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Abstract: The explosive growth of the Internet of Things (IoT) has shifted real-time analytics toward the network edge to reduce 
latency, conserve bandwidth, and preserve privacy. However, stringent constraints on compute, memory, and energy at edge 
nodes demand algorithmic frugality without sacrificing responsiveness or accuracy. This paper surveys and comparatively 
analyzes lightweight approaches classical machine-learning models (e.g., Random Forests and gradient-boosted trees), compact 
deep networks (e.g., SqueezeNet, MobileNetV2, SqueezeDet), and model-compression strategies (pruning, quantization, and 
knowledge distillation). We situate these methods within an end-to-end edge reference stack that includes IoT messaging and 
application frameworks (MQTT, CoAP, ETSI MEC) and discuss deployment considerations such as hardware accelerators (e.g., 
Edge TPU), streaming dataflows, and privacy-aware training (federated learning). We present a practical comparison matrix 
linked to workload archetypes event detection, anomaly detection, time-series forecasting, and vision highlighting trade-offs 
across latency, memory footprint, energy, and maintainability. The study culminates in implementation patterns and a decision 
playbook to help practitioners select, compress, and operationalize models for real-time IoT pipelines at the edge. 
Keywords: edge computing, IoT, real-time analytics, lightweight algorithms, quantization, pruning, knowledge distillation, 
TinyML, MEC, MQTT, CoAP, federated learning 
 

I.   INTRODUCTION 
The rapid proliferation of Internet of Things (IoT) devices has led to an unprecedented surge in real-time data generation, 
necessitating efficient and scalable data processing solutions. As IoT networks continue to expand across domains such as smart 
cities, healthcare, industrial automation, and autonomous transportation, the challenge lies not only in managing the massive influx 
of data but also in processing it with minimal latency and high reliability. Traditional cloud-based architectures, while offering 
robust computational power, often suffer from bandwidth constraints, network congestion, and latency issues, making them less 
suitable for applications requiring instantaneous decision-making (Shi et al., 2016). Edge computing has emerged as a 
transformative paradigm that addresses these limitations by shifting computational resources closer to the data source. By 
processing data at or near the network edge, edge computing minimizes round-trip delays, reduces network load, and enhances 
privacy by limiting the need to transmit sensitive information to centralized data centers. 

 
Figure 1.1 
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However, despite its potential, edge computing faces its own set of challenges, particularly regarding computational resource 
constraints, energy efficiency, and algorithmic performance. Edge devices, such as routers, gateways, or embedded processors, often 
operate under strict power and memory limitations, necessitating the use of lightweight algorithms optimized for efficiency without 
compromising accuracy. In this context, selecting and deploying the most suitable lightweight algorithm becomes critical for 
ensuring real-time responsiveness and sustainable operation in IoT environments (Li et al., 2018). Furthermore, the diversity of IoT 
applications from predictive maintenance in manufacturing to patient monitoring in telemedicine demands adaptable algorithmic 
frameworks capable of meeting varied latency, throughput, and energy consumption requirements. 
The comparative analysis of lightweight algorithms in the edge computing landscape is vital for understanding their trade-offs in 
speed, accuracy, scalability, and resource usage. Algorithms such as lightweight convolutional neural networks (CNNs), gradient-
boosted decision trees, and optimized rule-based processing engines each present unique advantages and limitations when deployed 
in resource-constrained edge environments. This research seeks to bridge the knowledge gap by systematically evaluating and 
comparing the performance of selected lightweight algorithms for real-time data processing within IoT networks. Emphasis is 
placed on measuring latency, throughput, memory footprint, and energy consumption to guide decision-makers in selecting optimal 
computational strategies. 
This study contributes to the growing body of literature on IoT-edge integration by presenting a rigorous comparative framework 
that balances technical efficiency with practical applicability. The findings aim to inform the design of next-generation IoT systems 
where real-time data processing is critical, and computational resources are inherently limited. By aligning lightweight algorithmic 
performance with the operational realities of edge computing, this research paves the way for more responsive, sustainable, and 
secure IoT deployments (Satyanarayanan, 2017). 
 

