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Abstract: This manuscript presents an academic discussion on the use of mathematical tools for the parametric modeling of 
horizontal road alignments, specifically the Tangent–Spiral–Circular–Spiral–Tangent (TECET) curve. The objective is to show 
how fundamental concepts of calculus and differential geometry—arc length, curvature, Frenet–Serret frame, and Fresnel 
integrals—form the analytical basis for geometric design criteria established in road standards. A piecewise smooth parametric 
model is constructed, using a dimensionless parameter ࢛ ∈ [૙,૚] that maps the total curve length, enabling the evaluation of 
vehicle kinematics at any point of the alignment. The model ensures continuity of position, tangent direction, and curvature (C2 
continuity) at the junctions between spirals and circular arc. An example with data from the SCT (Mexico) is included, 
implemented in GeoGebra to allow dynamic visualization of tangent and acceleration vectors. This work seeks to highlight the 
link between mathematics taught in the early semesters of civil engineering and its concrete application in advanced road design 
projects. 
Keywords: Geometric design of roads; TECET curve; Euler spiral; Fresnel integrals; Frenet–Serret frame; Parametric 
modeling  
 

I. INTRODUCTION 
The geometric design of highways constitutes one of the cornerstones of civil engineering, as it determines fundamental aspects 
such as safety, user comfort, and traffic efficiency. A properly designed highway must not only ensure adequate sight distances and 
curve radii consistent with operating speed, but also smooth transitions that reduce the dynamic effects on vehicles and, 
consequently, the risk of accidents. To achieve these objectives, current regulations in Mexico—particularly the Highway 
Geometric Design Manual [1]—set clear guidelines for the horizontal and vertical alignment of roadways. 
In this context, the transition between straight and curved sections is achieved using compound curves, with the Tangent–Spiral–
Circular–Spiral–Tangent (TECET) configuration being one of the most widely applied worldwide [2]. This scheme integrates 
transition spirals and circular arcs, ensuring continuity in position, direction, and curvature—conditions necessary for proper 
horizontal alignment. In this way, the TECET curve provides a mathematical and geometric solution to the problem of connecting 
tangents with smooth trajectories suitable for traffic at specific design speeds. 
Nevertheless, a deep understanding of these curves requires the use of mathematical tools that civil engineering students typically 
encounter in their early semesters: differential calculus, vector analysis, and analytic geometry. Concepts such as arc length, 
parametrization, Fresnel integrals, and the Frenet–Serret frame constitute the theoretical foundation that allows precise description 
and analysis of the dynamic properties of a roadway trajectory. The aim of this article is, therefore, to highlight the intrinsic 
relationship between these mathematical foundations and the geometric design of highways, by developing a parametric model of 
the TECET curve that can be implemented in interactive visualization software such as GeoGebra, for both academic and 
preliminary design purposes. 

II. BASIC CONCEPTS 
The horizontal alignment of a highway is composed of straight segments (tangents) and curves that connect them in a continuous 
manner. To ensure safety and driving comfort, it is not sufficient to link tangents and circular arcs through intersection points; 
transition curves are required to provide a progressive change in curvature and, consequently, in the lateral acceleration experienced 
by vehicles [1] and [2]. 

 
A. Components of the TECET Curve 
The compound Tangent–Spiral–Circular–Spiral–Tangent (TECET) curve is composed of three main segments: 
1) Entry spiral (TE→EC): connects the initial tangent with the circular arc, gradually increasing curvature from 0 to 1 ܴ௖ൗ . 
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2) Circular arc (EC→CE): defines a trajectory with constant radius Rc. 
3) Exit spiral (CE→ET): progressively reduces curvature from 1 ܴ௖ൗ  to 0 to connect with the final tangent. 

This configuration ensures continuity in position, direction, and curvature—a property known as C² continuity (twice continuously 
differentiable)—which is essential for comfortable driving. 
 
B. Key Parameters 
The geometric parameters that define a TECET curve as showed in Figure 1 are: 
Degree of curvature: ܩ௖ > 0 , which relates to a circular arc radius ܴ௖. 
Radius of the circular arc: 
 

ܴ௖ =
1145.92

௖ܩ
 

(II.B.1) 

 
Length of the transition spiral: ܮ௘ > 0 , calculated to ensure a gradual change in lateral acceleration. 
Length of the circular arc: ܮ௖ > 0. 
 
