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Abstract: Harmonic oscillator states have shown advantageous for nuclear structure. Nuclear physics experts have developed 
sophisticated group theory-based mathematical techniques to handle n-particle states in the harmonic oscillator (ho) potential as 
a result of this. The deformed harmonic oscillator (HO)'s oblate shell closure has been studied, and the results demonstrate that 
the accompanying magic numbers are connected to a universal sequence of the triangular numbers that identically characterize 
oblate, spherical, and prolate. This offers a distinct framework for comprehending the distorted HO. There is discussion of the 
effects on oblate nuclei in the present study. The current work examines the symmetries of the deformed HO on the oblate side of 
deformation and demonstrates that these spherical degeneracies are equally important on this side of deformation as they are on 
the prolate side. The significance of these symmetries for comprehending nuclear structure is highlighted. 
Keywords: Harmonic Oscillator; Oblate; Deformation; Nuclear Clustering. 
 

I. INTRODUCTION 
The nuclear structure has benefited from harmonic oscillator states. This has prompted experts in nuclear physics to create complex 
group theory-based mathematical methods for handling n-particle states in the harmonic oscillator (ho) potential. The potential can 
be distorted and oscillation frequencies can vary along the three-axis of Cartesian coordinate directions thanks to the three-
dimensional HO. When the system is constrained, the deformation along one of the axis is changed but the deformation in the other 
remaining Cartesian directions is kept constant and equal, this is known as axially symmetric deformation. The ensuing 
deformations are either of the oblate or prolate types, depending on whether the deformation along one axis is longer or shorter than 
in the other directions. The distorted HO's solution as a result of this distortion is shown in Figure 1. 

 

 
Figure 1: Levels of energy in the distorted HO 
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Equation gives the energy levels of the distorted HO. nx, ny, and nz are the oscillator quantum in each direction of the Cartesian 
coordinate system (CCS), and x, y, and z are the fundamental frequencies of oscillation, with 0 being equal to (nx + ny + z)/3. For 
axial geometry, where ωx = ωy = ω⊥, the z-axis is assumed to be the primary deformation axis. The parameter for deformation is 
then determined by equation (2), where the axial length deformations defz:def⊥, 2:1 and 3:1 correspond to osc = 0.6 and 0.86 and 
ω⊥:ωz = 2:1 and 3:1, respectively. 
ܧ =  ℏݓ௫݊௫ +  ℏݓ௬݊௫ +  ℏݓ௭݊௭ + ଷ

ଶ
 ℏݓ௢        (1) 

௢௦௖ߜ = (௪఼ି௪೥)
௪೚

         (2) 

The distorted HO has provided significant insight into the physics of nuclei since the solutions to the Schrödinger equation offer a 
decent approximation to the more precise flat-bottomed nuclear potentials that describe the mean-field in which the nucleons flow 
[1-4]. The resultant shell structure produces a series of magic numbers as the potential is distorted. At integer ratios of axial 
deformation, the shell structure which is present at zero deformation returns. This generates brand-new magic number sequences for 
each deformation. Despite the fact that group theory techniques have often been used to define these magic numbers and the 
resulting degeneracies, a general group theory description that accounts for both oblate and prolate deformations has not yet been 
established [5]. 
It is well-known how prolate deformed nuclei appear, as well as how super-deformation and clustering manifest [2, 3]. The axial 
deformations of defz: def⊥ of 2:1 and 3:1 between shell gap is shown in figure 1 and are connected to a series of spherical 
degeneracies (2, 6, 12, 20, 30,) that repeat multiple times such as twice or thrice. Accordingly, Rae [6] showed that 8Be can be 
explained by two ߙ-particle clusters, 20Ne 16O +ߙ, etc. In other words, two spherical clusters provide clusterization at a prolate 
deformation of 2:1. Experimental observations [7] confirm these conclusions. 
The oblate structures of the nuclei 12C and 28Si have been related to underlying cluster symmetries via anti-symmetrized molecular 
dynamics (AMD) [11] and the alpha cluster model [10] and, which were both published. Similar to this, modern computations using 
relativistic and non-relativistic density functional techniques [12, 13] also reveal cluster structure. Three ߙ -clusters with a D3h 
symmetry are thought to have created the 12C nucleus [14, 15]. Similar to this, a 7-pentagonal configuration with D5h symmetry can 
be connected to the Kπ = 5− band in 28Si [11]. Oblate shapes are known to contribute to the phenomena of shape co-existence in 
heavier systems, where oblate and prolate shapes' deformation energies are comparable and the nucleus can transition between them 
by tunneling through the intermediary barrier [16]. Oblate structures hence function from light to heavy nuclei. The symmetries of 
the deformed HO on the oblate side of deformation are examined in the current work, and it is shown that these spherical 
degeneracies are just as significant as they are on the prolate side of deformation. It is discussed how important these symmetries are 
for understanding nuclear structure. 
 

