Observations on Ternary Quadratic Diophantine
 Equation $12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2}$

C. Saranya ${ }^{1}$, M. Janani ${ }^{2}$
${ }^{1}$ Assistant Professor, ${ }^{2}$ PG Student, PG and Research Department of Mathematics, Cauvery College for Women (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

Abstract

The Ternary Quadratic Diophantine Equation $12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2}$ is analyzed for its infinite number of non-zero integral solutions. Four interesting patterns satisfying the cone are identified. There are a few interesting connections between the solutions and some unique number patterns. Keywords: Diophantine equation, Integral solutions, Quadratic equation with three unknowns, Ternary equation.

I. INTRODUCTION

Diophantine equations have stimulated the interest of various mathematicians. Diophantine equations with higher degree greater than three can be reduced in to equations of degree 2 or 3 and it can be easily solved. In [1-3], theory of numbers is discussed. In [5,6 \& 12], quadratic Diophantine equations are discussed. In [4, 7-11], cubic, biquadratic and higher order equations are considered for its integral solutions.
This communication concerns with yet another interesting ternary quadratic equation $12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2}$ representing a non-homogeneous cone is determined for its infinitely many nonzero integral points. Likewise, a few interesting relations among the solutions are analyzed.
$T_{6, n} \quad=$ Hexgonal number of rank ' n '.
$T_{8, n} \quad=$ Octogonal number of rank ' n '.
$T_{10, n}=$ Decagonal number of rank ' n '.
$T_{14, n}=$ Tetradecogonal number of rank ' n '.
$T_{16, n}=$ Hexadecagonal number of rank ' n '.
$T_{18, n}=$ Octadecagonal number of rank ' n '.
$T_{22, n}=$ Icosidigonal number of rank ' n '.
$T_{24, n}=$ Icositetragonal number of rank ' n '.
$T_{26, n}=$ Icosihexagonal number of rank ' n '.
$G n o_{n}=$ Gnomonic number rank ' n '.

III. METHOD OF ANALYSIS

The ternary quadratic diophantine equation to be tackled for its non-zero integral solution is

$$
\begin{equation*}
12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2} \tag{1}
\end{equation*}
$$

using the linear transformations

$$
\begin{equation*}
x=u+v \quad \text { and } y=u-v \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { in (1) leads to, } \quad(u+2)^{2}+47 v^{2}=56 z^{2} \tag{3}
\end{equation*}
$$

We illustrate below four different patterns of non-zero distinct integer solutions to (1)

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 12 Issue III Mar 2024- Available at www.ijraset.com

A. Pattern : 1

Assume $\quad z=z(a, b)=a^{2}+47 b^{2}$
where a and b are non-zero integers.
and write

$$
\begin{equation*}
56=(3+i \sqrt{47})(3-i \sqrt{47}) \tag{5}
\end{equation*}
$$

Using (4) and (5) in (3), and using factorization method,

$$
\begin{equation*}
((u+2)+i \sqrt{47} v)((u+2)-i \sqrt{47} v)=(3+i \sqrt{47})(3-i \sqrt{47})\left[(a+i \sqrt{47} b)^{2}(a-i \sqrt{47} b)^{2}\right] \tag{6}
\end{equation*}
$$

Equating the like terms and comparing real and imaginary parts, we get

$$
\begin{aligned}
& u=u(a, b)=3 a^{2}-141 b^{2}-94 a b-2 \\
& v=v(a, b)=a^{2}-47 b^{2}+60 a b
\end{aligned}
$$

Substituting the above values of $u \& v$ in equation (2), the corresponding integer solutions of (1) are given by

$$
\begin{aligned}
& x=x(a, b)=4 a^{2}-188 b^{2}-88 a b-2 \\
& y=y(a, b)=2 a^{2}-94 b^{2}-100 a b-2 \\
& z=z(a, b)=a^{2}+47 b^{2}
\end{aligned}
$$

Observations

1. $x(a, a)-y(a, a)+z(a, a)+4 T_{18, a} \equiv 0(\bmod 28)$
2. $2 y(1,1)-2 x(1,1)-2 z(1,1)$ is a perfect square.
3. $y(a, a)+z(a, a)-x(a, a)-32 T_{10, a} \equiv 0(\bmod 96)$
4. $y(a, a)-x(a, a)-8 T_{22, a} \equiv 0(\bmod 72)$
5. $x(a, 1)-y(a, 1)+z(a, 1)-T_{8, a}-7 G n o_{a} \equiv 0(\bmod 40)$
6. $y(1,1)-x(1,1)$ is a duck number

B. Pattern : 2

We substitute (5) with 56 as

$$
\begin{equation*}
56=\frac{(29+i 5 \sqrt{47})(29-i 5 \sqrt{47})}{36} \tag{7}
\end{equation*}
$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are Gotten as
$x=x(A, B)=204 A^{2}-9588 B^{2}-2472 A B-2$
$y=y(A, B)=144 A^{2}-6768 B^{2}-3168 A B-2$
$z=z(A, B)=36 A^{2}+1692 B^{2}$

Observations

1. $x(A, A)-y(A, A)+z(A, A)+48 T_{16, A} \equiv 0(\bmod 288)$
2. $x(A, 1)-y(A, 1)-6 T_{22, A}-375 G n o_{A} \equiv 0(\bmod 2445)$
3. $x(A, A)-y(A, A)+172 T_{26, A} \equiv 0(\bmod 1892)$
4. $y(A, 1)-x(A, 1)-z(A, 1)+16 T_{14, A}+388 G n o_{A} \equiv 0(\bmod 740)$
5. Each of the following expressions represents a Duck number

$$
\begin{array}{cl}
\text { i. } & x(1,1)-2 y(1,1) \\
\text { ii. } & x(1,1)-2 y(1,1)-z(1,1) \\
\text { iii. } & -y(1,1)-z(1,1)
\end{array}
$$