Total length of the compound curve: 

்ܮ = ௘ܮ2 +  ௖ (II.B.2)ܮ
 
Deflection angle of the circular arc: 

∆௖=
௖ܮ
ܴ௖

 (II.B.3) 

 
Total deflection angle of the curve (angle between tangents): 

∆௧= ௘ߠ2 + ∆௖ (II.B.4) 
with  

௘ߠ =
௘ܮ

2ܴ௖
 (II.B.5) 

 
Where: 
 ௖ = degree of curvatureܩ
ܴ௖ = radius of the circular arc 
௘ܮ  = length of the transition spiral 
௖ܮ  = length of the circular arc 
்ܮ  = total length of the compound curve 
∆௖ = deflection angle of the circular arc 
∆௧ = total deflection angle of the curve 
 ௘ = accumulated rotation angle in each spiralߠ

 
Fig. 1 Curve TECET 
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C. Euler Spiral Parameter (Clothoid Parameter) 
The transition spiral used corresponds to the Clothoid, or Euler spiral, whose fundamental property is that curvature varies linearly 
with the arc length ݏ: 

 

(ݏ)ߢ =
ݏ
 ଶ (II.C.1)ܣ

 
Where de parameter A is defined as: 

ܣ = ඥܴ௖ܮ௘ (II.C.2) 
 

This parameter ensures that over the spiral length ܮ௘   , the curvature reaches the value corresponding to the circular arc. 
Remark: In highway geometric design, the parameter A is commonly referred to as the Clothoid parameter or Euler spiral parameter. 
It establishes the relationship between the spiral length and the curvature of the connecting circular arc and is widely adopted in 
international standards such as [1] and [2]. 

 
III. MATHEMATICAL FORMULATION 

The alignment of the TECET curve can be represented by a continuous parametrization in terms of a dimensionless variable  
ݑ ∈ [0,1], which spans the entire curve length. This formulation allows the trajectory to be treated as a smooth function and enables 
the dynamic evaluation of kinematic quantities associated with vehicle motion. 

 
A. Global Parametrization 
We define the total length of the curve and introduce the dimensionless parameter ݑ: 

 
(ݑ)ݏ = ݑ ∙ ்ܮ , 0 ≤ ݑ ≤ 1 (III.A.1) 

 
Here, ܶܮ represents the total length of the compound curve previously defined as equation (II.B.2), which is composed of two 
transition spirals and a central circular arc. The variable ݑ is a normalized, dimensionless parameter ranging from 0 to 1. Through 
this parametrization, any point along the TECET curve can be uniquely identified by the value of ݑ, with 0 = ݑ corresponding to the 
beginning of the entry spiral and 1 = ݑ corresponding to the end of the exit spiral. 
This formulation allows the arc length ݏ to be expressed as a linear function of ݑ. Consequently, the trajectory can be studied and 
computed in a uniform manner, regardless of the absolute dimensions of the curve, which is especially useful for numerical 
evaluation and visualization in software such as GeoGebra or CAD-based design tools. 

 
B. Entry Spiral (TE→EC) 
The development of the Euler spiral can be expressed in local coordinates through the Fresnel integrals, as defined by [3] and in 
accordance with [4] and [5]: 

(ݑ)ாଵݔ = ܣ ∙ ߨ√ ∙ ܥ ቆ
(ݑ)ݏ
ܣ ∙ ߨ√

ቇ , (ݑ)ாଵݕ = ܣ ∙ ߨ√ ∙ ܵ ቆ
(ݑ)ݏ
ܣ ∙ ߨ√

ቇ   
(III.A.1) 

 
where the Fresnel integrals are given by: 
 

(ݐ)ܥ = න ݏ݋ܿ ቀ
ߨ
2 ∙ ߬

ଶቁ݀߬,
௧

଴
(ݐ)ܵ      = න ݊݅ݏ ቀ

ߨ
2 ∙ ߬

ଶቁ݀߬ 
௧

଴
 

(III.A.2) 

