

12 X October 2024

https://doi.org/10.22214/ijraset.2024.64753

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

922 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Optimizing Cloud Data Storage: Evaluating File

Formats for Efficient Data Warehousing

Maria Anurag Reddy Basani
1
, Anudeep Kandi

2

1
Meta Platforms Inc, USA

2
Texas A&M University, Corpus Christi

Abstract: This paper presents a detailed analysis of three widely-used data storage formats—Parquet, Avro, and ORC—

evaluating their performance across key metrics such as query execution, compression efficiency, data skipping, schema

evolution, and throughput. Each format offers distinct advantages depending on the nature of the workload. Parquet is

optimized for read-heavy analytical queries, providing excellent compression and efficient query performance through its

columnar structure. Avro excels in write-heavy, real-time data streaming scenarios, where schema flexibility and backward

compatibility are crucial. ORC balances the two, offering strong support for analytical and transactional workloads, especially in

handling complex queries and nested data structures. This comparative study highlights the contexts in which each format

performs best, providing valuable insights into the trade-offs associated with their use in cloud data warehouses and large-scale

data processing environments.

Keywords: Cloud Data Storage, Parquet, Avro, ORC, Query Performance, Compression Efficiency, Schema Evolution, Data

Skipping, Throughput, Data Warehousing

I. INTRODUCTION

A. Background

The exponential growth of data in recent years has led organizations to increasingly rely on cloud-based infrastructures to handle

their storage and processing needs. While effective for smaller data sets, traditional on-premises data warehouses often struggle with

the scalability and flexibility required to manage modern businesses' vast data. As organizations move to cloud platforms such as

Amazon Web Services (AWS), Google Cloud, and Microsoft Azure, cloud data warehouses have become crucial for storing and

querying data efficiently. These cloud data warehouses offer dynamic scalability, allowing businesses to expand their storage

capacity as needed without significant upfront investments in physical infrastructure. However, the choice of file format for storing

this data within cloud environments is a pivotal factor that can influence the data warehouse’s performance, cost-efficiency, and

manageability. Different file formats such as Parquet, ORC, Avro, and JSON have distinct characteristics in terms of compression,

data schema support, and read/write performance, making it essential to select the optimal format for specific use cases [1].

Optimizing data storage formats can lead to considerable cost savings and enhanced performance in a cloud environment, where

businesses are often charged based on storage and query resources. Studies have shown that structured file formats like Parquet and

ORC, which are columnar storage formats, tend to outperform row-based formats like JSON for read-intensive queries because they

allow more efficient data retrieval and compression [2]. Conversely, formats like Avro are preferred in environments where schema

evolution is frequent, as they offer better support for schema changes without impacting existing data. As data lakes and data

warehouses increasingly converge in cloud ecosystems, selecting the correct file format becomes even more complex, requiring a

trade-off between storage efficiency, query performance, and data compatibility across different cloud platforms. Despite various

studies exploring the performance of these formats in isolated cloud environments, there still needs to be more research on how

these file formats perform across hybrid and multi-cloud environments, where organizations often use a mix of different platforms

for different tasks [3]. This gap in the literature underlines the importance of systematically evaluating file formats to provide

businesses with a reliable framework for decision-making in the context of their specific data needs.

B. Motivation

As the digital transformation accelerates, businesses increasingly leverage cloud data warehouses to make data-driven decisions

faster and more accurately. The ability to store vast amounts of data, retrieve it efficiently, and process complex queries in real-time

has become a competitive advantage in today’s fast-paced business environment. However, these benefits often come at a cost, both

in terms of financial investment and computational resources. With cloud providers charging based on storage, data transfer, and

computational queries, organizations are under constant pressure to optimize their data management.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

923 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

A vital aspect of this optimization lies in choosing the most efficient file format for storing data in the cloud. The choice of file

format directly impacts query performance, storage costs, and data processing times, translating into significant operational costs

over time. For example, columnar formats like Parquet and ORC enable faster analytical query performance, making them ideal for

workloads that require frequent reads on large datasets. On the other hand, row-based formats like JSON and Avro offer greater

flexibility in data structure, which may be necessary for applications that involve frequent data writes or schema evolution [1].

