# Observations on Ternary Quadratic Diophantine Equation $8\left(x^{2}+y^{2}\right)-15 x y+7 x+7 y+49=40 z^{2}$ <br> C.Saranya ${ }^{1}$, R.Salini ${ }^{2}$ <br> ${ }^{1}$ AssistantProfessor, ${ }^{2} P G$ student, $P G$ and Research Department of Mathematics, Cauvery College for Women (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India 

Abstract: The Ternary Quadratic Diophantine Equation is given by $8\left(x^{2}+y^{2}\right)-15 x y+7 x+7 y+49=40 z^{2}$.
Number of non-zero distinct integer solutions. Some interesting relations among the solutions and the way of factorization, along with the illusion of non-zero distinct integer solutions to the above equations are obtained.
Keywords: Diophantine equation, Integral solutions, Quadratic equation with three unknowns, Ternary equation.

## I. INTRODUCTION

Diophantine equation have provoked the interest of different mathematicians. It is simple to solve Diophantine equations with a degree greater than three by reducing them to equations degree 2 or 3 . In [1-3], hypothesis of numbers is talked about. Diophantine quadratic equations are discussed in [5,6, and 12]. In [4,7-11] cubic, biquadratic and higher order equations are considered for its integer solutions
This correspondence deals with one more attracting ternary quadratic equation addressing a non-homogeneous cone for its infinitely non-zero integer points. In like, manner, a couple of fascinating relations among the arrangements are correlated.

## II. NOTATIONS

$T_{8, n} \quad=$ Octagonal number if rank ' $n$ '.
$T_{10, n}=$ Decagonal number of rank ' n '.
$T_{18, n}=$ Octadecagonal number of rank ' n '.
$T_{22, n}=$ Icosidigonal number of rank ' n '.
$T_{26, n}=$ Icosihexagonal number of rank ' n '.
$T_{28, n}=$ Icosioctagonal number of rank ' n '
$G n o_{n}=$ Gnomonic number of rank ' n '.

## III. METHOD OF ANALYSIS

The ternary quadratic Diophantine equation for its non-zero integral solution is given by
$8\left(x^{2}+y^{2}\right)-15 x y+7 x+7 y+49=40 z^{2}(1)$
The replacement of linear transformations $x=u+v$ and $y=u-v(2)$
in (1) we get,
$(u+7)^{2}+31 v^{2}=40 z^{2}(3)$
Below are four examples of distinct non-zero integer solutions to (1).

## PATTERN: 1

Assume

$$
z=z(a, b)=a^{2}+31 b^{2}(4
$$

wherein $(a, b)$ is a pair of non-zero integers.

$$
\begin{equation*}
40=(3+i \sqrt{31})(3-i \sqrt{31}) \tag{5}
\end{equation*}
$$

Using (4)and (5) in (3), by the method of factorization,

$$
((u+7)+i \sqrt{31} v)((u+7)-i \sqrt{31} v)=(3+i \sqrt{31})(3-i \sqrt{31})\left[(a+i \sqrt{31} b)^{2}(a-i \sqrt{31} b)^{2}\right]
$$

When we compare real and imaginary components and put like terms together, we get

$$
\begin{aligned}
& u=u(a, b)=3 a^{2}-93 b^{2}-62 a b-7 \\
& v=v(a, b)=a^{2}-31 b^{2}+6 a b
\end{aligned}
$$

The corresponding integer solutions of equation (1) are given by using the values of $u \& v$ in equation (2).

$$
\begin{aligned}
& x=x(a, b)=4 a^{2}-124 b^{2}-56 a b-7 \\
& y=y(a, b)=2 a^{2}-62 b^{2}-68 a b-7 \\
& z=z(a, b)=a^{2}+31 b^{2}
\end{aligned}
$$

OBSERVATIONS:

1. $x(a, a)-y(a, a)+z(a, a)+4 T_{10, a} \equiv 0(\bmod 12)$
2. $y(1,1)-x(1,1)-z(1,1)$ is a perfect square.
3. $x(a, 1)-y(a, 1)+z(a, 1)-T_{8, a}-7 G n o_{a} \equiv 0(\bmod 24)$
4. $x(a, a)-y(a, a)+4 T_{26, a} \equiv 0(\bmod 44)$
5. $x(a, a)-y(a, a)-z(a, a \cdot)+10 T_{18, a} \equiv 0(\bmod 70)$

## PATTERN:2

Consider (5), we write 40 as
$40=\frac{(19+i 3 \sqrt{31})(19-i 3 \sqrt{31})}{16}$
The corresponding integer solutions of equation (1) are given by using the values of $u \& v$ in equation (2).
$x=x(A, B)=88 A^{2}-2728 B^{2}-592 A B-7$
$y=y(A, B)=64 A^{2}-1984 B^{2}-896 A B-7$
$z=z(A, B)=16 A^{2}+496 B^{2}$

## OBSERVATIONS:

1. $x(1,1)-y(1,1)+z(1,1)$ is a nasty number
2. $y(A, A)-x(A, A)-32 T_{28, A} \equiv 0(\bmod 384)$
3. $x(A, A)-y(A, A)+z(A, A)-8 T_{26, A} \equiv 0(\bmod 88)$
4. $x(A, A)-y(A, A)-z(A, A)+116 T_{18, A} \equiv 0(\bmod 812)$
5. $x(A, 1)-y(A, 1)-2 T_{26, A}-163 G n o_{A} \equiv 0(\bmod 581)$

