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Abstract: Formula One race strategy optimization has traditionally relied on predefined heuristics and Monte Carlo simulations, 

which are computationally expensive and lack adaptability to live race conditions. While prior works have explored 

reinforcement learning (RL) in other motorsport categories, its application to Formula One strategy remains underdeveloped. 

This research introduces a reinforcement learning framework aimed at dynamically predicting tire compound choices after the 

summer break, addressing the gap in adaptive decision-making for in-race strategic planning. The proposed RL model employs a 

deep recurrent Q-network (DRQN) trained using a Monte Carlo race simulator. The state space incorporates critical race 

parameters such as tire degradation, gaps to competitors, and race progress, while the action space consists of tire compound 

selection and pit stop timing. A reward function, balancing immediate lap performance and long-term finishing position, guides 

the learning process. The model is further enhanced with explainability techniques, including feature importance analysis and 

decision tree-based surrogate models, to improve transparency and trust in automated strategy recommendations. 

 

I.   INTRODUCTION 

Formula One (F1) is a premier class of motorsport, often regarded as its pinnacle, with the average annual cost of running a team 

reaching hundreds of millions of pounds. Teams constantly seek marginal gains in performance by recruiting the best drivers and 

enhancing their cars through cutting-edge engineering. However, once a race begins, teams cannot alter their cars or drivers, making 

race strategy a crucial factor in determining finishing positions. A key component of this strategy is tire selection and pit stop 

timing, which significantly impact race outcomes. 

Currently, teams decide on candidate strategies before a race, attempting to account for various live race scenarios such as safety 

cars, which require cars to slow down due to unsafe track conditions. To evaluate these strategies, teams run Monte Carlo 

simulations, executing millions of race scenarios to estimate their effectiveness. While this approach provides valuable insights, it is 

time-consuming, computationally expensive, and requires predefined strategies, making it challenging to adapt dynamically to live 

race conditions. Moreover, the reasoning behind the selected strategies is not readily interpretable, posing a challenge in trust and 

decision-making. 

The complexity of modern F1 race strategy demands a more efficient, adaptive, and interpretable approach. Traditional methods 

rely on extensive simulations with limited real-time adaptability, making them suboptimal in rapidly evolving race scenarios. Given 

the advancements in artificial intelligence, particularly in reinforcement learning (RL), there is potential to enhance race strategy by 

enabling real-time decision-making based on live data. 

 

II.   LITERATURE SURVEY 

This chapter provides a comprehensive review of existing literature related to race strategy optimization in motorsports, with a 

particular focus on Formula 1 (F1) and related racing series. The increasing availability of data, coupled with advancements in 

computational power and algorithmic techniques, has opened up new avenues for applying data-driven approaches to enhance race 

performance. This survey explores a range of methodologies, including simulation, machine learning, reinforcement learning, and 

game theory, used to model, analyze, and optimize various aspects of race strategy. The ultimate goal is to identify effective 

strategies that minimize race time, maximize finishing position, and provide a competitive advantage. The survey highlights both 

the successes and limitations of current approaches, setting the stage for further research and development in this rapidly evolving 

field. 

 

A. Related Work 

The optimization of race strategies in motorsports, particularly in Formula 1, has been a topic of growing interest in recent years.  
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Early approaches relied heavily on deterministic models and expert knowledge, but the field has rapidly embraced more 

sophisticated techniques from data science and artificial intelligence. 

One common approach is the use of discrete-event simulation [18]. Bekker and Lotz [18] developed a simulation model to evaluate 

different pit stop strategies, demonstrating the potential for improved race outcomes through optimized planning. Heilmeier et al. 

[17] further advanced race simulation by incorporating factors like tire degradation, fuel consumption, and overtaking maneuvers, 

providing a more realistic representation of race dynamics. Later work by Heilmeier et al. [12] incorporated probabilistic effects, 

such as accidents and safety cars, using Monte Carlo methods to account for the inherent uncertainty in racing events. 