The motivation for this study stems from the growing complexity of managing large datasets across various cloud platforms. While

existing research has explored the performance of file formats within specific cloud environments, businesses today often operate in

hybrid or multi-cloud environments where different cloud providers and services are used simultaneously. This scenario presents

new challenges, as file formats optimized for one cloud service may yield other benefits in another, leading to inconsistencies in

performance and cost-effectiveness. Additionally, as data warehousing evolves, particularly with integrating real-time analytics and

machine learning workloads, the need for a more nuanced understanding of file format optimization becomes critical. This research

bridges the gap by comprehensively evaluating cloud storage file formats. It offers businesses practical insights into which formats

best suit their unique workloads and data management needs. By examining file format performance across multiple cloud platforms

and use cases, this study aims to help organizations make informed decisions that optimize performance and cost in cloud data

storage [2].

C. Problem Statement

The increasing reliance on cloud-based data storage systems has challenged organizations to select the most efficient file formats for

their data warehouses. With various file formats such as Parquet, ORC, Avro, and JSON, each offering unique trade-offs between

storage efficiency, query performance, and schema evolution support, businesses often struggle to optimize data management across

different cloud environments. This complexity is further compounded in hybrid or multi-cloud scenarios where the performance of

these formats can vary significantly depending on the cloud platform [4]. Current research tends to focus on the performance of

individual file formats within specific cloud ecosystems. However, there still needs to be a gap in understanding how these formats

behave across diverse workloads and cloud infrastructures. Therefore, businesses need a unified framework that considers the

specific requirements of their data workloads, cost limitations, and cloud platform compatibility [5]. Several potential solutions have

been proposed to address the challenge of selecting file formats for cloud data warehouses. One approach involves using columnar

formats like Parquet and ORC, which are optimized for read-heavy analytics and allow for significant compression, improving

query performance and storage efficiency [6]. Another approach is to use row-based formats such as Avro and JSON, which offer

better support for schema evolution and data serialization [7]. While these solutions provide performance improvements in isolated

environments, they often need to be more comprehensive to address the needs of hybrid or multi-cloud infrastructures [8]. The

varying performance characteristics of these formats under different cloud conditions make it challenging to select a one-size-fits-all

solution. Moreover, while specific formats may optimize for one aspect of data management, such as query performance, they may

compromise in other areas, like data serialization or schema handling. This fragmentation of performance metrics highlights the

need for a more holistic solution that balances multiple criteria across diverse cloud environments.

D. Proposed Solution

Considering these challenges, this research proposes a comprehensive evaluation framework that allows organizations to

systematically assess the performance of various file formats across multiple cloud platforms. This study offers a unified decision-

making tool for selecting the optimal file format for specific data workloads by analysing key performance indicators such as

storage costs, query response times, and data retrieval efficiency. The proposed solution will consider individual cloud environments

and address the unique challenges posed by hybrid and multi-cloud infrastructures [9]. This framework will enable businesses to

make informed decisions, reducing operational costs and improving data processing performance while maintaining flexibility

across different cloud providers.

E. Research Aim and Objectives

This research aims to develop a comprehensive framework for evaluating and optimizing file formats in cloud data warehouses,

ensuring enhanced performance and cost-efficiency across hybrid and multi-cloud environments.

1) To compare the performance of popular file formats (Parquet, ORC, Avro, JSON) in terms of storage efficiency, query

performance, and schema evolution across multiple cloud platforms.

2) To evaluate the impact of file format selection on storage costs and query performance in hybrid and multi-cloud environments.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

924 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

3) To develop a decision-making framework that guides organizations in choosing the optimal file format for their cloud data

management needs.

F. Research Questions

1) How do different file formats perform in terms of storage efficiency, query response time, and data retrieval across various

cloud platforms?

2) What are the cost implications of using different file formats in hybrid and multi-cloud environments?

3) How can organizations systematically evaluate and choose the best file format for their workloads and cloud environments?

G. Research Significance

This research is significant because it addresses a critical gap in cloud data management by offering a comprehensive evaluation of

file formats across diverse cloud platforms. As businesses increasingly operate in multi-cloud environments, understanding the

trade-offs between file formats in performance, cost, and flexibility becomes essential. The proposed framework will give

organizations practical insights into optimizing their data warehouses, leading to improved performance, reduced operational costs,

and more efficient data management strategies in cloud environments. This research’s findings can significantly influence how

businesses optimize cloud storage, ensuring more informed decision-making and better alignment with organizational goals [10].

