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Abstract: Wireless Sensor Networks (WSNs) are emerging as a significant area of research due to their potential to 

autonomously monitor physical and environmental conditions. These networks comprise spatially distributed, low-cost sensor 

nodes with limited transmission range, processing capabilities, storage, and energy resources. The primary function of these 

networks is to collect data from various nodes and transmit it to a base station for subsequent processing. WSNs present several 

challenges, including optimal sensor deployment, node localization, base station placement, target node location, energy-aware 

clustering, and data aggregation. Recently, global researchers have been employing a bio-inspired optimization algorithm, 

Particle Swarm Optimization (PSO), to enhance the efficiency of WSNs. This report explores the application of the PSO 

algorithm for optimal sensor deployment in WSNs, contributing to the ongoing efforts to maximize the potential of these 

networks. 

Index Terms: Wireless Sensor Networks (WSNs), Sensor Nodes, Node Localization, Optimal Sensor Deployment, Particle 

Swarm Optimization (PSO), Ant Colony Optimization, Network Efficiency 

 

I. INTRODUCTION 

In the rapidly evolving world of wireless sensor networks (WSNs), the strategic placement of sensor nodes is paramount. It plays a 

pivotal role in enhancing network performance and optimizing resource utilization. This report aims to delve into the complexities 

of optimizing the deployment of wireless sensor nodes, with a particular focus on two advanced algorithms - Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO). 

WSNs are characterized by their distributed nature and inherent resource constraints. These characteristics necessitate the 

development of efficient strategies for node placement. The goal is to ensure comprehensive coverage, maximize energy efficiency, 

and facilitate robust data collection. In this context, PSO and ACO emerge as promising solutions. 

PSO, an algorithm inspired by social behavior and natural phenomena, and ACO, which models the foraging behavior of ants, have 

been recognized for their effectiveness in addressing complex optimization challenges. These challenges are inherent in the 

deployment of WSNs. These algorithms iteratively refine node positions by leveraging the collective intelligence of nodes or agents. 

The objective is to strive toward an optimal solution that balances coverage, connectivity, and energy consumption. 

 
Fig 1: Landscape of Yellowstone National Park 
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This report provides a comprehensive exploration of PSO and ACO methodologies. It aims to elucidate their theoretical 

underpinnings, delve into the intricacies of their algorithms, and highlight their practical implications in the context of WSN 

deployment optimization. The report will also present empirical evaluations and comparative analyses. These will assess the 

efficacy and suitability of PSO and ACO in various deployment scenarios, shedding light on their strengths, limitations, and 

potential avenues for further research. 

 

II. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO), conceptualized by Eberhart and Kennedy in 1995, stands as a population-based optimization 

technique. In this method, particles, representing potential solutions, traverse the problem space by mimicking the movement of the 

current optimum particles. Each particle maintains its coordinates in the problem space along with the best solution (fitness) it has 

attained thus far, termed as pbest. Additionally, PSO tracks another crucial metric: the best value achieved by any particle in the 

swarm, denoted as gbest. Each particle dynamically adjusts its velocity based on its individual flying experience (pbest) and the 

collective experience of the swarm (gbest), aiming to guide the population towards more favorable solution regions. Operating 

within a D-dimensional search space, each particle is akin to a volume-less entity. The manipulation of particles follows a set of 

equations, orchestrating their movement towards optimal solutions. 
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The first part of the equation is the previous velocity of the particle. The second is the “cognition” part, representing the exploiting 

of its own experience, where c1 is an individual factor. And the third is the “social” pan. representing the shared information and 

cooperation among the particles, where c2 is the societal factor. 

 

A. PSO Parameters 

For the proposed method the number of particles is taken as 10 and the learning factor C1= C2= 2. An inertia weight factor is linearly 

reduced as the search proceeds from 0.9 to 0.4. The maximum velocity and maximum iterations are taken as 50 and 300 

respectively. 

 

B. Performance Improvement 

Particle Swarm Optimization (PSO) is known for its quick convergence and consistent efficiency, regardless of the complexity of 

the problem space, such as the number of peaks and dimensions. However, it does face certain challenges, including premature 

convergence and sensitivity to parameter settings, which can lead to local rather than global optimization. As a result, a significant 

amount of research has been dedicated to overcoming these obstacles. Strategies include adapting parameters, enhancing diversity, 

and modifying the algorithm to strengthen PSO’s global optimization abilities and facilitate dynamic adaptation. 