 
These integrals define the Clothoid (Euler spiral) in terms of cumulative oscillatory functions, and they ensure that curvature 
increases linearly with arc length. In practice, the coordinates (1ܧݕ ,1ܧݔ) describe the trajectory of the entry spiral in its local 
reference system, with the scaling governed by the parameter ܣ. This representation is particularly convenient because Fresnel 
integrals are tabulated and implemented in most mathematical software libraries, allowing for efficient numerical evaluation and 
visualization of the spiral segment. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

 2023 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

The importance of using the Fresnel integrals lies in their ability to capture the smooth transition from zero curvature (tangent) to 
the constant curvature of the circular arc, ensuring both mathematical rigor and geometric continuity in highway alignment design. 

 
C. Circular Arc (EC→CE) 
The endpoint of the entry spiral is obtained as: 

௘ܶ =
௘ܮ
ߨ√ܣ

 (III.C.1) 

  
(ܺா , ாܻ) = ൫ݔாଵ( ௘ܶ),ݕாଵ( ௘ܶ)൯ (III.C.2) 

 
The center of the circular arc is then determined by:  

 
 

ைݔ) (ைݕ, = ൫ܺா −ܴ௖ ∙ ,(௘ߠ)݊݅ݏ ாܶ −ܴ௖ ∙  ൯  (III.C.3)(௘ߠ)ݏ݋ܿ
 

The parametric equations of the arc are expressed as: 
 

ߛ = ௘ߠ −
ߨ
2 +

(ݑ)ݏ − ௘ܮ
ܴ௖

 (III.C.4) 

  
(ݑ)஼ଶݔ = ைݔ + ܴ௖ ∙ cos(ߛ) , (ݑ)஼ଶݕ = ைݕ + ܴ௖ ∙ sin(ߛ)   (III.C.5) 

 
 

The circular arc (EC→CE) provides the central portion of the TECET curve and connects the exit of the entry spiral with the 
beginning of the exit spiral. Its radius is constant and equal to , ensuring that the curvature remains fixed during this portion of the 
trajectory. 
Equation (III.C.1) defines the normalized arc-length parameter ܶ݁ that corresponds to the end of the entry spiral, while (III.C.2) 
gives the cartesian coordinates of this transition point. Using this point and the known radius ܴܿ, the coordinates of the arc’s center 
 .can be determined as in (III.C.3) (ܱݕ ,ܱݔ)
Finally, equations (III.C.4) to (III.C.5) define the circular arc parametrically in terms of the global arc-length function (ݑ). The 
trigonometric shift 2/ߨ − ݁ߠ ensures the correct angular orientation of the arc with respect to the tangent and spiral coordinates. 
In summary, this segment guarantees a smooth continuation of the trajectory with constant curvature, allowing the vehicle to 
negotiate the curve under steady lateral acceleration before entering the exit spiral, where curvature decreases back to zero. 

 
D. Exit Spiral (CE→ET) 
The exit spiral is constructed using Fresnel differences. First, we introduce the reduced variable:  

(ݑ)ଷݐ =
(ݑ)ݏ − ௘ܮ) + (௖ܮ

ܣ ∙ ߨ√
 (III.D.1) 

 
 
The local displacements are then expressed as: 
 

∆௫(ݑ) = ܣ ∙ ߨ√ ∙ )ܥൣ ௘ܶ)− ൫ܥ ௘ܶ −  ൯൧ (III.D.2)(ݑ)ଷݐ
  

∆௬(ݑ) = ܣ ∙ ߨ√ ∙ ൣܵ( ௘ܶ) − ܵ൫ ௘ܶ −  ൯൧ (III.D.2)(ݑ)ଷݐ
 
 

Once the reduced variable (ݑ)3ݐ is defined, auxiliary parameters are introduced to express the differentials of the Fresnel integrals in 
the exit spiral: 
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߬low: the lower integration limit in the reduced variable of the exit spiral. It corresponds to the value at the end of the entry spiral and 
ensures curve continuity at the connection point CE. 

 

߬௟௢௪ = −
ܣ

ܴ௖√ߨ
 (III.D.3) 

 
τhigh(u): the variable upper limit depending on the parameter ݑ. It represents the progression of arc length within the exit spiral. 