The rise of machine learning has significantly impacted the field. Fatima and Johrendt [5] introduced Deep-Racing, an embedded 

deep neural network (EDNN) model, to predict driver rankings and optimal pit stop strategies. Zhao [9] proposed a deep neural 

network (DNN) for predicting the fastest lap time in qualifying sessions, demonstrating the ability of neural networks to learn 

complex patterns from historical data. Hojaji et al. [4] used machine learning to predict sim racing performance from telemetry data, 

identifying key metrics that influence driver performance. More broadly, time series analysis and forecasting techniques have been 

extensively applied to predict various race-related metrics [7, 15]. Malik et al. [7] provide a comprehensive analysis of these 

techniques, while Dama and Sinoquet [15] offer a survey focusing on parametric models for forecasting. Han et al. [14] propose a 

specific time series forecasting model combining deep learning and GARCH modeling for non-stationary series. 

Reinforcement learning (RL) has emerged as a powerful tool for optimizing race strategies in dynamic and uncertain environments. 

Boettinger and Klotz [6] developed an RL-based approach for GT motorsports, specifically for the Nürburgring Nordschleife, 

demonstrating the potential for automating pit stop and refueling decisions. Thomas et al. [11] introduced RSRL, an explainable 

reinforcement learning model for F1 race strategy, which outperformed baseline models and incorporated XAI techniques to 

enhance user understanding. Piccinotti et al. [16] adopted a different RL-based approach, employing online planning algorithms 

based on Monte Carlo Tree Search. 

Game theory provides a framework for modeling strategic interactions between competing drivers. Aguad and Thraves [19] 

developed a game theory model for optimizing pit stop strategies in a two-driver competitive scenario, considering overtaking and 

stochastic events. Heine and Thraves [18] employed dynamic programming to optimize pit stop strategies, presenting both 

deterministic and stochastic models. Paparusso et al. [11, 20] specifically addressed race strategy for hybrid vehicles, taking into 

accountcompetitors actions and regulations. 

Beyond strategy optimization, researchers have also focused on understanding the relative contributions of driver skill and car 

performance. Van Kesteren and Bergkamp [8] used Bayesian analysis to disentangle driver skill and constructor advantage in F1 

race results, finding that the car (constructor) is a significantly larger factor than the driver. Bonomi et al. [10] employed a custom 

Genetic Algorithm for strategy optimization, demonstrating the strength of this approach. Finally, Peng et al. [14] focuses on the 

prediction of car rank, highlighting the uncertainty and complexity of this specific task. 

 

B. Literature Summary 

This literature survey has highlighted the diverse range of approaches being applied to optimize race strategies in motorsports. 

Simulation, machine learning, reinforcement learning, and game theory have all proven to be valuable tools, each with its own 

strengths and limitations. Early work focused on deterministic models and simulation, while more recent research has embraced 

data-driven techniques, particularly deep learning and reinforcement learning, to handle the complexity and uncertainty inherent in 

racing. The incorporation of probabilistic effects and the modeling of competitor behavior are becoming increasingly important, 

reflecting the dynamic and strategic nature of the sport. While significant progress has been made, there remain open challenges, 

including the need for more robust and explainable models, the integration of real-time data streams, and the development of 

cooperative strategies for multi-car teams. Future research will likely focus on addressing these challenges and further refining the 

application of AI and data science to gain a competitive edge in the ever-evolving world of motorsports. 

 

III.   METHODOLOGY 

This chapter details the design and architecture of the project, which aims to develop a system for optimizing Formula 1 race 

strategy, specifically focusing on pit stop decisions. The system uses a machine learning technique called Deep Recurrent Q-

Networks. We present both the high-level system overview and the detailed design of individual components. 

High-Level Design - The overall system architecture follows a typical Reinforcement Learning paradigm. The core components are: 
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Fig 1: High-Level design of DRQN Network 

 

1) Environment: This component simulates the Formula 1 race. It uses historical race data, recorded lap by lap, to represent the 

changing conditions of a race. The environment provides the agent with information about the current state of the race and 

receives actions (whether to make a pit stop) from the agent. It also calculates and returns feedback (rewards) based on how 

good or bad the lap times are, including any time penalties for pit stops. To help the agent, the environment provides not just 

the current state, but also a short history of recent states. 