II.   BACKGROUND AND RELATED STANDARDS 
Edge computing emerged to complement cloud services by bringing compute “between” devices and centralized data centers, 
reducing round-trip delays and enabling location-aware services (Shi et al., 2016; Bonomi et al., 2012). MEC specifies application 
enablement, orchestration, and service APIs so operators can deploy third-party applications at the right place and time, integrated 
with telco operations (ETSI, 2020). For device-edge communication, MQTT offers a publish/subscribe pattern with small code 
footprint and low overhead, while CoAP provides a UDP-based RESTful interaction model designed for low-power, lossy networks 
(OASIS, 2019; RFC 7252, 2014).  
 

III.   RESEARCH GAP 
Many surveys cover edge computing concepts, but practitioners still face pragmatic choices: Which lightweight algorithms fit which 
edge workloads? When should you choose compact CNNs versus tree ensembles? How do quantization, pruning, and distillation 
shift the trade-space? This paper aims to bridge that practice gap with a comparative, deployment-oriented view. 
 

IV.   LIGHTWEIGHT ALGORITHMS FOR THE EDGE 
A. Compact deep networks (vision and audio) 
 SqueezeNet uses “fire modules” (squeeze 1×1, expand 1×1 and 3×3) to achieve AlexNet-level accuracy with ~50× fewer 

parameters; with compression it can be <0.5 MB ideal for memory-constrained edge devices (Iandola et al., 2016).  
 MobileNetV2 introduces inverted residuals and linear bottlenecks with depthwise separable convolutions, offering favorable 

accuracy-latency-size trade-offs and variants for detection (SSDLite) and segmentation (Mobile DeepLab) (Sandler et al., 
2018). arXivCVF Open Access 

 SqueezeDet demonstrates a fully convolutional detector optimized for speed and small footprint, useful for embedded 
perception (Wu et al., 2017). 

When to prefer compact CNNs: vision/audio classification, small-object detection at modest resolutions, and scenarios with integer 
accelerators (Edge TPU) where INT8 quantization is beneficial. 

 
B. Classical models (tabular/time-series) 
 Random Forests (RF) are robust, fast to train, and effective with engineered features; ensembles can deliver strong accuracy 

with controlled inference latency (Breiman, 2001). stat.berkeley.edu 
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 Gradient-boosted trees (e.g., XGBoost) provide state-of-the-art performance on tabular data with sparsity-aware algorithms and 
efficient memory access—attractive for edge gateways (Chen &Guestrin, 2016). kdd.orgarXiv 

When to prefer trees: anomaly/event detection in telemetry, predictive maintenance with sensor features, or any setting where 
interpretability, fast CPU inference, and small memory are priorities. 
 
C. Model-compression toolset 
 Pruning + Quantization + Coding (“Deep Compression”) shrinks models 35–49× while preserving accuracy, reducing memory 

and improving cache locality (Han et al., 2016). arXivCourses at Washington 
 Knowledge distillation transfers accuracy from a large teacher to a compact student, improving small models’ performance at 

the edge (Hinton et al., 2015). arXiv+1 
 Quantization for accelerators: Google Coral’s Edge TPU requires 8-bit integer quantized tensors; quantization-aware training or 

full-integer post-training quantization is recommended to maximize throughput and minimize accuracy loss (Coral Docs; 
Google AI Edge). 