 

   ߬௛௜௚௛(ݑ) =
(ݑ)ݏ − ௘ܮ) + −(௖ܮ ଶܣ

ܴ௖
ߨ√ܣ

 

(III.D.4) 

 
κshift: the angular shift associated with the accumulated curvature at the CE junction. Its function is to “rotate” the Fresnel integrals 
so that the exit spiral begins with curvature 1/ܴܿ and decays smoothly to zero at ET. 

௦௛௜௙௧ߢ     =
ଶܣ

2ܴ௖ଶ
 (III.D.5) 

Jc(u) and (ݑ)ݏܬ: represent the local coordinate increments obtained from evaluating the Fresnel differences between ߬low and ߬high(u), 
incorporating the rotation by the angle ߢshift. These terms allow the exit spiral to be expressed as an accumulated displacement (Δx, 
Δy) starting from the CE point: 
(ݑ)௖ܬ = ߨ√ܣ ∙ ቂܿݏ݋൫ߢ௦௛௜௙௧൯ ቀܥ൫߬௛௜௚௛൯ − ቁ(௟௢௪߬)ܥ + sin൫ߢ௦௛௜௙௧൯ ቀܵ൫߬௛௜௚௛൯ − ܵ(߬௟௢௪)ቁቃ (III.D.6) 

(ݑ)௦ܬ = ߨ√ܣ ∙ ቂ݊݅ݏ൫ߢ௦௛௜௙௧൯ ቀܥ൫߬௛௜௚௛൯ − ቁ(௟௢௪߬)ܥ − ௦௛௜௙௧൯ߢ൫ݏ݋ܿ ቀܵ൫߬௛௜௚௛൯ − ܵ(߬௟௢௪)ቁቃ (III.D.7) 

  
Finally, by rotating and translating the increments from the endpoint of the circular arc (ܧܥݕ ,ܧܥݔ): 

ߚ = ௘ߠ −
ߨ
2 + ∆௖ (III.D.8) 

  
஼ாݔ) (஼ாݕ, = ைݔ) + ܴ௖ ∙ cos(ߚ), ைݕ) + ܴ௖ ∙  (III.D.9)  ((ߚ)݊݅ݏ

 
The global coordinates of the exit spiral are obtained as: 

(ݑ)ாଷݔ = ஼ாݔ + (ݑ)௖ܬ ∙ ௘ߠ)ݏ݋ܿ + ∆௖)− (ݑ)௦ܬ ∙ ௘ߠ)݊݅ݏ + ∆௖)  (III.D.10) 
  

(ݑ)ாଷݕ = ஼ாݕ + (ݑ)௖ܬ ∙ ௘ߠ)݊݅ݏ + ∆௖) + (ݑ)௦ܬ ∙ ௘ߠ)ݏ݋ܿ + ∆௖)  (III.D.11) 
 

The exit spiral (CE→ET) is mathematically the symmetric counterpart of the entry spiral, but with decreasing curvature. The 
introduction of the parameters ߬low, ߬high(ݑ), and ߢshift ensures that the Fresnel-based formulation remains consistent with the 
curvature accumulated in the preceding circular arc. 
The terms (ݑ) and (ݑ)ݏܬ capture the incremental displacements in local coordinates, while equations (III.D.10) to (III.D.11) rotate 
and translate these displacements into the global coordinate system. This guarantees that the spiral starts with curvature 1/ܴܿ at CE 
and reduces smoothly to zero at ET, thus ensuring 2ܥ continuity of the entire TECET alignment. 
From the perspective of highway design, this formulation is critical for vehicle dynamics: it ensures that lateral acceleration 
diminishes progressively as the driver exits the curve, improving safety and comfort. 