 
Fig 2: Geometric illustration of particle movement in PSO 

 

C. Optimal WSN Deployment 

The Wireless Sensor Network (WSN) conundrum revolves around determining the strategic placement of sensor nodes to achieve 

desired coverage, connectivity, and energy efficiency while minimizing node count. Inadequate sensor coverage results in unnoticed 

events, while dense sensor populations lead to congestion and delays. Optimal WSN deployment ensures quality of service, 

prolonged network lifespan, and cost-effectiveness. Existing PSO solutions for deployment are typically computed centrally, often 

on a base station, to ascertain sensor positions. 
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D. Sensor Coverage 

A sensor positioned at coordinates (X1, Y1) effectively covers another point (X2, Y2) if the Euclidean distance between them 

satisfies the condition: (X1-X2)
2 + (Y1-Y2)

2 ≤ r2, where r represents the sensor's sensing range. The mean value of location points (Xi, 

Yi) for i=1, 2, ..., M is denoted as (mx, my). The sensor node serves as the centroid of the location points it covers, with the sensing 

range r determined by the distance between the sensor node and the farthest location point. Area A is partitioned into R regions, 

each allocated sensor node by minimizing the Euclidean distance between location points and their respective centroids. 

Consequently, Area A is covered by R sensor nodes. Formulating the coverage problem as an optimization task involves 

determining the optimal deployment of R sensors across the set of points P, ensuring comprehensive coverage of every location 

point. 

 

E. Problem Formulation 

The primary aim of this study is to optimize the deployment of sensor nodes in a network. The goal is to minimize the distance 

between adjacent nodes, thereby maximizing network coverage, while concurrently adhering to all constraints.  

 

The following assumptions underpin this study: 

1) All sensor nodes are identical and possess mobility. 

2) It is assumed that the deployed sensor nodes can comprehensively cover the sensing fields. Both the sensing coverage and 

communication coverage of each node are presumed to be circular, devoid of any irregularities. 

3) The design variables in this study are the two-dimensional coordinates of the sensor nodes. 

4) Each sensor node is assumed to cover an equal area of the sensing field. 

 

These assumptions are commonly made in numerous sensor network applications and form the basis of our analysis in this report. 

 

F. Flow Chart 

In the context of wireless sensor networks, the concept of fitness, denoted as (F), is determined by the Euclidean distance between a 

sensor node and its nearest centroid. The calculation of fitness for each particle involves evaluating its proximity to the optimal 

solution. The particle within the swarm that exhibits the lowest fitness is identified as the global best particle, indicating its 

closeness to the optimal solution. The achievement of the swarm is recognized when all particles attain fitness values that are less 

than or equal to the range of the sensor network. 

 

The Particle Swarm Optimization (PSO) process can be outlined as follows: 

1) Initialization: The network information and algorithm parameters, including inertia, weight, learning factor, velocity boundary 

value, and maximum iteration count, are initialized. An array of particles is also initialized with random position and velocity 

vectors. 

2) Fitness Calculation: The fitness for each particle at its current position is calculated by determining the distance to its nearest 

sensor. 

3) Fitness Minimization: The fitness values are minimized with the ideal goal of reaching zero, indicating that the distance 

between points of interest and their nearest sensors falls within the sensor’s sensing range. If a particle’s fitness surpasses the 

current best, it is designated as the best particle for the subsequent move, and its fitness is updated accordingly. 

4) Position and Velocity Adjustment: Each particle’s position and velocity are adjusted based on the calculated fitness. 

5) Position Evaluation: The algorithm determines whether the next position of the particle yields an improvement; if so, the 

particle adopts the new position, otherwise, the algorithm continues with the existing position. 

6) Iterative Process: The process is repeated iteratively until all particles communicate with each other, collectively maximizing 

coverage. 

 

This iterative process propels the optimization of sensor node deployment within the network, aiming towards comprehensive 

coverage and efficient resource utilization. This professional exploration of PSO provides a robust framework for optimizing 

wireless sensor networks, contributing to the advancement of this dynamic field. 
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Fig 3: Flowchart of PSO Algorithm 

 

III. IMPLEMENTING OF PSO TO PYTHON 

The implementation of Particle Swarm Optimization (PSO) in Python involves coding the PSO algorithm using Python 

programming language. This entails defining classes or functions to represent particles, initializing their positions and velocities, 

updating them iteratively based on PSO equations, evaluating fitness functions, and iteratively optimizing the solution until 

convergence. Python offers various libraries and tools such as NumPy and SciPy that facilitate the implementation of PSO and 

enable efficient computation, making it a popular choice for implementing optimization algorithms like PSO. 