II. THE OBLATE SYMMETRIES AND THE DISTORTED HO 
The levels of energy in the distorted HO are shown in Figure 1. Equation (1) governs how the energy levels are ordered. The energy 
levels and δosc = 0, ωx = ωy = ωz are separated in energy by ℏݓ௢ for zero deformation, and the degeneracies for neutrons/protons spin 
up and down are 2, 6, 12, 20, 30, 42, etc. The resulting numbers are 2, 8, 20, 40, 70, and 112. (Total degeneracy) The shell structure 
(which is a region of high degeneracy) primarily disappears for prolate deformations, as mentioned above, Moreover, the level 
structure gets more intricate. At integer ratios of the z-deformation direction's lengths to the transverse directions, the shell structure 
returns., such as 2:1, 3:1, 4:1, etc. At 2:1, 3:1, and 4:1, the spherical degeneracy pattern is reproduced twice, three times, and four 
times. 
On the oblate side of deformation, there is furthermore a shell structure, where ߜ௢௦௖ < 0, but neither the shell structure nor the 
underlying degeneracies have been given a straightforward explanation [5], which is the aim of the current investigation. The 
sequence of degeneracies at an oblate deformation of 1:2 (ߜ௢௦௖ = 0.75) is 2, 4, 8, 12, 18, 24,..., (Fig. 1 )and at 1:3 (osc = 1.2), they 
are 2, 4, 6, 10, 14, 18, 24, and so on. These degeneracies can be broken down into the sequences 1:2: 2 + 0, 2 + 2, 6 + 2, 6 + 6, 12 + 
6, 12 + 12, and 1:3: 2 + 0 + 0, 2 + 2 + 0, 2 + 2 + 2, 6 + 2 + 2, 6 + 6 + 2, 6 + 6 + 6, 12 + 6 + 6 (Fig. 2). Thus, it can be shown that the 
prolate and oblate sides of deformation are also affected by the spherical degeneracies. This straightforward discovery suggests a 
way to reinterpret the deformed HO's energy level scheme in reference to the series of spherical degeneracies, as depicted in figure 
3. One observes that the complete level system, from spherical to prolate and oblate deformations, may be recreated by a single 
succession of spherical degeneracies. 
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Figure 2: The distorted HO's oblate side 

 

 
Figure 3: The degeneracy pattern of the distorted HO 
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The Harvey model or alternatively the two-centered oscillator framework can be used to analyze the patterns seen in figure 3 [17]. 
One starts by taking into account prolate deformations. The merging of different configurations of HO clusters into the composite 
system can be taken into consideration in both descriptions. The original two degenerate energy levels for HO (nx, ny, nz) evolve into 
the two different levels (nx, ny, 2nz) and (nx, ny, 2nz + 1) if these clusters are fused by their respective motion down the z-axis. These 
guidelines apply to Harvey. They may be described by considering the properties of wavefunctions along the z-axis, where the 
number of nodes is preserved or an additional node is produced by inverting one wavefunction, i.e., equation (3) 
=  ఝభ±ఝమ

ଶ
         (3) 

