forest, and Support Vector 
Machine. The effectiveness of this approach is evaluated using two intrusion datasets: NSL-KDD and UNSW-NB15. Compared to 
other related research, our findings indicate that the proposed approach outperforms existing state-of-the-art methods. It 
demonstrates superior results in accuracy, precision, recall, and F1-score when validated against predefined testing sets, namely 
NSL-KDDtest and UNSW-NB15test. Future research should aim to validate the proposed method for addressing multi-class 
classification problems, which involve categorizing incoming network traffic as normal or into various attack groups. 
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