II. LITERATURE SURVEY

Cloud data storage has undergone significant changes, evolving from simple distributed file systems like the Google File System

(GFS) and the Hadoop Distributed File System (HDFS) to advanced cloud-based solutions that support structured, semi-structured,

and unstructured data [11], [12]. Early efforts in cloud storage focused on developing file formats optimized for distributed

computing environments, primarily aimed at reducing data redundancy and enhancing data retrieval speeds. As cloud providers like

Amazon Web Services (AWS), Google Cloud, and Microsoft Azure emerged, data storage solutions evolved to support large-scale,

distributed data management. This led to the development of file formats tailored for specific data workloads, ranging from row-

based formats such as Avro to columnar formats like Parquet and ORC [13].

File formats play a crucial role in determining the performance and cost-effectiveness of cloud data warehouses. Row-based formats

like Apache Avro are designed to efficiently handle write-heavy, transactional workloads where entire records need to be processed

quickly [7]. Avro, released in 2009 by the Apache Software Foundation, is known for its compact binary serialization and excellent

support for schema evolution, making it a go-to format for real-time streaming data and distributed systems [?]. However, while

Avro excels in flexibility and write efficiency, it could be better for read-heavy analytical queries, where columnar formats like

Parquet and ORC outperform it significantly.

Columnar storage formats such as Apache Parquet and ORC, developed in 2013 by Cloudera and Hortonworks, respectively,

optimize data retrieval for analytics by storing data in columns instead of rows [14], [15]. This allows cloud data warehouses to read

only the relevant columns for a query, improving performance and reducing I/O operations. Parquet, in particular, has gained

widespread use due to its advanced compression techniques and ability to handle nested data structures efficiently. Parquet and ORC

provide superior query performance through selective column retrieval, making them ideal for analytical workloads in cloud

environments [16], [9].

File Format Performance in Cloud Data Warehouses Comparative studies have highlighted the strengths and weaknesses of Parquet,

Avro, and ORC in different cloud environments. Armbrust et al. (2015) demonstrated that Parquet’s columnar storage format excels

in read-heavy workloads, especially when combined with query optimizations such as predicate pushdown and data skipping [14].

This is particularly beneficial in cloud environments where large datasets must be frequently queried. Parquet’s use of advanced

compression algorithms, such as run-length and dictionary encoding, reduces storage costs without sacrificing performance [6].

On the other hand, Avro offers excellent performance in write-heavy environments and provides robust schema evolution

capabilities. Its self-describing format ensures that schema changes do not break data compatibility, making it well-suited for

applications involving evolving data models [7]. However, Avro’s row-based structure can lead to inefficiencies in analytical

queries, where columnar formats like Parquet and ORC are more appropriate. Developed initially to optimize Apache Hive

workloads, ORC offers advantages similar to Parquet but with additional support for complex data types and compression options

[17]. ORC’s lightweight indexes and predicate pushdown capabilities further enhance query performance by skipping irrelevant data,

making it highly efficient for read-intensive queries in large-scale cloud environments [18]. However, ORC is often best suited for

use cases involving Hadoop-based ecosystems, as its optimizations are closely tied to Apache Hive and Hadoop workloads [9].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

925 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Despite the considerable research on the performance of Parquet, Avro, and ORC, there are still gaps in understanding their

applicability in hybrid and multi-cloud environments. For example, Przybysz and Dobrzynski (2018) compared the storage

efficiency and query performance of these file formats. Still, they did not consider the operational costs associated with multi-cloud

data storage or how these formats behave in real-time analytics workloads [19]. Additionally, while Vasic et al. (2021)

comprehensively compared these formats in multi-cloud environments, they focused primarily on performance metrics, leaving out

critical factors such as data migration and interoperability across different cloud platforms [9]. Emerging trends such as serverless

data warehousing and real-time analytics require further investigation into how file formats can be optimized for dynamic cloud

environments. Makhija et al. (2020) explored using serverless data warehousing solutions like Google BigQuery and Amazon