2) Agent (Decision-Maker): The agent is the decision-making component. It's a type of neural network specifically designed for 

handling sequences of data and making decisions in changing environments. The agent uses a specialized memory component 

(called Long Short-Term Memory) to process the sequence of race states, remembering important events from the past (like 

how the tires have been worn down). The agent predicts how good each possible action (pitting or not pitting) would be at each 

point in the race. 

3) Experience Replay: This component stores the agent's past experiences. Each experience is a record of what the agent saw (the 

sequence of states), what it did (the action), what reward it received, and what happened next. This stored experience allows the 

agent to learn from a wide range of situations, making its learning more stable and effective. 

4) Training Loop: The training process involves the agent repeatedly interacting with the environment. It stores its experiences 

and then learns from those experiences to improve its decision-making. A special "target" network is used to make the training 

process more stable. 

5) Data Preprocessor: This tool is to preprocess and standardize numerical inputs. 

 
Fig 2: Design of DRQN Network 

 

This implementation centers around training a Deep Recurrent Q-Network (DRQN) for a simulated racing strategy. The code 

integrates data processing, environment simulation, recurrent neural network architecture, and a reinforcement learning (RL) 

training loop. Each component is explained in the sections below 
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A. Data Handling and Preprocessing 

The implementation begins with a function that leverages the glob module to gather all CSV file paths from a specified folder, 

enabling batch processing of multiple datasets, such as those representing different racing seasons. Complementing this, a dictionary 

named compound mapping converts qualitative tire compound labels like "HARD", "MEDIUM", and "SOFT" into numerical values 

for subsequent data processing. Central to the design is the Real state class, which transforms individual CSV rows into structured 

state representations of the racing environment. This class encapsulates a range of attributes, including lap details (lap number and 

sector timings), tire information (tire life and the numerically mapped compound), race positioning (current position and time gaps 

to the leader and following cars), environmental conditions (air and track temperatures), and speed metrics. Furthermore, the 

to_array() method within the Race State class converts these attributes into a consistent NumPy array format, ensuring compatibility 

with neural network inputs. 

 

B. Action Definition 

The RaceAction class defines a simplified action space for the simulation by encapsulating two distinct behaviors: NO_PIT, which 

represents the decision to continue racing without stopping, and PIT_STOP, which indicates the choice to make a pit stop—

acknowledging the additional time penalty incurred by such a decision. To facilitate the decision-making process, the class includes 

a static method, get_action_space(), which returns a list of these valid actions. This design ensures that outputs from decision-

making algorithms or models are directly mappable to concrete, pre-defined actions in the racing simulation environment. 

 

C. Environment Definitions 

The Race Environment serves as the foundational setup for simulating a racing session, where each lap is represented by a row in a 

CSV file. The reset() method initializes the environment by setting the lap index to 0 and constructing the initial RaceState from the 

first row, effectively preparing the simulation for a new race. During each simulation step, the step(action) method is invoked to 

retrieve the current lap's data—this includes both the lap time and any additional pit stop time. An "effective lap time" is computed, 

which incorporates a penalty if a PIT_STOP action is chosen, thereby directly affecting the reward calculation; shorter effective lap 

times yield higher rewards as the reward function is designed as an inverse of the lap time. Following these computations, the 

environment advances by incrementing the lap index and updating the state accordingly, and it signals the end of the episode when 

there are no more laps to process. 