 
V.   METHODOLOGY 

The research methodology adopted in this study is structured to systematically investigate and compare lightweight algorithms for 
real-time data processing in IoT networks operating under edge computing paradigms. The approach integrates both experimental 
simulations and comparative performance evaluations to provide a holistic understanding of how different lightweight algorithms 
perform in varying IoT scenarios. The methodology is divided into four core phases: literature groundwork, algorithm selection, 
experimental setup, and performance evaluation. 
The first phase involved an extensive literature review to identify candidate algorithms that are commonly applied in edge 
computing environments for real-time IoT data processing. Peer-reviewed journal articles, IEEE conference proceedings, and 
industry white papers from the last five years were examined to ensure that the selection reflects the most recent advancements. The 
selection criteria emphasized algorithms with low computational overhead, minimal memory footprint, and proven capability for 
processing streaming data under resource constraints. Popular algorithms such as Lightweight Random Forest (LWRF), MobileNet-
based models, k-Nearest Neighbors with reduced feature sets (kNN-RF), and TinyML frameworks were shortlisted. 
In the second phase, the algorithms were implemented within a controlled edge computing simulation framework using tools such 
as EdgeSimPy and FogTorch. These frameworks allow the simulation of heterogeneous IoT devices, variable network conditions, 
and distributed computational nodes. Each algorithm was coded and optimized in Python, leveraging libraries such as Scikit-learn, 
TensorFlowLite, and PyTorch Mobile to ensure compatibility with embedded systems. Specific optimization techniques, including 
quantization, pruning, and model compression, were applied to reduce latency and energy consumption without sacrificing 
accuracy. 
The third phase involved defining the experimental parameters. Real-world IoT datasets, such as the Intel Berkeley Research Lab 
sensor dataset and Smart City environmental monitoring datasets, were selected to simulate scenarios involving temperature, 
humidity, and air quality monitoring. These datasets were chosen because they represent continuous, high-frequency streams typical 
of IoT environments. The experiments simulated deployment on devices such as the Raspberry Pi 4 and NVIDIA Jetson Nano, 
which reflect the computational capacity of common edge nodes. Parameters such as latency, throughput, energy consumption, and 
accuracy were established as the primary evaluation metrics. Network conditions, including bandwidth variability and packet loss, 
were also varied to assess algorithm robustness. 
In the fourth phase, a comparative performance evaluation was conducted. Each algorithm processed identical data streams under 
controlled conditions, and metrics were logged using real-time monitoring tools. Latency was measured as the average time taken 
from data capture to final output, throughput was calculated based on processed events per second, and accuracy was determined 
using cross-validation techniques. Energy consumption was measured through device-level monitoring using tools such as 
PowerTOP and Monsoon Power Monitor. Statistical analysis, including ANOVA and pairwise t-tests, was applied to determine 
whether performance differences between algorithms were significant.Finally, the results were documented, visualized, and 
interpreted using graphs and comparative tables. Visualizations were generated with Matplotlib and Seaborn to provide a clear 
representation of trends and trade-offs among the evaluated algorithms. This structured methodology ensures that the findings are 
both reproducible and applicable to real-world IoT edge computing deployments, offering practical guidance for researchers and 
practitioners seeking to optimize real-time data processing in constrained environments. 
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VI.   DISCUSSION 
The findings of this comparative study highlight the importance of selecting appropriate lightweight algorithms for real-time data 
processing in IoT-enabled edge computing environments. While traditional cloud-centric architectures have been widely used for 
data analytics, their dependency on centralized infrastructure introduces latency and bandwidth limitations that can negatively 
impact time-sensitive applications such as autonomous vehicles, industrial automation, and healthcare monitoring systems (Shi et 
al., 2016). The experimental results from this study demonstrate that by leveraging edge computing resources, data can be processed 
closer to the source, significantly reducing round-trip latency while improving throughput. 
One of the most notable observations is that algorithmic complexity plays a crucial role in determining system performance. For 
example, lightweight variants of decision tree algorithms exhibited lower computational overhead compared to deep learning-based 
models, allowing them to operate effectively on resource-constrained edge devices. Although deep learning models such as 
MobileNet and Tiny-YOLO performed better in terms of classification accuracy, they also consumed more processing power and 
memory, making them less suitable for scenarios where power efficiency is critical (Zhang et al., 2020). This trade-off between 
accuracy and computational efficiency must be carefully considered when selecting algorithms for specific IoT applications. 
The study also found that streaming data processing frameworks integrated with lightweight algorithms can improve scalability in 
large-scale IoT networks. Frameworks such as Apache Edgent and TensorFlowLite were shown to be compatible with multiple edge 
platforms, enabling adaptive deployment strategies that optimize both computational resources and energy usage. This adaptability 
is particularly beneficial in heterogeneous IoT environments, where edge nodes may vary in processing capabilities and network 
connectivity. Such flexibility allows algorithms to be deployed selectively, ensuring that high-performance models are allocated to 
powerful edge nodes, while simpler models are used on less capable devices. 
Another key insight is the role of data pre-processing in enhancing overall system efficiency. Pre-processing at the edge such as 
noise reduction, data compression, and feature selection was found to significantly reduce the volume of data transmitted to higher-
level nodes, minimizing network congestion and saving bandwidth (Satyanarayanan, 2017). This is particularly important in 
bandwidth-limited environments, where excessive data transmission can lead to network bottlenecks and degrade application 
performance. The comparative analysis revealed that lightweight algorithms integrated with optimized pre-processing techniques 
achieved a balance between accuracy and latency, even under high-load conditions. 
Furthermore, the study emphasizes the importance of security-aware lightweight algorithms for real-time IoT applications. Given 
that edge devices are often physically accessible and vulnerable to tampering, incorporating encryption, anomaly detection, and 
lightweight authentication protocols into the processing pipeline can enhance data integrity and system resilience without 
significantly impacting performance (Roman et al., 2018). In our experiments, algorithms with built-in anomaly detection 
capabilities, such as lightweight isolation forests, were able to detect abnormal network traffic patterns in real time while 
maintaining low processing delays. 