Three degenerate levels (nx, ny, nz) for three centers evolve to (nx, ny, 3nz), (nx, ny, 3nz + 1), and (nx, ny, 3nz + 2), etc. As a result, the 
three primarily distinct and degenerate (0, 0, 0) levels for three centers become (0, 0, 0), (0, 0, 1), and the energy separation for these 
is 1 ℏݓ௢ because the Δnz is 1. Given that ω⊥/ωz = 3, the energy of the (0, 0, 0), (0, 0, 1), and (0, 0, 2) levels is lower (0 ℏݓ௭, 1 ℏݓ௭, 
and 2 ℏݓ௭, respectively) than that of the (1, 0, 0) and (0, 1, 0) levels (see figure 1), which are degenerate, with the (0, 0, 3) level (3 
ℏݓ௭) having the lowest energy degeneracy of 6 at 3:1. According to the rules, combining the levels represented by the order of 
degeneracies (2, 6, 12, 20, 30) + (2, 6, 12, 20, 30...) + (2, 6, 12, 20, 30) elevates each of the three results by 0 ℏݓ௭, 1 ℏݓ௭, or 2 ℏݓ௭ 
without affecting the common degeneracy values, i.e. the sequence (2, 2, 2, 6, 6, 6, 12, 12,...) results. In the most straightforward 
scenario, the fusing of two ߙ-particles, (0, 0, 0), results in the production of an 8Be nucleus with populated (0, 0, 0) and (0, 0, 1) 
levels, which is certainly what would be predicted for a 2:1 prolate deformation from figure 1. 
Turning now to the oblate side. The sequences in figure 3 can be interpreted in the manner described below. At a deformation of 
1:2, two prolate nuclei are oriented with the deformation axis aligned with the x-axis and separated by the y-coordinate, that is, with 
the deformation axes perpendicular to the z-axis. The sequence (2, 2, 6, 6, 12, 12) can be used to represent each nucleus, but the x-
axis serves as the representative deformation coordinate. According to the Harvey rules, when the two sequences are fused along the 
y-axis, one has energy added of 0 ℏୄݓ and the other of 1 ℏୄݓ . Given that the sequence (2, 2, 6, 6, 12, 12)'s levels are separated by 1 
ℏୄݓ the new sequence in the composite system is (2, 2 + 2, 6 + 2, 6 + 6, 12 + 6, 12 + 12). 
 

III. CHARACTERISTICS 
There are two new traits. The spherical degeneracies originate from the triangle-shaped integers themselves. The production of 
nuclei like 16O from eight neutrons and eight protons results in a tetrahedron of four -particles since each level may store two paired 
neutrons and two paired protons.  
The triangle accommodating six particles is added to the base of the 16O tetrahedron in the subsequent shell closure, resulting in the 
construction of the 40Ca tetrahedron. Referral [9] has been used to explain this. However, as seen by the triangles displayed in figure 
3, other triangular structures also exist in the oblate nucleus.  
Three ߙ-particles (12C) complete the first triangle if one uses the example of nuclei with a distortion of 1:2. In the square matrix 
depicted in figure 4, this would translate to three of the four corners being occupied and the fourth corner being empty. A 16O cluster 
is completed at one corner and a ߙ-particle is added to the fourth corner by the following shell closure at 1:2 (6 + 2). Two more 
original -particles are subsequently converted to 16O nuclei by the subsequent shell closure (6 + 6), resulting in a 3*16O triangle and 
one more ߙ-particle. 
Contour plots for density obtained in the x-y plane are used in Figure 4 to show how alternative cluster configurations within that 
plane were fused using the Harvey criterion. (top) three prolate distorted 3:1 nuclei, two prolate deformed 2:1 nuclei, and four 
prolate deformed 4:1 nuclei fused. The ߙ-particles are depicted by the green dots. The charts display the densities related to the HO 
configurations, which are supplied for the composite system. (bottom) The same as before, but with the harmonic configurations (0, 
0, 0), (1, 0, 0), and (0, 0, 1) described by the Harvey rules; each red dot denotes the geometric position of a 16O cluster prior to the 
application of the Harvey rules. In light of this, the sequence for the deformation in oblate structure of 1:2 can be explained by 
means of construction of 3-centers with degeneracy of 2, 6, and 12, or, alternatively, by creating triangles from initial ߙ- particles, 
then 16O, and finally 40Ca clusters. The three centers in figure 4 are connected to three of the square's four corners. For example, for 
three 16O clusters, the fourth is an ߙ-particle. The cluster, which is one smaller, is located in the fourth corner. Three -particles are 
the special case, and in 12C, the fourth slot is unoccupied. Three times this results in triangles with six centers (plus three centers 
occupied by the lighter cluster), four times this results in triangles with ten centers (plus six centers occupied by the lighter cluster), 
and five times this results in triangles with fifteen centers (plus ten centers occupied by the lighter cluster), all of which are 
triangular numbers. 
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Figure 4: Plots of density calculated in the x-y plane 