 

D. DRQN Model and Training Components 

The DRQN model is built using Keras’ Sequential API through the function build_drqn_model(seq_length, feature_size, 

action_space_size). The model starts with an LSTM layer comprising 64 units to process the sequential state inputs, where the input 

shape is defined by the sequence length and feature size. Following the LSTM, a hidden Dense layer with 64 neurons and ReLU 

activation captures further complexities in the data. The network concludes with an output Dense layer that has as many neurons as 

there are actions in the action space, employing a linear activation function to yield Q-values for each possible action. Finally, the 

model is compiled using the Adam optimizer paired with a mean squared error (MSE) loss function, making it well-suited for 

regression tasks in Q-learning. 

 

E. Training Loop 

The train_drqn function orchestrates the training of the DRQN model across multiple episodes in a sequence-wrapped environment. 

It starts by resetting the environment to produce an initial state sequence and sets up two models: the main DRQN and a target 

network, the latter being periodically updated to match the main model for improved stability. Training proceeds using an epsilon-

greedy strategy where, based on the exploration rate epsilon, the function either selects a random action or chooses the action with 

the highest predicted Q-value. As actions are executed, resulting experiences—comprising the next state, the reward, and a 

termination signal—are stored in a replay buffer. Once enough experiences accumulate, a random batch is sampled and used to 

compute target Q-values: terminal states receive the immediate reward as their target, while non-terminal states include the 

discounted maximum Q-value predicted by the target network. The main model is then updated using this batch, with 

hyperparameters such as the discount factor gamma, batch size, and epsilon decay (which gradually reduces the exploration rate 

down to a minimum value) guiding the training process. Additionally, the target network is synchronized with the main network at 

regular intervals defined by target_update_freq, ensuring that learning remains robust and stable throughout the training period. 
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F. Training Execution and Model Saving 

The implementation iterates over multiple folders, each representing a different racing season (e.g., 2021–2024), to expose the 

model to diverse racing conditions. For every CSV file found within these folders, the environment is reinitialized with the new 

dataset, and the training function is invoked to further train the DRQN on this fresh data.  

This iterative process allows the model to gradually generalize its strategy across various datasets. Once the training on all available 

datasets is complete, the final DRQN model is saved as "drqn_race_strategy_model.h5", making it available for future inference or 

additional training. 

 

IV.   EVALUATIONS AND RESULTS 

The evaluation of the reinforcement learning model was conducted to determine which tire compound the model suggests and at 

which lap based on historical training data spanning from the 2021 season to the mid-season break of 2024. The model was trained 

using race data, including tire degradation rates, weather conditions, track-specific factors, and race incidents such as safety car 

deployments. Once the model was trained, it was tested against unseen race conditions to verify its decision-making accuracy. The 

primary objective was to compare its predicted pit stop strategies with those executed by professional F1 strategists.  

For later seasons, the model’s suggested strategies were evaluated against real-world strategies used by teams in live races. This 

comparison helped assess the alignment of the model’s decision-making process with industry-standard race strategies and identify 

areas where AI-driven approaches could offer potential improvements. Monte Carlo simulations were employed to validate the 

reliability of the predictions, ensuring that the reinforcement learning model could adapt to varying race conditions. 
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Figure 3. Strategy Prediction outputs 

 

V.   CONCLUSION AND FUTURE DIRECTIONS 

Early deterministic models provided a foundational understanding of race dynamics, yet their inability to adapt to real-world 

uncertainties necessitated the evolution toward data-driven techniques. Machine learning, particularly deep learning, has enabled the 

extraction of complex patterns from vast amounts of telemetry and sensor data, thereby enhancing predictive accuracy and 

performance analysis. 

Deep reinforcement learning (DRL) builds on these advancements by introducing an adaptive, interactive element to strategy 

development. DRL models—such as Deep Q-Networks (DQN) and Deep Recurrent Q-Networks (DRQN)—demonstrate significant 

promise in managing the inherent uncertainty and dynamic conditions of racing. By leveraging trial-and-error learning and 

incorporating probabilistic effects, these models can anticipate competitor behavior and adapt strategies in real time, offering a 

distinct competitive edge. It provides a structured framework to analyze both cooperative and adversarial behaviors, enabling teams 

to develop strategies that account for the actions and responses of opponents. 
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