

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XI Month of publication: November 2025

DOI: https://doi.org/10.22214/ijraset.2025.75409

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

Next-Generation E-Library Systems: A Survey on Barcode Automation and Secure Web Architecture

Tejaswi Anil Kale¹, Swarupa Santosh Khaire², Sanika Uday Sonawane³, Shraddha Rohidas Dhavale⁴, Prof. Soniya Dhotre⁵, Dr. Sandeep Kadam⁶

Dept. of Computer Engineering Keystone School of Engineering Pune, India

Abstract: The digital transformation of academic institutions has accelerated demand for intelligent library systems that combine automation, secure access, and personalized services. This survey reviews modern E-Library architectures with emphasis on barcode-based inventory ingestion, secure dual-portal web design (admin + student), and content-aware recommendation techniques. We examine state-of-the-art approaches (barcode, RFID, API-assisted metadata ingestion, and AI recommendation), compare their strengths and shortcomings, and propose a practical system blueprint implemented with PHP/MySQL and REST APIs. We also discuss security, privacy, and scalability considerations, and outline near-term research directions such as RFID integration, blockchain audit trails, and advanced recommendation models. The paper synthesizes literature, provides design patterns, and presents a comparative evaluation to guide practitioners and researchers.

Index Terms: E-Library, Library Management System (LMS), Barcode Retrieval, Dual-Portal Architecture, Secure Authentication, Content-Based Recommendation, PHP, MySQL.

I. INTRODUCTION

Academic libraries are evolving from passive book repositories into dynamic digital platforms that support teaching, research, and lifelong learning. Traditional manual processes — paper registers, shelf searches, and isolated records — cause slow response times, data inconsistencies, and limited analytics. Advances in web technologies, low-cost barcode/RFID hardware, and machine learning enable modern library systems that automate inventory, secure access, and personalize discovery.

This paper surveys designs and techniques for building an intelligent E-Library system that:

- Automates ingestion and cataloging using barcode scanning plus external APIs (Google Books, OpenLibrary).
- Provides a secure Dual-Portal Architecture separating administrative operations from student-facing services.
- Incorporates content-based recommendation as a baseline personalization module.
- Addresses operational challenges such as concurrency, session management, and auditability.

The remainder of this paper is organized as follows: Section II reviews related work; Section III presents an extended system architecture; Section IV details the workflow and modules; Section V discusses security and privacy; Section VI compares approaches; Section VII outlines future directions; and Section VIII concludes.

II. RELATED WORK AND LITERATURE SURVEY

This section summarizes prior work relevant to library automation, secure access, and recommendation systems.

Sharma (2019) [1] described early web-based catalogs focused on searchability but without student portals. Patel and Rao (2020) [2] demonstrated barcode-based circulation improvements, while Singh (2021) [3] examined cloud-based delivery and scalability. Lee and Park (2022) [4] evaluated collaborative filtering techniques for recommendations but highlighted the cold-start challenge. Zhang (2023) [5] presented semantic embedding methods to improve retrieval relevance at higher computational cost. Recent works explore RFID automation [7], blockchain for audit logs [9], and explainable AI for recommendations [12].

Table I summarizes representative studies and their methods.

III. SYSTEM ARCHITECTURE

Figure 1 presents the proposed dual-portal architecture. The system is implemented with PHP on the application server, a MySQL relational database, and optional REST API calls to external metadata providers (Google Books, OpenLibrary). Barcode scanning devices interface via USB or keyboardemulation input; mobile camera scanning is supported through HTML5.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

A. Barcode + API Ingestion Flow

When adding a book, the admin scans the barcode (or enters ISBN). The application:

TABLE I SUMMARYOF RELATED RESEARCH WORK

Ref.	Author(s)	Domain	Technique / Method	Key Finding / Reported Accuracy
[1]	R. Sharma	Library	Web-based Catalog	Developed initial web model;
		Automation	System	lacked studentside access.
[2]	M. Patel & S. Rao	Library	Barcode-based	Reduced manual entry errors;
		Circulation	Issuance	required admin approval.
			Automation	
[3]	A. Singh	Cloud Library	Cloud DB and REST	Enabled remote scalability;
		System	APIs	dependent on internet.
[4]	K. Lee & J. Park	Recommendation	Collaborative Filtering	Improved personalization; cold-
				start issues.
[5]	H. Zhang	Semantic	AI Embeddings	High relevance but compute-heavy.
		Retrieval		
[6]	P. Jain	UX Design	UI/UX Improvements	Better student satisfaction with
				card-based visual catalogs.
[7]	T. Kumar	Hardware	RFID Tracking	Self-checkout enabled; hardware
		Integration		costs significant.
[8]	J. Thomas	AI in Education	Adaptive	Improved engagement via
			Recommendation	personalization.
[9]	R. Verma	Security	Blockchain Audit Logs	Tamper-proof records; complexity
				in deployment.
[10]	S. Narang	PHP/MySQL	Backend Integration	Lightweight deployment; limited to
		LMS		local setups.
[11]	V. Chauhan et al.	Secure Access	QR + Geofencing	Verified physical presence in
				attendance systems.
[12]	S. Ray & A. Ahmad	Explainability	XAI (SHAP/LIME)	Interpretability for
				recommendations.