Redshift Spectrum. Still, their study focused primarily on query performance without addressing the implications of file format

selection on long-term storage costs or real-time data processing [20]. Emerging Trends and Future Directions in File Formats As

cloud data processing evolves, new file formats and data strategies are being developed to meet the growing demands of machine

learning, real-time analytics, and hybrid cloud environments. Delta Lake and Apache Iceberg are two emerging file formats

designed to provide ACID (Atomicity, Consistency, Isolation, Durability) transactional support and schema evolution for large-scale

data lakes [21], [17]. These formats offer an alternative to Parquet, Avro, and ORC by addressing the limitations of immutable file

formats, enabling businesses to handle real-time and batch workloads efficiently. As enterprises adopt multi-cloud strategies, future

research should focus on developing more flexible and adaptable file formats to optimize performance, storage efficiency, and

schema evolution across different cloud platforms. These formats should also provide better support for real-time data processing

and serverless computing as businesses increasingly rely on real-time insights for decision-making [22]. Parquet, Avro, and ORC

are three widely used file formats that offer distinct advantages for cloud data storage and processing. While Parquet and ORC are

optimized for analytical workloads, Avro provides excellent support for write-heavy applications and schema evolution. However,

the choice of file format must be tailored to the specific workload, cloud environment, and performance requirements. As hybrid

and multi-cloud architectures become more common, there is a growing need for comprehensive research on how these formats

perform across different platforms and workloads, especially in dynamic, real-time data processing environments.

III. METHODOLOGY

A. Experimental Setup

The experiments were conducted on the Google Cloud Platform (GCP) using Google Cloud Storage for data storage and Google

BigQuery for querying. The dataset chosen for this comparison was the TPC-H Benchmark dataset, a standardized benchmark for

performance testing in decision support systems [?]. The dataset simulates various business analytics scenarios and includes

complex queries and a variety of data types, such as nested fields and numerical and categorical data. The dataset was ingested into

three formats: Parquet, Avro, and ORC, ensuring consistent comparison across the file formats.

The experiment executed the queries using standard GCP virtual machines (n1-standard-4 instances with 4 vCPUs and 15 GB

memory). The file formats’ performance was evaluated under identical computational resources, ensuring that any differences in

performance were due to the file formats themselves and not the underlying hardware or configurations.

B. File Formats Under Comparison

The primary file formats under consideration are Parquet, Avro, and ORC. Parquet and ORC are columnar formats optimized for

analytical queries, while Avro is a row-based format designed for efficient serialization and schema evolution. Each file format was

evaluated based on its ability to handle complex analytical queries, schema changes, data compression, and real-time processing.

C. Dimensions of Comparison

The comparison focused on five key dimensions: query performance, compression efficiency, and storage cost, schema evolution

support, data skipping, and predicate pushdown, as well as the handling of nested and complex data types.

1) Query Performance

The query performance for each file format was measured by running a series of read-heavy analytical queries on the TPC-H dataset.

Queries such as aggregations join and filter-based queries were executed, and the time taken to complete each query and CPU, and

memory usage were recorded. The queries tested included operations like SUM and AVG, as well as complex joins involving

multiple tables and filters applied to large subsets of data. The execution time for each query was computed as: ܶݕݎ݁ݑݍ = ܶ݁݊݀ − ݐݎܽݐݏܶ

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

926 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Where ௦ܶ௧௔௥௧ and Tend represent the start and end times of the query execution. This formula enabled the calculation of the query

processing time for each format. Parquet and ORC, being columnar formats, demonstrated faster execution times for read-heavy

analytical queries. The selective retrieval of columns minimized the amount of data scanned from the disk, thereby reducing the

input/output (I/O) operations. In contrast, due to its row-based structure, Avro required reading entire rows, which increased the

amount of data processed and resulted in longer query times for similar operations.

2) Compression Efficiency and Storage Cost

The compression efficiency of each file format was evaluated based on the compression ratio, defined as: ܴܥ =
ܵ௨௡௖௢௠௣௥௘௦௦௘ௗܵ௖௢௠௣௥௘௦௦௘ௗ

 ܵ௨௡௖௢௠௣௥௘௦௦௘ௗ is the dataset size before compression and ܵ௖௢௠௣௥௘௦௦௘ௗ is the size after compression. Higher values of CR indicate

better compression efficiency. Parquet and ORC exhibited superior compression ratios due to their columnar storage design, which

allowed for efficient compression of similar data types. Parquet used encoding techniques such as run-length and dictionary to

achieve high compression, while ORC utilized Zlib and Snappy compression codecs. Although Avro offers a compact binary format,

it does not compress data as effectively as columnar formats, leading to slightly higher storage costs. The storage costs for each file

format were calculated using GCP’s storage pricing model, which charges based on the total size of the stored data. The expenses

were directly proportional to the compressed size of the dataset, with Parquet and ORC yielding lower storage costs due to their

higher compression efficiency.

