

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 12 Issue: III Month of publication: March 2024 DOI: https://doi.org/10.22214/ijraset.2024.58886

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Observations on Ternary Quadratic Diophantine Equation $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$

C. Saranya¹, M. Janani²

¹Assistant Professor, ²PG Student, PG and Research Department of Mathematics, Cauvery College for Women (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

Abstract: The Ternary Quadratic Diophantine Equation $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$ is analyzed for its infinite number of non-zero integral solutions. Four interesting patterns satisfying the cone are identified. There are a few interesting connections between the solutions and some unique number patterns.

Keywords: Diophantine equation, Integral solutions, Quadratic equation with three unknowns, Ternary equation.

I. INTRODUCTION

Diophantine equations have stimulated the interest of various mathematicians. Diophantine equations with higher degree greater than three can be reduced in to equations of degree 2 or 3 and it can be easily solved. In [1-3], theory of numbers is discussed. In [5,6 & 12], quadratic Diophantine equations are discussed. In [4, 7-11], cubic, biquadratic and higher order equations are considered for its integral solutions.

This communication concerns with yet another interesting ternary quadratic equation $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$ representing a non-homogeneous cone is determined for its infinitely many non-zero integral points. Likewise, a few interesting relations among the solutions are analyzed.

II. NOTATIONS

 $T_{6,n}$ = Hexgonal number of rank 'n'.

 $T_{8,n}$ = Octogonal number of rank 'n'.

 $T_{10,n}$ = Decagonal number of rank 'n'.

 $T_{14,n}$ = Tetradecogonal number of rank 'n'.

 $T_{16,n}$ = Hexadecagonal number of rank 'n'.

 $T_{18,n}$ = Octadecagonal number of rank 'n'.

 $T_{22.n}$ = Icosidigonal number of rank 'n'.

 $T_{24 n}$ = Icositetragonal number of rank 'n'.

 $T_{26.n}$ = Icosihexagonal number of rank 'n'.

 Gno_n = Gnomonic number rank 'n'.

III. METHOD OF ANALYSIS

(1)

The ternary quadratic diophantine equation to be tackled for its non-zero integral solution is

 $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$

using the linear transformations

x = u + v and y = u - v

in (1) leads to,

We illustrate below four different patterns of non-zero distinct integer solutions to (1)

(2)

(3)

 $(u+2)^2 + 47v^2 = 56z^2$

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

A. Pattern: 1

and write

Assume
$$z = z(a,b) = a^2 + 47b^2$$

where a and b are non-zero integers.

$$56 = (3 + i\sqrt{47})(3 - i\sqrt{47})$$

(5)

(7)

(4)

Using (4) and (5) in (3), and using factorization method,

$$\left((u+2)+i\sqrt{47}v\right)\left((u+2)-i\sqrt{47}v\right) = (3+i\sqrt{47})(3-i\sqrt{47})\left[\left(a+i\sqrt{47}b\right)^{2}\left(a-i\sqrt{47}b\right)^{2}\right]$$
(6)

Equating the like terms and comparing real and imaginary parts, we get

$$u = u(a,b) = 3a^{2} - 141b^{2} - 94ab - 2$$
$$v = v(a,b) = a^{2} - 47b^{2} + 60ab$$

Substituting the above values of u & v in equation (2), the corresponding integer solutions of (1) are given by

$$x = x(a,b) = 4a^{2} - 188b^{2} - 88ab - 2$$

$$y = y(a,b) = 2a^{2} - 94b^{2} - 100ab - 2$$

$$z = z(a,b) = a^{2} + 47b^{2}$$

Observations

- 1. $x(a,a) y(a,a) + z(a,a) + 4T_{18,a} \equiv 0 \pmod{28}$
- 2. 2y(1,1) 2x(1,1) 2z(1,1) is a perfect square.
- 3. $y(a,a) + z(a,a) x(a,a) 32T_{10,a} \equiv 0 \pmod{96}$
- 4. $y(a,a) x(a,a) 8T_{22,a} \equiv 0 \pmod{72}$
- 5. $x(a,1) y(a,1) + z(a,1) T_{8,a} 7Gno_a \equiv 0 \pmod{40}$
- 6. y(1,1)-x(1,1) is a duck number

B. Pattern: 2

We substitute (5) with 56 as

$$56 = \frac{(29 + i5\sqrt{47})(29 - i5\sqrt{47})}{36}$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are Gotten as

 $x = x(A, B) = 204A^{2} - 9588B^{2} - 2472AB - 2$ $y = y(A, B) = 144A^{2} - 6768B^{2} - 3168AB - 2$ $z = z(A, B) = 36A^{2} + 1692B^{2}$

Observations

- 1. $x(A, A) y(A, A) + z(A, A) + 48T_{16,A} \equiv 0 \pmod{288}$
- 2. $x(A,1) y(A,1) 6T_{22,A} 375Gno_A \equiv 0 \pmod{2445}$
- 3. $x(A, A) y(A, A) + 172T_{26A} \equiv 0 \pmod{1892}$
- 4. $y(A,1) x(A,1) z(A,1) + 16T_{14,A} + 388Gno_A \equiv 0 \pmod{740}$
- 5. Each of the following expressions represents a Duck number