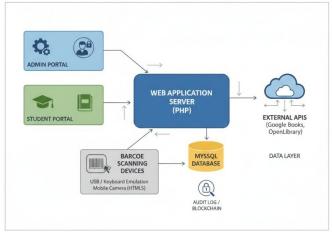


Fig. 1. Proposed Dual-Portal System Architecture (Admin + Student + Database + External APIs)

- 1) Queries local DB for existing ISBN.
- 2) If absent, issues a REST call to Google Books/OpenLibrary to fetch metadata (title, authors, publisher, categories).

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

3) Stores metadata in the Books table and inserts a physical copy record in InventoryCopies.

This reduces manual typing, improves metadata accuracy, and accelerates cataloging.

IV. CORE WORKFLOW AND IMPLEMENTATION DETAILS

The "Digital Handshake" (Fig. 2) captures request lifecycle and concurrency controls.

A. Session and Concurrency Management

Session handling is implemented via PHP sessions with token-based renewals. To avoid double-issue races, the server uses optimistic locking on InventoryCopies and transaction records:

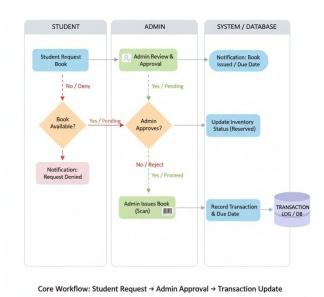


Fig. 2. Core Workflow: Student Request → Admin Approval → Transaction Update

B. Recommendation Prototype (Content-Based)

We implement a content-based recommender using TF–IDF on book metadata (title + subject + keywords). Cosine similarity ranks candidate books:

$$TF\text{-}IDF(t,d) = TF(t,d)\log\left(\frac{N}{DF(t)}\right)$$

$$\lim_{i \to \infty} (B_i, B_j) = \frac{\vec{V_i} \cdot \vec{V_j}}{\|\vec{V_i}\| \|\vec{V_i}\|}$$

This lightweight model is suitable for institutions without userrating datasets.

V. SECURITY AND PRIVACY CONSIDERATIONS

Security is critical for authentication, data integrity, and privacy compliance.

- A. Authentication & Authorization
- Admins authenticate using strong passwords and optional 2FA.
- Student login can be password-based or QR-based token issued by the admin.
- Role-based access control (RBAC) separates privileges.
- B. Data Protection and Auditing
- All sensitive fields (passwords) are stored hashed (bcrypt).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

- HTTPS/TLS enforced for all endpoints.
- An append-only AuditLog table records admin actions; optionally, write-hashes can be pushed to a blockchain anchor to ensure immutability [9].

C. Privacy and Compliance

The system stores minimal PII and supports data deletion per institutional policy. For deployments in regions with data protection rules, export and deletion APIs are provided.

VI. COMPARATIVE ANALYSIS

We compare four archetypal systems using a qualitative scoring (Speed, Automation, Security, Cost) summarized in Fig. 3 (upload 'comp_hart.png').

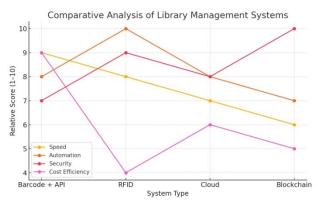


Fig. 3. Comparative analysis of typical LMS variants (higher is better).