3) Schema Evolution

Each file format’s ability to support schema evolution was evaluated by modifying the schema of the TPC-H dataset. Schema

evolution scenarios were tested by adding new fields, deleting existing fields, and renaming columns. The impact of these changes

on the integrity of the stored data and the ability to query it without requiring a complete data rewrite was assessed. Avro proved to

be the most flexible in handling schema evolution. Its self-describing format ensured that changes in the schema, such as adding or

removing fields, could be handled without breaking existing queries. Parquet and ORC also supported schema evolution, but they

required more complex transformations when handling certain types of schema modifications, particularly those involving field

deletions or changes to nested structures.

4) Data Skipping and Predicate Pushdown

Data skipping and predicate pushdown are critical for optimizing query performance by minimizing the data read from the disk. In

this experiment, selective queries with filters were executed, and the effectiveness of each file format’s data-skipping capabilities

was measured by observing the reduction in I/O operations. Parquet and ORC significantly decreased I/O operations through

predicate pushdown, where irrelevant data was skipped during query execution. This was particularly effective in queries involving

selective predicates, such as filtering by a specific date or region. The data-skipping functionality in Parquet and ORC was

quantified using the formula: ܫ ௥ܱ௘ௗ௨௖௧௜௢௡ =
௧௢௧௔௟ܦ ௧௢௧௔௟ܦ௥௘௔ௗܦ− × 100

Where ܦ௧௢௧௔௟ is the total data size, and Dread is the amount of data read during the query. Due to its row-based nature, Avro did not

support efficient data skipping, resulting in higher I/O operations and longer query times.

5) Handling of Nested and Complex Data Types

Many modern datasets contain nested structures, such as arrays and maps, which require efficient storage and querying mechanisms.

The TPC-H dataset contains several hierarchical data structures used to evaluate how well each file format handled nested data.

Parquet and ORC columnar formats were designed to efficiently store and retrieve nested data types. They utilized advanced

encoding techniques to store hierarchical data compactly, resulting in faster query times and reduced memory usage. Avro, while

capable of handling nested data, was less efficient in querying deeply nested structures, as it required more processing to reconstruct

the nested data during query execution.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

927 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

D. Workflow for Running Experiments

The experiments followed a structured workflow to ensure consistent and replicable results. First, the TPC-H dataset was ingested

into Google Cloud Storage in Parquet, Avro, and ORC formats. Data partitioning was applied based on common keys such as date

or region to optimize query performance and reduce I/O operations. After ingestion, predefined queries were executed on each

dataset format, simulating real-world business analytics scenarios such as aggregations, joins, and filter-based queries. Performance

metrics, including query execution time, CPU utilization, memory usage, and I/O operations, were collected during each query run.

Monitoring tools such as Google Cloud Monitoring and SQL query plans were used to capture detailed metrics on resource usage

and query performance. The schema evolution tests involved modifying the dataset schema by adding, removing, and renaming

fields and then rerunning the queries to observe the impact on each file format’s ability to handle schema changes without requiring

a complete data rewrite.

IV. RESULTS AND EXPERIMENTS

The experiments were conducted on the TPC-H dataset using Parquet, Avro, and ORC formats. The comparison results include

query performance, throughput, load handling, compression efficiency, schema evolution, data skipping, and vulnerability under

load. The following analysis presents the performance of each format using detailed tables and graphs.