 

A. Python Code 

import random 

import numpy as np 

class Particle: 

    def __init__(self, position): 

        self.position = position 

        self.velocity = np.zeros_like(position) 

        self.best_position = position 

        self.best_fitness = float('inf') 

 

def PSO(ObjF, Pop_Size, D, MaxT): 

    swarm_best_position = None 

    swarm_best_fitness = float('inf') 

    particles = [Particle(np.random.uniform(-0.5, 0.5, D)) for _ in range(Pop_Size)] 
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    for particle in particles: 

        fitness = ObjF(particle.position) 

        if fitness < swarm_best_fitness: 

            swarm_best_fitness = fitness 

            swarm_best_position = particle.position 

        particle.best_fitness = fitness 

        particle.best_position = particle.position 

 

    for itr in range(MaxT): 

        for particle in particles: 

            w, c1, c2 = 0.8, 1.2, 1.2 

            r1, r2 = random.random(), random.random() 

            particle.velocity = (w * particle.velocity + 

                                 c1 * r1 * (particle.best_position - particle.position) + 

                                 c2 * r2 * (swarm_best_position - particle.position)) 

            particle.position += particle.velocity 

            fitness = ObjF(particle.position) 

            if fitness < particle.best_fitness: 

                particle.best_fitness = fitness 

                particle.best_position = particle.position 

            if fitness < swarm_best_fitness: 

                swarm_best_fitness = fitness 

                swarm_best_position = particle.position 

 

    return swarm_best_position, swarm_best_fitness 

 

def F1(x): 

    return np.sum(x**2) 

def F2(x): 

    return np.max(np.abs(x)) 

 

Objective_Functions = {'F1': F1, 'F2': F2} 

 

Pop_Size = 100 

MaxT = 100 

D = 2 

 

for funName, ObjF in Objective_Functions.items(): 

    best_position, best_fitness = PSO(ObjF, Pop_Size, D, MaxT) 

    print(f"Running Function = {funName}") 

    print(f"BEST POSITION : {best_position}") 

    print(f"BEST COST : {best_fitness}") 

    print() 

IV. RESULT 

The initial population is created randomly, and the objective function is calculated. The new sequence generation is based on the 

initial sequence illustrated in the following example. Consider the following initial sequence Pibest and Pgbest as follows: 

 Present:   2 6 3 5 4 1 

 Pibest:        6 1 2 5 3 4 

 Pgbest:       5 3 6 4 2 1 
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Assume C1= C2= 2 and rand () =1. Then Pibest is generated by swapping the individuals of a present sequence.  

                 Present: 2 6 3 5 4 1 Swap :( 2, 6) 

                               6 2 3 5 4 1 Swap :( 2, 1) 

                               6 1 3 5 4 2 Swap :( 3, 2) 

                               6 1 2 5 4 3 Swap :( 4, 3) 

Here (2,6) (2,1) (3,2) (4,3) are used for getting Pibest from the present sequence. The Pgbest is generated by swapping the individual of 

a present sequence. 

                 Present: 2 6 3 5 4 1 Swap :( 2, 5)  

                                5 6 3 2 4 1 Swap: (6, 3)  

                                5 3 6 2 4 1 Swap: (2, 4)  

                                5 3 6 2 4 1—Pgbest.  

Hence (2, 5), (6, 3), and (2, 4) are used for getting Pgbest from the present sequence. 

Vid = ω.Vid+ C1*rand()* [Pid – Xid] + C2*rand() [Pgd – Xid] 

Velocity=1*1{(2,6),(2,1),(3,2),(4,3)}+1*0.57{(2,5),(6,3),(2,4)} 

 

The 57% of the change in both parts is considered. Hence the first two changes in both the parts (2,6), (2,1) and (2,5),(6,3) are 

considered. New sequence=present+ velocity=2 6 3 5 4 1+ (2, 6), (2, 1), (2, 5), (6, 3) Hence the sequence generated for the next 

generation is 3 1 6 2 4 5. Similarly for all other particles the new sequences are generated, and the objective function is evaluated 

and is shown in Fig.4  

 
a. Randomly distributed particles 

 

 
b. Particles position after 50 interactions 
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c. Particles position after 90 interactions 

Figs 4: Flowchart of PSO Algorithm 

 

Table and Graph 

 

 
 

 

 
Fig 5: Graph 
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V. ANT COLONY OPTIMIZATION 

A. Introduction 

Ant Colony Optimization (ACO) emerged in the 1990s as a pioneering metaheuristic algorithm inspired by the foraging behavior of 

ants. It was conceptualized by Marco Dorigo and his team, drawing insights from observations of ant colonies' efficient food-

gathering processes. ACO falls within the domain of swarm intelligence, leveraging the collective actions of simple agents to 

address complex optimization problems. Historically, Marco Dorigo, during his tenure at the Free University of Brussels, developed 

the foundational Ant System, an early instance of ACO tailored for solving the Traveling Salesman Problem (TSP). Since its 

inception, ACO has undergone substantial refinement, leading to its widespread adoption across diverse optimization domains. 