## PATTERN: 3

Consider(5),we write 40 as,

$$
\begin{equation*}
40=\frac{(7+i 9 \sqrt{31})(7-i 9 \sqrt{31})}{64} \tag{8}
\end{equation*}
$$

The corresponding integer solutions of equation (1) are given by using the values of $u \& v$ in equation (2)
$x=x(A, B)=128 A^{2}-3968 B^{2}-4352 A B-7$
$y=y(A, B)=-16 A^{2}+496 B^{2}-4576 A B-7$
$z=z(A, B)=64 A^{2}+1984 B^{2}$

## OBSERVATIONS:

1. $y(1,1)-x(1,1)$ is a perfect square.
2. $x(A, A)-y(A, A)+z(A, A)+256 T_{18, A} \equiv 0(\bmod 1792)$
3. $x(A, 1)-y(A, 1)-12 T_{26, A}-178$ Gno $_{A} \equiv 0(\bmod 4286)$
4. $x(A, A)-y(A, A)+1024 T_{10, A} \equiv 0(\bmod 3072)$
5. $x(A, A)-y(A, A)-z(A, A)+512 T_{26, A} \equiv 0(\bmod 5632)$

## PATTERN: 4

Consider(5),we write 40 as

$$
\begin{equation*}
40=\frac{(63+i \sqrt{31})(63-i \sqrt{31})}{100} \tag{9}
\end{equation*}
$$

The corresponding integer solutions of equation (1) are given by using the values of $u \& v$ in equation (2).

$$
\begin{aligned}
& x=x(A, B)=640 A^{2}-19840 B^{2}+640 A B-7 \\
& y=y(A, B)=620 A^{2}-19220 B^{2}-1880 A B-7 \\
& z=z(A, B)=100 A^{2}+3100 B^{2}
\end{aligned}
$$

OBSERVATIONS:

1. $x(A, A)-y(A, A)+z(A, A)-640 T_{18, A} \equiv 0(\bmod 4480)$
2. $x(A, A)-y(A, A)-160 T_{26, A} \equiv 0(\bmod 1760)$
3. $x(A, 1)-y(A, 1)-z(A, 1)+10 T_{18, A}-1225 G n o_{A} \equiv 0(\bmod 2495)$
4. $x(A, A)-y(A, A)-z(A, A)+128 T_{22, A} \equiv 0(\bmod 1152)$

$$
\text { 5. } x(A, 1)-z(A, 1)-54 T_{22, A}-563 G n o_{A} \equiv 0(\bmod 22384)
$$

## IV. CONCLUSION

Four distinct patterns of non-zero distinct integer solutions to the non-homogeneous cone given by are presented in this paper. To finish up, one might look for different examples of non-zero number unmistakable arrangements and their relating properties for different decisions of ternary quadratic Diophantine conditions.

## REFERENCES

[1] Carmichael, R.D., The theory of numbers and Diophantine Analysis, Dover Publications,New York, 1959.
[2] Dickson L.E, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York,1952.
[3] Mordell. L.J, Diophantine equations, Academic Press,London, 1969 Telang, S.G., Number theory, Tata McGraw Hill publishing company, New Delhi, 1996.
[4] Gopalan.M.A., Vidhyalakshmi.S and Umarani.J., "On ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$ ", Sch.J. Eng. Tech. 2(2A); 108-112,2014.
[5] Janaki.G and Saranya.C., Observations on the Ternary Quadratic Diophantine Equation $6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2}$, International Journal of Innovative Research in Science, Engineering and Technology, Vol-5, Issue-2, Pg.no: 2060-2065, Feb 2016.
[6] Janaki.G and Vidhya.S., On the integer solutions of thehomogeneous biquadratic diophantine equation $x^{4}-y^{4}=82\left(z^{2}-w^{2}\right) p^{2}$, International Journal of Engineering Science and Computing, Vol. 6, Issue 6, pp.7275-7278, June, 2016.
[7] Gopalan.M.A and Janaki.G, Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y=2\left(z^{2}-w^{2}\right) p^{3}\right.$, Impact J.Sci.,Tech., 4(1), 97-102, 2010.
[8] Janaki.G and Saranya.P., On the ternary Cubic diophantineequation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research- online, Vol 5, Issue 3, Pg.No:227-229, March 2016.
[9] Janaki.G and Saranya.C., Integral Solutions of the non-homogeneous heptic equation with five unknowns $5\left(x^{3}-y^{3}\right)-7\left(x^{2}+y^{2}\right)+4\left(z^{3}-w^{3}+3 w z-x y+1\right)=972 p^{7}$, International Journal of Engineering Science and Computing, Vol. 6, Issue 5, pp.5347-5349, May, 2016.
[10] Janaki.G and Saranya.C., Integral Solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, International Research Journal of Engineering and Technology, Vol. 4, Issue 3, pp.665-669, March, 2017.
[11] Janaki.G and Saranya.C., Integral Solutions of the homogeneous biquadratic diophantine equation $3\left(x^{4}-y^{4}\right)-2 x y\left(x^{2}-y^{2}\right)=972(z+w) p^{3}$, International Journal for Research in Applied Science and Engineering Technology, Vol. 5, Issue 8, pp.1123-1127, Aug 2017.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET


IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

## INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