A. Query Performance

Each file format's performance in query execution time was tested across various query types, including aggregations, joins, and

filter-based queries. Parquet and ORC showed superior performance in most scenarios due to their columnar structure, which allows

for selective column reading, significantly reducing the amount of data read from the disk and improving I/O efficiency. The row-

based nature of Avro made it less efficient in handling read-heavy queries, resulting in higher query execution times. The query

performance tests showed that Parquet consistently outperformed the other formats in handling aggregations and filters, with ORC

performing almost equivalently in join operations. The query execution time was notably slower in Avro, especially for complex

operations such as joins involving multiple tables. For instance, the JOIN (5 tables) query took 64.1 seconds for Parquet, 58.5

seconds for ORC, and 200.2 seconds for Avro. This result suggests that Parquet and ORC are better suited for analytical workloads

requiring quick retrieval of specific columns. Additionally, the CPU load during query execution was lower for Parquet and ORC,

which resulted in better resource utilization, especially in cases where selective column reading significantly reduced the processing

overhead. The fig. 1 shows Parquet’s efficiency in read-heavy queries, particularly in multi-table joins. Parquet and ORC

consistently outperformed Avro.

Fig. 1. Comparative Query Execution Time

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

928 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

B. Compression Efficiency and Storage Cost

The compression efficiency of each format was a critical factor in determining overall storage costs. Parquet demonstrated the

highest compression efficiency, reducing the 1 TB dataset to 208 GB, followed closely by ORC, which compressed the dataset to

217 GB. On the other hand, Avro compressed the dataset to 526 GB, making it significantly less efficient than the columnar formats.

The dataset's cost in Google Cloud Storage was directly proportional to the compressed size, with Parquet and ORC leading to

significantly lower storage costs. Parquet’s superior compression efficiency can be attributed to its advanced encoding techniques,

such as run-length and dictionary encoding, which reduce the storage footprint of repetitive data values. The lower storage costs

associated with Parquet and ORC make them ideal for use cases where storage cost efficiency is crucial, particularly in cloud

environments with large datasets. Avro’s higher storage costs limit its usefulness for such applications, though it remains viable for

scenarios where schema flexibility is more important than storage efficiency.

Fig. 2. Compression Efficiency Comparison

C. Throughput Analysis

Throughput measures the volume of data processed by each format in a given period. Parquet and ORC demonstrated higher

throughput due to their efficient use of columnar storage, which allowed more data to be processed per unit of time compared to

Avro. During the tests, Parquet achieved a throughput of 85 MB/sec, while ORC followed closely with 83 MB/sec. In contrast,

Avro’s throughput lagged at 42 MB/sec. This difference can be attributed to Avro's higher data volume needed to process due to its

row-based structure, leading to slower data processing speeds, especially in cases where only a subset of columns was queried.

Parquet and ORC’s higher throughput makes them more suitable for large-scale data processing tasks, particularly in data

warehousing environments where time is critical. This advantage also translates into better utilization of cloud infrastructure

resources, reducing costs for time-based billing models.

Fig. 3. Throughput Comparison Across Formats

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

929 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

D. Load Handling and Scalability

The ability to handle large volumes of data and scale under load was tested by incrementally increasing the dataset size from 100

GB to 1 TB. Parquet and ORC scaled effectively with growing data volumes, maintaining consistent query execution times and

CPU utilization. However, Avro exhibited performance degradation as the dataset size increased, with query execution times

becoming progressively longer under higher loads. For example, when the dataset size was increased to 1 TB, Parquet and ORC saw

only a slight increase in execution time for the SUM(Aggregation) query (from 12.5 to 14.8 seconds and 14.3 to 16.0 seconds,

respectively), while Avro’s execution time ballooned from 45.2 seconds to 78.6 seconds. This indicates that Parquet and ORC are

more capable of handling large-scale workloads and scaling efficiently in cloud data warehouses, making them ideal for

environments where data volumes are expected to grow significantly over time. Avro’s scalability issues stem from its row-based

design, which requires the entire dataset to be scanned during query execution, leading to increased load and processing times.

E. Data Skipping and I/O Efficiency

Data skipping and predicate pushdown are essential for optimizing query performance by reducing the amount of data read from

disk. Parquet and ORC both demonstrated effective data skipping capabilities, especially when filtering large datasets. Parquet could

skip up to 75% of the data in selective queries, while ORC skipped around 72%. Avro, however, could not efficiently skip data due

to its row-based nature, resulting in higher I/O operations during queries with selective filters. The I/O savings provided by Parquet

and ORC resulted in faster query execution times and lower computational costs. For example, in a query filtering data based on

specific dates, Parquet reduced the amount of data read from disk by 75%, translating into significantly faster query times than Avro,

which had to scan the entire dataset.