C. Pattern : 3

We substitute (5) with 56 as

$$
\begin{equation*}
56=\frac{(67+i \sqrt{47})(67-i \sqrt{47})}{81} \tag{8}
\end{equation*}
$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are gotten as
$x=x(A, B)=612 A^{2}-28764 B^{2}-360 A B-2$
$y=y(A, B)=594 A^{2}-27918 B^{2}-2052 A B-2$
$z=z(A, B)=81 A^{2}+38078 B^{2}$

Observations

1. $x(A, A)-y(A, A)+z(A, A)-132 T_{26, A}-726 G n o_{A} \equiv 0(\bmod 38885)$
2. $y(A, A)-x(A, A)+132 T_{26, A} \equiv 0(\bmod 1452)$
3. $x(A, 1)-z(A, 1)-177 T_{8, A}-357 G n o_{A} \equiv 0(\bmod 66487)$
4. $4 x(1,1)-4 y(1,1)$ is a palindromic number
5. $z(1,1)-x(1,1)-y(1,1)$ is a duck number

D. Pattern : 4

We substitute (5) with 56 as

$$
\begin{equation*}
56=\frac{(83+i 5 \sqrt{47})(83-i 5 \sqrt{47})}{144} \tag{9}
\end{equation*}
$$

Following the methodology introduced over, the relating non-zero particular whole number answers for (1) are gotten as

$$
\begin{aligned}
& x=x(A, B)=1056 A^{2}-49632 B^{2}-3648 A B-2 \\
& y=y(A, B)=936 A^{2}-43992 B^{2}-7632 A B-2 \\
& z=z(A, B)=144 A^{2}+6768 B^{2}
\end{aligned}
$$

Observations

1. $x(A, 1)-y(A, 1)-z(A, 1)+2 T_{26, A}-1981 G n o_{A} \equiv 0(\bmod 10427)$
2. $x(A, 1)-y(A, 1)-10 T_{24, A}-2047 G n o_{A} \equiv 0(\bmod 3593)$
3. $y(1,1)-x(1,1)+z(1,1)$ is a palindromic number
4. $y(1,1)-x(1,1)$ is a nasty number.
5. $y(1,1)-z(1,1)-2 x(1,1)$ is a duck number.

IV. CONCLUSION

This paper discusses four distinct patterns of non-zero distinct integer solutions to the non-homogeneous cone given by $12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y-4=56 z^{2}$. To conclude, one may search for other patterns of solutions and their corresponding properties.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 12 Issue III Mar 2024- Available at www.ijraset.com

REFERENCES

[1] Carmichael, R.D., The theory of numbers and Diophantine Analysis, Dover Publications,New York, 1959.
[2] Dickson L.E, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York,1952.
[3] Mordell. L.J, Diophantine equations, Academic Press,London, 1969 Telang, S.G., Number theory, Tata McGraw Hill publishing company, New Delhi, 1996.
[4] Gopalan.M.A and Janaki.G, Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y=2\left(z^{2}-w^{2}\right) p^{3}\right.$, Impact J.Sci.,Tech., 4(1), 97-102, 2010.
[5] Gopalan. M.A., Vidhyalakshmi.S and Umarani.J., On ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$, Sch.J. Eng. Tech. 2(2A); 108112,2014
[6] Janaki.G and Saranya.C., Observations on the Ternary Quadratic Diophantine Equation $6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2}$, International Journal of Innovative Research in Science, Engineering and Technology, Vol-5, Issue-2, Pg.no: 2060-2065, Feb 2016.
[7] Janaki.G and Saranya.P., On the ternary Cubic Diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research- online, Vol 5, Issue 3, Pg.No:227-229, March 2016.
[8] Janaki.G and Vidhya.S., On the integer solutions of the homogeneous biquadratic diophantine equation $x^{4}-y^{4}=82\left(z^{2}-w^{2}\right) p^{2}$, International Journal of Engineering Science and Computing, Vol. 6, Issue 6, pp.7275-7278, June, 2016.
[9] Janaki.G and Saranya.C., Integral Solutions of the non-homogeneous heptic equation with five unknowns $5\left(x^{3}-y^{3}\right)-7\left(x^{2}+y^{2}\right)+4\left(z^{3}-w^{3}+3 w z-x y+1\right)=972 p^{7}$, International Journal of Engineering Science and Computing, Vol. 6, Issue 5, pp.53475349, May, 2016.
[10] Janaki.G and Saranya.C., Integral Solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, International Research Journal of Engineering and Technology, Vol. 4, Issue 3, pp.665-669, March, 2017.
[11] Janaki.G and Saranya.C., Integral Solutions of the homogeneous biquadratic diophantine equation $3\left(x^{4}-y^{4}\right)-2 x y\left(x^{2}-y^{2}\right)=972(z+w) p^{3}$, International Journal for Research in Applied Science and Engineering Technology, Vol. 5, Issue 8, pp.1123-1127, Aug 2017.
[12] Saranya. C and Kayathri. P., Observations On Ternary Quadratic Equation $3 x^{2}+2 y^{2}=275 z^{2}$, Advances and Applications in Mathematical Sciences, Vol 21, Issue 3, pp. 1549-1556 January 2022.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