 
E. Composite function 
The global coordinates of the TECET curve can be expressed as a piecewise function: 

 

൫(ݑ)ݕ,(ݑ)ݔ൯ = ቐ
; (ாଵݕ,ாଵݔ) 0 ≤ ݏ ≤ ௘ܮ
; (஼ଶݕ,஼ଶݔ) ௘ܮ < ݏ ≤ ௘ܮ + ௖ܮ
; (ாଷݕ,ாଷݔ) ௘ܮ + ௖ܮ < ݏ ≤ ்ܮ

 
(III.E.1) 
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Equation (III.E.1) unifies the three segments of the TECET curve—entry spiral, circular arc, and exit spiral—into a single global 
representation. 
For 0 ≤ ݏ ≤  where curvature increases linearly from zero ,(ாଵݕ,ாଵݔ)௘, the coordinates are governed by the Euler spiral equationsܮ
to 1/ܴܿ. For ܮ௘ < ݏ ≤ ௘ܮ + ௖ܮ , the coordinates follow the circular arc equations (ݔ஼ଶ,ݕ஼ଶ), with constant curvature 1/ܴc. For 
௘ܮ + ௖ܮ < ݏ ≤ ்ܮ , the coordinates are given by the exit spiral (ݔாଷ,ݕாଷ), where curvature decreases smoothly back to zero. 
By joining these three expressions in a piecewise fashion, the TECET alignment achieves 2ܥ continuity—that is, continuity in 
position, direction, and curvature across all junctions. This ensures not only mathematical elegance but also engineering relevance, 
as vehicle dynamics are governed by smooth variations of curvature and lateral acceleration. 
Such a composite formulation is particularly useful for implementation in computational tools (e.g., GeoGebra, CAD, or custom 
design software), since it allows the entire alignment to be modeled and visualized with a single parametric variable ݑ.  

 
Each segment of the TECET curve corresponds to a specific range of the normalized parameter ݑ: 

 Entry spiral:  ቂ0, ௅೐
௅೅
ቃ 

 Circular arc:  ቂ ௅೐
௅೅

, ௅೐ା௅೎
௅೅

ቃ 

 Exit spiral: ቂ௅೐ା௅೎
௅೅

, 1ቃ 

This partition ensures that the entire curve is parameterized continuously over the interval [0,1]. 
 

F. Numerical example 
For the parameters ܴܿ = 416.698 m, 88 = ݁ܮ m, and 325.764 = ܿܮ m, the following results were obtained: 
 rad, Δܿ = 0.7818 rad 0.1056 = ݁ߠ ,m, ܶ݁ = 0.2593 191.49 = ܣ ,m 501.764 = ܶܮ
The EC point is located at (87.90 m, 3.09 m), the center of the arc at (43.98 m, 417.47 m), and the CE point at (367.09 m,154.35 m). 
As expected, curvature varies linearly along the spirals and remains constant in the circular arc, confirming the 2ܥ continuity of the 
alignment, which guarantees smoothness in position, direction, and curvature. 

 
IV. PRACTICAL APPLICATION: FRENET-SERRET FRAME 

Following the classical formulation of differential geometry [4], the Frenet–Serret frame is defined as a fundamental tool for 
analysing vehicle motion along the TECET curve. Given a point ((ݑ), (ݑ)ݕ) on the trajectory, the tangent vector ܶ and the normal 
vector ܰ are defined, allowing the vehicle’s velocity and acceleration to be decomposed into geometric components. 

 
A. Tangent and Normal vectors 
Starting from the parametrization:  

 
(ݑ)࢘ = ൫(ݑ)ݔ,  ൯  (IV.A.1)(ݑ)ݕ

 
the unit tangent vector ܶ(ݑ) and the unit normal vector ܰ(ݑ) are defined as: 

(ݑ)ࢀ =
(ݑ)′࢘
‖(ݑ)′࢘‖ (ݑ)ࡺ      , = 〈− ௬ܶ(ݑ), ௫ܶ(ݑ)〉  

(IV.A.2) 

  
  
Here, (ݑ) represents the instantaneous direction of motion along the curve, while (ݑ) is obtained by a 90° rotation of ܶ(ݑ), pointing 
toward the center of curvature. Together, these vectors form an orthonormal basis for analysing motion along the curve. 

 
B. Curvature 
In differential geometry, the curvature (ݑ) of a planar parametric curve is given by the classical determinant formula: 

 

(ݑ)ߢ =
(ݑ)ᇱݔ ∙ (ݑ)ᇱᇱݕ − (ݑ)′ݕ ∙ (ݑ)′′ݔ

ଶ(ݑ)′ݔ) + (ଶ(ݑ)′ݕ
ଷ
ଶ

  
(IV.B.1) 
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This expression measures how sharply the trajectory bends at each point. For a straight tangent, 0 = ߢ; for a circular arc of radius , ߢ 
= 1 / ܴܿ. Along the TECET curve, curvature varies linearly in the spirals and remains constant in the circular arc, reflecting the 
desired smoothness (2ܥ continuity) of the alignment. 