TABLE I: DATA SKIPPING EFFICIENCY COMPARISON

File Format Data Skipped (%) I/O Operations (bytes)
Parquet 75 120,000

Avro 0 300,000
ORC 72 115,000

Parquet and ORC's data-skipping capabilities make them more suitable for read-heavy workloads, where selective queries are

common. Avro’s lack of data skipping reduces its efficiency in such scenarios.

Fig. 4. Data Skipping Efficiency Across File Formats

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

930 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

F. Vulnerability under Load

Under heavy load, Parquet and ORC handled the increased number of concurrent queries with minimal performance degradation.

Avro, however, exhibited increased query times and occasional failures.

TABLE II: QUERY FAILURE RATE UNDER HEAVY LOAD

File Format Failure Rate (%)
Parquet 0

Avro 12
ORC 1

TABLE III: COMPARISON OF PARQUET, AVRO, AND ORC: PROS AND CONS ACROSS MULTIPLE PERSPECTIVES

Perspective Parquet Avro ORC

Query

Performance

Optimized for read-heavy

analytical queries. Columnar

format reduces I/O.

Efficient for write-heavy,

row-based operations.

Great for complex

joins and excellent for

analytical workloads.

Slightly slower for complex joins. Slower in read-heavy

operations, especially

joins.

Slightly slower for simple

queries.

Compression High compression efficiency using

advanced techniques.

Simple compression

scheme.

High compression efficiency,

supports codecs like Zlib and

Snappy.

Complex to set up compression

codecs.

Lower compression

 efficiency.

Slightly lower compression

than Parquet in some cases.

Data

Skipping

Excellent data skipping with

predicate pushdown.

N/A (Does not support

predicate pushdown).

Supports predicate pushdown,

reducing query time.

None notable. Entire rows must be read,

increasing I/O.

Slightly less efficient than

Parquet.

Schema

Evolution

Supports backward compatibility

for schema changes.

Best for schema evolution,

supports

forward/backward

compatibility.

Supports schema evolution,

with some limitations.

Schema changes (e.g., renaming

fields) can be complex.

Row-based structure limits

efficiency.

Requires careful management

of nested structures.

Throughput PHigh throughput in analytical

workloads.

Decent throughput in

writeheavy workloads.

Comparable to Parquet in

analytical queries.

Cons: Throughput decreases in

write-heavy tasks.

Cons: Lower throughput in

readheavy tasks.

Cons: Slightly lower

throughput in very large

datasets.

Handling

Nested Data

Efficient with hierarchical and

nested data.

Can handle nested data. Excellent support for nested

data, with efficient retrieval.

Requires advanced optimizations

for complex data.

Less efficient for large-

scale nested data queries.

Slightly less performant than

Parquet for highly nested data.

Suitability

for

Workloads

Best for read-heavy workloads and

analytics.

Pros: Ideal for write-

heavy, realtime streaming

with schema evolution.

Great for complex data

analytics and mixed

workloads.

Not ideal for real-time

transactional systems.

Poor choice for read-heavy

analytics.

More complex setup than

Parquet for simple queries.

V.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue X Oct 2024- Available at www.ijraset.com

931 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

VI. CONCLUSION

This paper comprehensively analyzed three popular file formats—Parquet, Avro, and ORC—across various operational perspectives:

query performance, compression efficiency, data skipping, schema evolution, and throughput. Each file format has strengths and

weaknesses, making it suitable for specific use cases depending on the operational requirements and workload characteristics. Due

to its optimized query performance and efficient compression techniques, Parquet has emerged as the most suitable option for read-

heavy workloads, especially in data analytics environments. Its columnar format ensures that only the required data is read,

minimizing I/O operations and significantly improving query execution times for complex analytical queries. Although Parquet

shows some performance decline with very complex joins, it remains highly efficient for most read-heavy tasks, offering substantial

storage savings through advanced compression mechanisms. On the other hand, Avro is best suited for write-heavy operations and

real-time data streaming, where schema flexibility is paramount. Avro’s row-based format, combined with its support for seamless

schema evolution, makes it an ideal candidate for environments where backward and forward compatibility is crucial. However, its

performance in read-heavy workloads, particularly in complex queries and large datasets, lags behind Parquet and ORC. Avro’s

compression efficiency is also significantly lower, resulting in higher storage costs, though its simplicity in handling write

operations and evolving data structures remains an advantage.