At its essence, ACO mimics ants' pheromone trail-laying behavior. Ants deposit pheromones along paths they traverse, with the 

intensity of these trails reflecting path attractiveness. The algorithm iteratively constructs solutions by probabilistically selecting 

components based on both pheromone trails and heuristic information. As iterations progress, paths yielding superior solutions 

accumulate more pheromones, steering subsequent iterations towards increasingly optimal solutions. 

 

B. Key Components of ACO 

1) Pheromone Trails: Representing collective memory guiding exploration. 

2) Heuristic Information: Directing the search towards promising regions of the solution space. 

3) Pheromone Update Rule: Governing pheromone deposition and evaporation, balancing between exploration and exploitation. 

ACO has found application in diverse optimization challenges such as routing, scheduling, and logistics. Its efficacy in handling 

complex, combinatorial problems with irregular structures has made it indispensable in both academic research and industrial 

applications. The success of ACO has spurred further innovation, leading to the development of hybrid and variant algorithms 

tailored to address specific optimization challenges. 

 
Figure AA 

 

In our proposed method, we employ ACO with three paths and twelve "ants" to simulate signal transmission between 

communication towers. The paths represent different signal routes, while the ants symbolize the transmissions sent and received 

within a cycle of time. 
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Figure BA 

 

To simulate our model, we utilized NetLogo, a program capable of running simulations based on predefined code. Our model 

comprises three main components: the nest, food piles, and ants. In our representation, Information Tower 1 corresponds to the nest, 

while the remaining nodes are depicted as food piles with distinct colors. These nodes are positioned approximately in accordance 

with their real-world locations to provide a 1:1 representation of the distances between them. For visual clarity, we provide two 

figures: Figure AA depicting a map of Yellowstone National Park with labeled paths, and Figure BA illustrating the map 

representation within the NetLogo program. Additionally, Figure BB provides a key explaining the representation of each area in 

Figure BA about Figure AA. 

Color Node Type Node 

White Nest Information Tower 1, Point 1 

Cyan Food Pile Point 2 

Sky Blue Food Pile Point 3 

Blue Food Pile Point 4 

Green Food Pile Point 5 

Red Food Pile Point 6 

Orange Food Pile Point 7 

Yellow Food Pile Point 8 

Purple Food Pile Point 9 

Turquoise Food Pile Information Tower 2, Point 10 

Figure BB 

 

The purpose of the simulation is to determine the shortest and most frequently used path among three options: Path L, Path M, and 

Path R, as depicted in Figure AA. The simulation, facilitated by the NetLogo program, employs the nest as a point of origin, with 

ants more inclined to head toward it as they get closer.  
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In operation, the simulation starts with the release of 200 ants randomly into the simulation area. When an ant reaches a food pile, it 

promptly returns to the nest to deposit the food, leaving a trail of pheromones. As ants move, the black background gradually turns 

white, indicating the accumulation of pheromones. The identification of the optimal path relies on two main factors: the time taken 

for pheromones to envelop a path and the direction ants take after reaching Information Tower 2 (Point 10). Due to program 

limitations preventing the existence of two nests, the direction of ants leaving Point 10 is particularly significant in determining the 

optimal path. 

The results of the simulation indicate that as ants reached Point 10, they overwhelmingly headed directly toward Point 5 instead of 

Point 9 (refer to Figure CA). The simulation concluded upon the depletion of food at Point 5, marking a convergence criterion. 

Figure CB demonstrates that none of the ants leaving from Point 10 headed towards Point 4, suggesting that Path M is the most 

optimal route back to the nest. 

In summary, the simulation effectively determines the most efficient path for ant movement, highlighting the practical application of 

ACO in solving optimization problems. 

 
Figure CA 

 

 
Figure CB 
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VI. CONCLUSION 

In conclusion, after a comprehensive analysis of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for the 

crucial task of detecting wildfires using wireless sensor nodes in Yellowstone National Park, it becomes evident that PSO emerges 

as the superior choice.  

PSO showcases remarkable efficacy in optimizing the deployment of sensor nodes, efficiently maximizing the coverage area while 

minimizing energy consumption. Its ability to swiftly converge to optimal solutions, adapt to dynamic environmental changes, and 

mitigate the impact of local optima sets it apart in the context of wildfire detection.  

While ACO demonstrates notable capabilities, particularly in complex routing scenarios, its performance in this specific application 

falls short compared to PSO. The inherent characteristics of PSO, such as its simplicity, scalability, and robustness, make it the 

preferred optimization algorithm for ensuring timely and accurate wildfire detection, thereby significantly enhancing the safety and 

conservation efforts within Yellowstone National Park. 
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