On The Ternary Quadratic Diophantine Equation

$$
x^{2}+14 x y+y^{2}=z^{2}
$$

P. Sangeetha ${ }^{1}$, T. Divyapriya ${ }^{2}$
${ }^{1}$ Assistant Professor, ${ }^{2}$ PG student, PG and Research Department of Mathematics Cauvery College for Women (Autonomous) Trichy-18, India (Affiliated Bharathidasan University)

Abstract

The non-zero unique integer solutions to the quadratic Diophantine equation with three unknowns $x^{2}+14 x y+y^{2}=z^{2}$ are examined. We derive integral solutions in four different patterns. A few intriguing relationships

 between the answers and a few unique polygonal integers are shown.Keywords: Ternary quadratic equation, integral solutions.

I. INTRODUCTION

There is a wide range of ternary quadratic equations. One might refer to [1-8] for a thorough review of numerous issues. These findings inspired us to look for an endless number of non-zero integral solutions to another intriguing ternary quadratic problem provided by $x^{2}+14 x y+y^{2}=z^{2}$ illustrating a cone for figuring out its many non-zero integral points. A few intriguing connections between the solutions are displayed.

II. CONNECTED WORK

$\operatorname{Pr}_{a}=$ Pronic number of the rank ' n '
$G n O_{a}=$ Gnomonic number of rank ' n '
$T_{m, n}=$ Polygonal number of rank ' n ' with sides ' m '

III. METHODOLOGY

The ternary quadratic Diophantine equation to be solved for its non-zero integral solutions is,

$$
x^{2}+14 x y+y^{2}=z^{2}
$$

(1) Replacement of
linear transformations
$x=\alpha+\beta$ and $y=\alpha-\beta$
(1) results in
$16 \alpha^{2}-12 \beta^{2}=z^{2}$
We present below different patterns of solving (3) and thus obtain different choices of integer solutions of (1)
A. Pattern: 1

Assume, $z=z(a, b)=16 a^{2}-12 b^{2}$
Where a and b are non-zero integers.
Substitute (4) in (3) we get,

$$
\begin{equation*}
\left(4 \alpha+\sqrt{12} \beta^{2}\right)\left(4 \alpha-\sqrt{12} \beta^{2}\right)=(4 a+\sqrt{12} b)^{2}(4 a-\sqrt{12} b)^{2} \tag{5}
\end{equation*}
$$

Equating rational and irrational terms we get,

$$
\begin{aligned}
& \alpha=\frac{1}{4}\left[16 a^{2}+12 b^{2}\right] \\
& \beta=8 a b
\end{aligned}
$$

Replacing the preceding variables of α and β in equation (2), the equivalent answers to (1) are provided by
$x=x(a, b)=4 a^{2}+3 b^{2}+8 a b$
$y=y(a, b)=4 a^{2}+3 b^{2}-8 a b$
$z=z(a, b)=16 a^{2}-12 b^{2}$
Now put $a=4 A$ and $b=4 B$ we get,
$x=64 A^{2}+48 B^{2}+128 A B$
$y=64 A^{2}+48 B^{2}-128 A B$
$z=256 A^{2}-192 B^{2}$

OBSERVATION:

1) $y(A, 2)-x(A, 2)+256 G n o_{A} \equiv 0(\bmod 256)$
2) $2[x(1,1)+y(1,1)+z(1,1)]$ is a Perfect square.
3) $x(A, 2)+y(A, 2)+z(A, 2)-32 T_{26, A}-176 G n o_{A} \equiv 0(\bmod 592)$
4) $z(2 a, a)-x(3 a, 2 a)+88 T_{18, a}+308 G n o_{a} \equiv 0(\bmod 308)$
5) $2 y(A, 1)-x(A, 1)-8 T_{18, A}+164 G n o_{A} \equiv 0(\bmod 116)$
6) $x(A, A+1)-z(A+1, A)-176 T_{14, A}-144 G n o_{A} \equiv 0(\bmod 352)$
B. Pattern: 2

Equation (3) can be written as

$$
\begin{equation*}
16 \alpha^{2}-12 \beta^{2}=z^{2} \times 1 \tag{8}
\end{equation*}
$$

Write 1 as
$1=(7+2 \sqrt{12})(7-2 \sqrt{12})$
By using equation (9) and the value of z , we can write
$(4 \alpha+\sqrt{12} \beta)(4 \alpha-\sqrt{12} \beta)=(4 a+\sqrt{12} b)^{2}(4 a-\sqrt{12} b)^{2}(7+2 \sqrt{12})(7-2 \sqrt{12})$ Equating positive and negative terms we get,
$\alpha=\alpha(a, b)=28 a^{2}+21 b^{2}+48 a b$
$\beta=\beta(a, b)=32 a^{2}+24 b^{2}+56 a b$
Replacing the preceding variables of α and β in equation (2), the equivalent integer answers to (1) are provided by
$x=x(a, b)=60 a^{2}+45 b^{2}+104 a b$
$y=y(a, b)=-4 a^{2}-3 b^{2}-8 a b$
$z=z(a, b)=16 a^{2}-12 b^{2}$

OBSERVATION:

$$
\begin{aligned}
& \text { 1) } \quad y(a, 1)-x(a, 1)+16 T_{10, a}+80 G n o_{a} \equiv 0(\bmod 128) \\
& \text { 2) } \quad z(a, 1)-y(a, 1)-x(a, 1)+40 T_{4, a}+48 G n o_{a} \equiv 0(\bmod 102)
\end{aligned}
$$