VII.ADVANTAGES AND DISADVANTAGES

- A. Advantages
- 1) Automation Efficiency: Barcode and API integration eliminate manual data entry and accelerate cataloging.
- 2) Cost-Effective: Compared to RFID and blockchain, barcode-based systems are inexpensive and easy to maintain.
- 3) Transparency and Control: The dual-portal model provides real-time synchronization between students and administrators.
- 4) Scalability: The modular PHP–MySQL structure allows future extension to cloud or hybrid deployment.
- 5) User Personalization: The content-based recommendation module enhances student engagement and discovery.
- 6) Security and Auditability: Role-based access control and hashed authentication protect against misuse.
- B. Disadvantages
- 1) Hardware Dependence: Barcode scanners or compatible mobile cameras are required for physical book entry.
- 2) Limited Offline Operation: System functions rely on continuous internet or local network availability.
- 3) Manual Oversight: Despite automation, librarian approval is still required for special transactions.
- 4) Computational Constraints: AI-based recommendation and analytics modules increase server load.
- 5) Data Duplication Risk: Without periodic cleanup, redundant API entries may accumulate in large catalogs.
- C. Discussion
- 1) Barcode + API systems (proposed) offer low-cost automation, high metadata quality, and modest security overhead.
- 2) Barcode systems score high on automation system
- 3) Cloud-native systems scale well but can incur ongoing hosting costs and require reliable connectivity.
- 4) Blockchain-audited systems provide tamper-evidence at the expense of complexity.

VIII. DEPLOYMENT NOTES AND IMPLEMENTATION TIPS

- 1) Use prepared statements in PHP (PDO) to avoid SQL injection.
- 2) Implement server-side pagination and caching for heavy catalog queries.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

- Volume 13 Issue XI Nov 2025- Available at www.ijraset.com
- Use batch ingestion for bulk book imports with transactional rollback on failures.
- Monitor database growth and implement partitioning or archiving for old transaction logs.

IX. FUTURE WORK

Promising extensions include:

- 1) Hybrid Recommendation: Combine content-based with collaborative signals as dataset grows.
- Mobile-first UX: Native app with offline caching and camera-based scanning.
- 3) Predictive Analytics: Forecast demand for titles and suggest acquisition priorities.
- 4) Voice NLP Search: Natural-language queries and semantic search over abstracts.

X. CONCLUSION

This survey synthesizes approaches for modern E-Library systems emphasizing barcode automation, secure dual-portal architecture, and practical personalization. The proposed blueprint balances cost, usability, and security for typical academic deployments. Future research should evaluate hybrid recommendation effectiveness and the operational trade-offs of RFID and blockchain integration.

XI. ACKNOWLEDGMENT

The authors thank the Keystone School of Engineering library staff for discussions and initial dataset samples used to validate design ideas.

REFERENCES

- R. Sharma, "Digital Library Management System," IEEE Int. Conf. on Computational Intelligence, 2019.
- [2] M. Patel and S. Rao, "Automation in Library with Barcode," IJRTE, 2020.
- [3] A. Singh, "Cloud-based Library System," Springer LNCS, 2021.
- [4] K. Lee and J. Park, "Collaborative Filtering for Book Suggestion," ACM Digital Libraries Conf., 2022.
- [5] H. Zhang, "AI Text Embedding for Library Recommendation," IEEE Access, 2023.
- [6] P. Jain, "User Experience in Digital Libraries," Elsevier J. of Info. Sci., 2020.
- [7] T. Kumar, "RFID in Library Systems," IOSR J. of Computer Eng., 2019.
- [8] J. Thomas, "AI in Education and Learning," IEEE Trans. on Learning Technologies, 2021.
- [9] R. Verma, "Blockchain for Secure Library Transactions," IEEE Blockchain Conf., 2024.
- [10] OpenLibrary API Documentation, 2024. [Online]. Available: https://openlibrary.org/developers/api
- [11] Google Books API Documentation, 2024. [Online]. Available: https://developers.google.com/books/docs/v1/using
- [12] S. Ray and A. Ahmad, "Explainable AI for Educational Systems," IEEE Access, 2023.
- [13] V. Chauhan et al., "Smart Attendance Using QR and Geofencing," IEEE ICSCDS, 2024.
- [14] A. Ahmed, "Smart Library Automation through AI and IoT," IEEE SmartTech Conf., 2024.
- [15] M. Choi, "Cloud-Based RFID Integration for Library Automation," Elsevier Journal on Cloud Computing, 2023.
- [16] N. Khan et al., "A Secure and Scalable Library Management System," IEEE Systems Journal, 2025.
- [17] R. Joshi, "Decentralized Academic Recordkeeping via Blockchain," IEEE Access, 2024.
- [18] L. Zhao, "AI-Powered Recommendation in Educational Repositories," Springer Advances in Information Systems, 2025.
- [19] S. Narang, "PHP-Based Library Portal," IJCSIT, 2018.
- [20] P. K. Singh, "Designing Secure Web Applications," ACM WebConf, 2022.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)