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

votanie 12 15sae 111 mar 2

i.
$$x(1,1) - 2y(1,1)$$

ii. $x(1,1) - 2y(1,1) - z(1,1)$
iii. $-y(1,1) - z(1,1)$

C. Pattern : 3 We substitute (5) with 56 as

$$56 = \frac{(67 + i\sqrt{47})(67 - i\sqrt{47})}{81} \tag{8}$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are gotten as $x = x(A, B) = 612A^2 - 28764B^2 - 360AB - 2$

$$y = y(A, B) = 594A^{2} - 27918B^{2} - 2052AB - 2$$
$$z = z(A, B) = 81A^{2} + 38078B^{2}$$

Observations

- 1. $x(A, A) y(A, A) + z(A, A) 132T_{26,A} 726Gno_A \equiv 0 \pmod{38885}$
- 2. $y(A, A) x(A, A) + 132T_{26,A} \equiv 0 \pmod{1452}$
- 3. $x(A,1) z(A,1) 177T_{8,A} 357Gno_A \equiv 0 \pmod{66487}$
- 4. 4x(1,1) 4y(1,1) is a palindromic number
- 5. z(1,1) x(1,1) y(1,1) is a duck number

D. Pattern: 4

We substitute (5) with 56 as

$$56 = \frac{(83 + i5\sqrt{47})(83 - i5\sqrt{47})}{144}$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are gotten as

$$x = x(A, B) = 1056A^{2} - 49632B^{2} - 3648AB - 2$$

$$y = y(A, B) = 936A^{2} - 43992B^{2} - 7632AB - 2$$

$$z = z(A, B) = 144A^{2} + 6768B^{2}$$

(9)

Observations

- 1. $x(A,1) y(A,1) z(A,1) + 2T_{26,A} 1981Gno_A \equiv 0 \pmod{10427}$
- 2. $x(A,1) y(A,1) 10T_{24,A} 2047Gno_A \equiv 0 \pmod{3593}$
- 3. y(1,1) x(1,1) + z(1,1) is a palindromic number
- 4. y(1,1) x(1,1) is a nasty number.
- 5. y(1,1) z(1,1) 2x(1,1) is a duck number.

IV. CONCLUSION

This paper discusses four distinct patterns of non-zero distinct integer solutions to the non-homogeneous cone given by $12(x^2 + y^2) - 23xy + 2x + 2y - 4 = 56z^2$. To conclude, one may search for other patterns of solutions and their corresponding properties.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

REFERENCES

- [1] Carmichael, R.D., The theory of numbers and Diophantine Analysis, Dover Publications, New York, 1959.
- [2] Dickson L.E, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York, 1952.
- [3] Mordell. L.J, Diophantine equations, Academic Press, London, 1969 Telang, S.G., Number theory, Tata McGraw Hill publishing company, New Delhi, 1996.
- [4] Gopalan.M.A and Janaki.G, Integral solutions of $(x^2 y^2)(3x^2 + 3y^2 2xy = 2(z^2 w^2)p^3)$, Impact J.Sci., Tech., 4(1), 97-102, 2010.
- [5] Gopalan. M.A., Vidhyalakshmi.S and Umarani.J., On ternary Quadratic Diophantine equation $6(x^2 + y^2) 8xy = 21z^2$, Sch.J. Eng. Tech. 2(2A); 108-112.2014
- [6] Janaki.G and Saranya.C., Observations on the Ternary Quadratic Diophantine Equation $6(x^2 + y^2) 11xy + 3x + 3y + 9 = 72z^2$, International Journal of Innovative Research in Science, Engineering and Technology, Vol-5, Issue-2, Pg.no: 2060-2065, Feb 2016.
- [7] Janaki.G and Saranya.P., On the ternary Cubic Diophantine equation $5(x^2 + y^2) 6xy + 4(x + y) + 4 = 40z^3$, International Journal of Science and Research-online, Vol 5, Issue 3, Pg.No:227-229, March 2016.
- [8] Janaki.G and Vidhya.S., On the integer solutions of the homogeneous biquadratic diophantine equation $x^4 y^4 = 82(z^2 w^2)p^2$, International Journal of Engineering Science and Computing, Vol. 6, Issue 6, pp.7275-7278, June, 2016.
- [9] Janaki.G and Saranya.C., Integral Solutions of the non-homogeneous heptic equation with five unknowns $5(x^3 y^3) 7(x^2 + y^2) + 4(z^3 w^3 + 3wz xy + 1) = 972 p^7$, International Journal of Engineering Science and Computing, Vol. 6, Issue 5, pp.5347-5349, May, 2016.
- [10] Janaki.G and Saranya.C., Integral Solutions of the ternary cubic equation $3(x^2 + y^2) 4xy + 2(x + y + 1) = 972 z^3$, International Research Journal of Engineering and Technology, Vol. 4, Issue 3, pp.665-669, March, 2017.
- [11] Janaki.G and Saranya.C., Integral Solutions of the homogeneous biquadratic diophantine equation $3(x^4 y^4) 2xy(x^2 y^2) = 972(z+w)p^3$, International Journal for Research in Applied Science and Engineering Technology, Vol. 5, Issue 8, pp.1123-1127, Aug 2017.
- [12] Saranya. C and Kayathri. P., Observations On Ternary Quadratic Equation 3x²+2y²=275z², Advances and Applications in Mathematical Sciences, Vol 21, Issue 3, pp. 1549-1556 January 2022.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)