3) $9 z(1,1)+2 y(1,1)$ is a nasty number
4) $10 z(a, a)-4 y(a, a)$ is a Perfect square
5) $3 x(a, a)+4 y(a, a)-567 T_{4, a}=0$
6) $\quad x(a, a)-y(a, a)-2 z(a, a)$ is a cubical integer
C. Pattern: 3

Equation (3) can be written as
$z^{2}+12 \beta^{2}=16 \alpha^{2}$
Assume, $\alpha=a^{2}+12 b^{2}$
$16=\frac{(4+i 2 \sqrt{12})(4-i 2 \sqrt{12})}{4}$
In equations (11) and (12) in (10) we get,
$z^{2}+12 \beta^{2}=\frac{(4+i 2 \sqrt{12})(4-i 2 \sqrt{12})}{4}\left(a^{2}+7 b^{2}\right)^{2}$
Equation (13) as,
$(z+i \sqrt{12} \beta)(z-i \sqrt{12} \beta)=\left(\frac{4+i 2 \sqrt{12}}{2}\right)\left(\frac{4-i 2 \sqrt{12}}{2}\right)(a+i \sqrt{12} b)^{2}(a-i \sqrt{12} b)^{2}$ Equating \quad positive \quad and negative terms we get,
$z=z(a, b)=2 a^{2}-24 b^{2}-24 a b$
$\beta=\beta(a, b)=a^{2}-12 b^{2}+4 a b$
Replacing the preceding variables of z and β in equation (2), the equivalent answers to (1) are provided by
$x=x(a, b)=2 a^{2}+4 a b$
$y=y(a, b)=24 b^{2}-4 a b$
$z=z(a, b)=2 a^{2}-24 b^{2}-24 a b$

OBSERVATION:

1) $x(a, 1)-y(a, 1)+z(a, 1)-4 \operatorname{Pr}_{a}+8 G n o_{a} \equiv 0(\bmod 60)$
2) $2 y(1, a)-z(1, a)-48 \operatorname{Pr}_{a}-10 G n o_{a} \equiv 0(\bmod 40)$
3) $x(2 a, a)-y(2 a, a)+88 T_{4, a}=0$
4) $x(1,1)-2 z(1,1)$ is a Perfect square
5) $x(a, a)-y(a, a)+14 T_{4, a}=0$
6) $x(1, a)+z(a, 1)-2 T_{4, a}+10 G n o_{a} \equiv 0(\bmod 32)$
D. Pattern: 4

Equation (3) as, $16 \alpha^{2}-z^{2}=12 \beta^{2}$
Write equation (14) as
$(4 \alpha+z)(4 \alpha-z)=12 \beta \times \beta$
Equation (15) is written in the form of a ratio as

$$
\frac{4 \alpha+z}{\beta}=\frac{12 \beta}{4 \alpha-z}=\frac{p}{q}
$$

This is equivalent to the following two equations

$$
\begin{align*}
& 4 \alpha q+z q-\beta p=0 \tag{16}\\
& 4 \alpha p-z p-12 \beta q=0 \tag{17}
\end{align*}
$$

By using cross-multiplication, we get
$\alpha=\alpha(a, b)=p^{2}+12 q^{2}$
$\beta=\beta(a, b)=8 p q$
$z=z(a, b)=4 p^{2}-48 q^{2}$
Replacing the preceding variables of α and β in equation (2), the equivalent integer answers to (1) are provided by
$x=x(p, q)=p^{2}+12 q^{2}+8 p q$
$y=y(p, q)=p^{2}+12 q^{2}-8 p q$
$z=z(p, q)=4 p^{2}-48 q^{2}$
OBSERVATION:

1) $x(p, p)+y(p, p)+z(p, p)$ is a Perfect square
2) $2 z(1,1)-16 y(1,1)$ is a cubical integer
3) $x(p, p)+y(p, p)+z(p, p)-6 \operatorname{Pr}_{p} \equiv 0(\bmod 30)$
4) $x(p, 1)-y(p, 1)+z(p, 1)-2 T_{6, p}-9 G n o_{p} \equiv 0(\bmod 39)$
5) $\quad x(p, p)+z(p, p)+23 p^{2}=0$
6) $x(2, p)-z(2, p)-60 T_{4, p}-8 G n o_{p} \equiv 0(\bmod 4)$

IV. CONCLUSION

In this paper, We have found an endless number of non-zero distinct integer solutions to the ternary quadratic Diophantine equation $2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}$ To sum up, one can look for other solution patterns and their accompanying attributes.

REFERENCES

[1] Batta. B and Singh. A.N, History of Hindu Mathematics, Asia Publishing House 1938.
[2] Carmichael, R.D., "The Theory of Numbers and Diophantine Analysis", Dover Publications,New York, 1959.
[3] Dickson. L.E., "History of the theory of numbers", Chelsia Publishing Co., Vol.II, New York, 1952.
[4] G. Janaki and C. Saranya, Observations on the ternary quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2}$, International Journal of Innovative Research in Science, Engineering, and Technology 5(2) (2016), 2060-2065.
[5] G. Janaki and S. Vidhya, on the integer solutions of the homogeneous biquadratic Diophantine equation $x^{4}-y^{4}=82\left(z^{2}-w^{2}\right) p^{2}$, International Journal of Engineering Science and Computing 6(6) (2016), 7275-7278.
[6] M. A. Gopalan and G. Janaki, Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-w^{2}\right) p^{2}$, Impact J. Sci. Tech. 4(1) (2010), 97-102.
[7] G. Janaki and P. Saranya, on the ternary cubic Diophantine equation $\left(5 x^{2}-y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research-online 5(3) (2016), 227-229.
[8] G. Janaki and C. Saranya, Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{2}$, International Research Journal of Engineering and Technology 4(3) (2017), 665-669.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