 
C. Velocity and Acceleration 
Let ܸ denote the scalar speed of the vehicle, assumed constant in geometric design. The velocity vector and acceleration vector are 
expressed as:  

(ݑ)ࢂ = ܸ ∙  (IV.C.1)  (ݑ)ࢀ
  

(ݑ)ࢇ = ݐܽ ∙ (ݑ)ࢀ   + ܸଶ  ∙ (ݑ)ߢ  ∙  (IV.C.2) (ݑ)ࡺ
  
 

where: 
 ,is the tangential acceleration (associated with changes in speed magnitude) : ݐܽ
ܸଶ  ∙  .is the normal acceleration (centripetal), directly proportional to the curvature : (ݑ)ߢ

In road design, it is common to assume ܽݐ ≈ 0, since vehicles are expected to maintain nearly constant speed along the designed 
alignment. Under this assumption, the acceleration is purely normal and depends only on the square of the velocity and the 
curvature of the path. This highlights why controlling curvature through proper spiral transitions is essential for ensuring both safety 
(by limiting lateral acceleration) and comfort (by avoiding abrupt changes in direction). 
Figure 2 shows a schematic of the Frenet–Serret frame in the plane, illustrating the vectors involved, where in this case our focus is 
on (ݑ) and (ݑ). 

 

 
Figure 2. Frenet-Serret fame in the plane. 

 
Figures 3, 4, and 5 respectively show the results of the formulation presented in this article implemented in GeoGebra. These figures 
illustrate the 2ܥ piecewise smooth continuity of the TECET curve, as well as how the lateral acceleration vector decreases when the 
vehicle transitions from the circular arc to the spiral curve and subsequently reduces to zero upon entering the exit tangent. 

 

   
Fig. 2 Vehicle traveling along 
the circular arc. 

Fig. 3 Vehicle traveling along 
the exit spiral. 

Fig. 4 Vehicle at the end of the 
spiral. 
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D. Dynamic example 
Consider a vehicle traveling at ܸ=110 km/h = 30.56 m/s. On the circular arc of radius ܴܿ = 416.698 m, the normal (centripetal) 
acceleration is: 

 
ܽ݊ = ܸ2ܴܿ ≈ 2.24 m/s2 

   
In the transition spiral, curvature increases linearly with the arc length. For the given speed, let the spiral length be 150 = ݁ܮ m 

According to equation (II.C.2) : 
 

ଶܣ = ܴ௖ ∙ ௘ܮ = 416.698 × 150 ≈ 62,505   
  
The normal acceleration as a function of arc length s along the spiral is: 

ܽ௡(ݏ) =
ܸଶ

ܴ௖
∙
ݏ
௘ܮ

=
30.56ଶ

62,505 ݏ ≈   ݏ 0.01493
 

  
TABLE I 

RESULTS AT SELECTED POINTS 
 

s (m) an(s) (m/s²) 
 

0.00 0.00 
37.50 0.56 
75.00 1.12 
112.50 1.68 
150.00 2.24 

 
Thus, along the entry spiral, the normal acceleration increases linearly from zero to ܸ2/ܴܿ. Conversely, along the exit spiral, the 
normal acceleration decreases from ܸ2/ܴܿ back to zero. 
This progressive behavior illustrates the essential role of transition spirals in highway design: 

 They avoid abrupt changes in lateral acceleration. 
 They improve driver’s comfort by ensuring smooth motion. 
 They enhance safety by reducing the risk of vehicle instability when entering or leaving a curve. 

In practice, this confirms why highway design standards [1] and [2] prescribe the use of spiral transitions: they provide not only 
mathematical 2ܥ continuity but also dynamic continuity, linked to the physical experience of road users. 