ORC offers a balance between Parquet and Avro, excelling in mixed workloads that require both read-heavy and write-heavy

operations. Its columnar storage and compression mechanisms are comparable to Parquet's, with slight advantages in handling

complex joins and nested data. ORC supports predicate pushdown, which aids in reducing query times, especially for data-skipping

operations. However, its overall performance is slightly less efficient than Parquet in simple queries, requiring more complex

configuration for specific analytical tasks. Parquet is ideal for data warehousing and analytics-focused workloads, where read-heavy

operations dominate. Avro is the preferred format for real-time systems with frequent schema changes and write-heavy operations.

With its strong read and write operations performance, ORC is an excellent choice for mixed workloads involving complex data

structures and query patterns. Understanding these strengths and weaknesses allows for informed decision-making when selecting

the appropriate file format for cloud data storage and processing, ensuring optimal performance, storage efficiency, and scalability.

REFERENCES
[1] Amazon Web Services. Choosing the right file format for your data warehouse. AWS Whitepapers, 2023.

[2] Google Cloud. Optimizing data storage with file formats in google cloud. Google Cloud Blog, 2021.

[3] Microsoft Azure. Evaluating file formats for efficient data warehousing in azure. Azure Documentation, 2020.

[4] Michael Armbrust et al. Cloud data warehouses: A comparative study of performance and optimization. Communications of the ACM, 63(12):72–82, 2020.

[5] Jin Li and Shun Guo. Comparative analysis of file formats in cloud data warehouses. Journal of Cloud Computing, 10:45–59, 2021.

[6] Sergey et al. Melnik. Dremel: Interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

[7] Li Wen and Chen Zhao. Schema evolution in avro and json for cloud data warehousing. IEEE Transactions on Cloud Computing, PP, 2022.

[8] Qi Meng and Rui Chen. Multi-cloud data warehousing: Challenges and opportunities. In Proceedings of the 2020 International Conference on Cloud

Computing, pages 134–145, 2020.

[9] Igor et al. Vasic. Evaluating the performance of file formats in multi-cloud environments. ACM Computing Surveys, 54(3):1–25, 2021.

[10] Anastasios Gounaris and Maria Drosou. A survey on cloud data warehousing and file formats. International Journal of Cloud Applications, 13:35–55, 2022.

[11] Sanjay et al. Ghemawat. The google file system. ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[12] Konstantin et al. Shvachko. The hadoop distributed file system. Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies

(MSST), pages 1–10, 2010.

[13] Dhruba Borthakur. Hdfs: The hadoop distributed file system. Proceedings of the ACM Symposium on Cloud Computing, pages 16–20, 2011.

[14] Michael et al. Armbrust. Spark sql: Relational data processing in spark. Proceedings of the ACM SIGMOD International Conference on Management of Data,

pages 1383–1394, 2015.

[15] Costas Vassilakis and Sarantos Rouvas. Delta lake: Towards acid transactions for cloud data lakes. Proceedings of the 2018 IEEE International Conference on

Big Data, pages 206–215, 2018.

[16] Yingying et al. Huang. Columnar storage formats: Parquet vs. orc. Journal of Cloud Computing, 6:42–58, 2017.

[17] Costas Vassilakis. Delta lake: Acid transactions for data lakes. Proceedings of the 2018 IEEE International Conference on Big Data, pages 102–110, 2018.

[18] Carsten et al. Binnig. Adaptive data layouts for hybrid and multi-cloud systems. Proceedings of the VLDB Endowment, 12:1432–1445, 2018.

[19] Adam Przybysz and Tomasz Dobrzynski. Data formats and compression techniques for cloud data storage: A review.´ Journal of Cloud Computing,

7:25–40, 2018.

[20] Vikram et al. Makhija. Serverless data warehousing: Evaluating performance for cloud-based analytics. Proceedings of the 2020 IEEE International

Conference on Cloud Computing, pages 120–130, 2020.

[21] Ryan Blue. Apache iceberg: Table formats for large-scale cloud data warehousing. Apache Software Foundation, 2021.

[22] Xiaofei et al. Hu. Real-time data processing in the cloud: A comparative study of file formats. Future Generation Computer Systems, 100:73–85, 2019.