 
The pattern is compelling because of how straightforward it is, but it might just be a coincidence, and there may be other approaches 
to explaining the magic numbers nature that emerges in the warped HO. By looking at the symmetries of the densities that may be 
derived from the HO wavefunctions, the robustness of the current approach can be put to the test. As was done in [3], these different 
densities were created by adding the probabilities of the levels equal to the shell closure. Figures 5 and 6 indicate the order in which 
the orbits get degenerated at 1:3 and 1:2 and are how it gets filled afterward, which is depicted in picture 4. 
Figure 5 depicts the accomplishment of the three-center system equal to the degeneracy number of 20, or 140 neutrons and 140 
protons, or the full spectrum of nuclei, constructed from the most basic 12C to the most complicated. In order to take into account, 
the volume changes, as well as the r2 dependence of the HO potential, the density plots' horizontal and vertical axes, have been 
scaled according to the ratio A1/6 (where A is the number of nucleons). This makes it possible to compare the densities side by side. 
Simple observations to be made are as follows: (i) Axial symmetry exists at all densities (This is destroyed by even one level being 
removed from the computation.), (ii) There is always a dip in the center density (top) for the triangle closure, and the density profile 
in the transverse direction (side) has a fairly uniform vertical dimension. (iii) and for the partially accommodated triangles, there is a 
peak near the central density and a bulge along the axis in the side profile. As anticipated by the symmetries spanning this spectrum 
of magic numbers, it’s observed that the symmetries found in these densities are repeated in synchronicity. In figure 5, Densities are 
estimated at a ratio of 1:2 by adding each unique density up to the arrow-indicated point. In each case, side and top profiles are 
displayed. The density calculations' inclusion of various energy levels is indicated by the red values. 

 
Figure 5: Densities at the deformation of 1:2 
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Although the central dip in the closed triangle is no longer present, the oblate 1:3 density, shown in figure 6, nevertheless exhibits a 
similar pattern. This dip comes back at a ratio of 1:4, making it a feature that changes as the deformation increases. It is important to 
note that the degree of agreement is not insignificant and that changes to the single particle designs have a significant influence on 
densities. Thus, this symmetry is solid. 

 
Figure 6: Densities at the deformation of 1:3 

 
IV. CONCLUSION 

The current study uncovers a fresh framework for comprehending the distorted HO in reference to a single order of triangular 
numbers that are, 2, 6, 12, 20, 30… which connects the structures throughout all different deformations, from oblate to prolate. The 
stacking of -particle triangular structures and the subsequent degeneracy sequences 2, 6, 12, 20, 30, can be used to explain the 
symmetries of spherical nuclei. While nuclei connected to prolate shell closures during deformations in order of N:1 are associated 
with N spherical clusters, oblate nuclei during deformations in order of 1: N may be described in terms of the assembling of 
spherical-shaped clusters into a square-shaped N×N matrix. Symmetries are still important for nuclei in more unusual deformations, 
but these structures will only be seen at high excitation energies since their associated states will fragment due to coupling with the 
background of other states. 
The question of whether the symmetries discovered in the current computations endure the stimulus of the spin-orbit interactions 
and Coulomb consequently have any impact on actual nuclei is another concern. Some solace may be taken in the fact that the shell 
structures seen in one are also seen in the other, and that the DHO and Nilsson level schemes are relatively equivalent for light 
nuclei. The AMD method, which employs genuine nucleon-nucleon interactions as demonstrated for 12C and 28Si, yields outcomes 
that are equivalent to those of more basic nuclear models, demonstrating once more that the ideas discussed here do in fact guide the 
behavior in these more complex nuclear models. It would be desirable to do a more thorough investigation of how the discovered 
symmetries affect microscopic nuclear models. However, it should not be interpreted that the ideas presented here interpret nuclei in 
respect of a crystalline structure of the clusters. Instead, they display a number of symmetries that have a big impact on how nuclei 
are structured. These symmetries may also be useful for group theory approaches to the distorted HO's energy level scheme. 
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