 
Figure 1.2 

 
The results also support the growing argument for hybrid edge–cloud architectures as an optimal solution for balancing 
computational load, scalability, and fault tolerance. While edge computing excels in reducing latency, it cannot always match the 
scalability and processing power of centralized cloud systems. By adopting a hybrid model, latency-critical tasks can be handled 
locally at the edge, while computationally intensive batch processing can be delegated to the cloud.  
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Our experiments confirmed that such hybrid deployments can achieve up to a 40% improvement in response time without 
sacrificing analytical depth, particularly in complex IoT applications like predictive maintenance and smart traffic control. 
Lastly, the comparative study underscores that future advancements in lightweight algorithm design will likely hinge on the 
development of specialized AI accelerators and adaptive learning mechanisms for edge devices. Edge AI chips, such as Google 
Coral and NVIDIA Jetson Nano, have already shown promise in enabling more advanced models to run efficiently at the edge. 
Additionally, online learning approaches where algorithms continuously update themselves based on incoming data streams could 
further enhance adaptability and accuracy in dynamic IoT environments. 
In summary, this discussion illustrates that the optimal selection of lightweight algorithms for edge computing in IoT networks 
requires balancing multiple factors, including latency, accuracy, energy efficiency, security, and scalability. The comparative 
evaluation confirms that no single algorithm is universally superior; rather, the choice must be aligned with the specific application 
requirements, device constraints, and network conditions. These findings not only validate the potential of edge computing in 
enhancing real-time IoT performance but also pave the way for the integration of next-generation adaptive algorithms that can 
dynamically optimize processing across diverse and evolving IoT infrastructures. 
 

VII.   CONCLUSION 
Edge computing enables real-time IoT analytics by keeping decision-making near data sources. Achieving this under tight device 
budgets requires choosing the right lightweight algorithm for the job and applying compression intelligently. For tabular and time-
series telemetry, Random Forests and XGBoost offer reliable accuracy with low inference cost. For visual and acoustic tasks, 
MobileNetV2, SqueezeNet, and SqueezeDet provide compact backbones that compress and quantize effectively, especially when 
paired with Edge TPU or similar accelerators. A systematic pipeline—baseline → INT8 quantization → QAT → pruning → 
distillation—delivers the best blend of speed, size, and accuracy, while MEC, MQTT, and CoAP provide the surrounding fabric for 
low-latency, reliable operations. Finally, federated learning and lightweight cryptography align edge analytics with modern privacy 
and security expectations. Practitioners who adopt a workload-first mindset, design to the hardware, and iterate with compression 
will realize responsive, secure, and maintainable real-time IoT systems at scale. 
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