 
V. DISCUSSION AND DESIGN RECOMMENDATIONS 

The parametric analysis of the TECET curve is not only an academic tool but also provides practical criteria for geometric design. 
The selection of parameters ݁ܮ, ܴܿ, and ݁ (superelevation) must satisfy the requirements of safety, comfort, and economy. 

 
A. Minimum Spiral Length 
One of the most important conditions is that the spiral length must be sufficient to ensure a gradual variation in lateral acceleration. 
Various design manuals, including [1] and [2], propose expressions that relate ݁ܮ to the design speed ܸ݌ and the curve radius ܴܿ. A 
general form is:  

 

௘ܮ ≥
௣ܸ
ଷ

ܥ ∙ ܴ௖
 

(V.A.1) 

 
where C is an empirical constant, whose value depends on the adopted comfort criteria. In practice, this requirement tends to be 
more restrictive than others, such as those based on superelevation. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

 2028 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

B. Superelevation 
Superelevation e allows compensation of the centrifugal force experienced by vehicles when traveling along horizontal curves. The 
balance of lateral forces express as: 

ܽ௟௔௧ =
ܸଶ

ܴ௖
− ݃ ∙ ݁ 

(V.B.1) 

where ܽlat is the uncompensated lateral acceleration, ܸ is the operating speed, ܴܿ is the curve radius, and ݃ is gravitational 
acceleration. The design objective is to keep ܽlat within acceptable limits, which implies an adequate combination of ܴܿ and ݁. 

 
C. Practical Recommendations 
The use of transition spirals in horizontal curves significantly reduces the effects of sudden lateral acceleration. In highway projects, 
the following recommendations are suggested: 
1) Adopt spiral lengths that simultaneously satisfy both superelevation and comfort criteria. 
2) Avoid excessively small radios that compromise safety. 
3) Consider coordination between horizontal and vertical alignment to improve sight distance. 
4) Implement parametric models in dynamic environments (e.g., GeoGebra, CAD) to validate design behavior prior to 

construction. 
 

VI. CONCLUSIONS 
The compound Tangent–Spiral–Circular–Spiral–Tangent (TECET) curve represents a paradigmatic example of the connection 
between fundamental mathematics and applied civil engineering. The analysis developed in this work allows us to draw several 
conclusions: 
1) The use of the Euler spiral ensures that curvature varies linearly with arc length, providing a progressive increase or decrease in 

lateral acceleration. This results in safer and more comfortable trajectories for road users. 
2) Parametrization by means of a dimensionless parameter ݑ ∈ [0, 1] facilitates the mathematical description of the TECET curve 

as a piecewise smooth function, enabling dynamic analysis of position, orientation, and curvature at any point along the 
trajectory. 

3) The presented formulation is compatible with symbolic and numerical computation tools such as GeoGebra, which makes it 
possible to visualize the behaviour of the curve as well as the velocity and acceleration vectors interactively. This opens 
didactic opportunities for early semesters of civil engineering education. 

4) The Frenet–Serret framework, applied to the parametrization of the curve, provides a solid basis for evaluating the kinematic 
components of a vehicle, showing how abstract notions of vector calculus have a direct application in the professional practice 
of highway design. 

5) Finally, the proposed methodology highlights the importance of mathematical training in civil engineering: courses such as 
calculus, analytic geometry, and vector analysis are not isolated subjects, but essential tools for understanding and developing 
solutions in real roadway infrastructure projects. 

 
REFERENCES 

[1] Secretaría de Comunicaciones y Transportes (SCT). (2018). Manual de Proyecto Geométrico de Carreteras. Dirección General de Servicios Técnicos. 
https://www.sct.gob.mx/fileadmin/DireccionesGrales/DGST/Manuales/manual-pg/MPGC-2018-16-11-18.pdf 

[2] AASHTO. (2018). A Policy on Geometric Design of Highways and Streets (7th ed.). American Association of State Highway and Transportation Officials. 
[3] NIST. (2023). Fresnel Integrals. In NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/7.2 
[4] do Carmo, M. P. (2016). Differential Geometry of Curves and Surfaces. Dover Publications. 
[5] Gray, A., Abbena, E., & Salamon, S. (2006). Modern Differential Geometry of Curves and Surfaces with Mathematica (3rd ed.). Chapman and Hall/CRC. 



 


