

13 IX September 2025

https://doi.org/10.22214/ijraset.2025.74006

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

274 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Peer-To-Peer File Sharing System Using Bittorrent
Protocol

Ambika R1, Dr. SDN Hayath Ali2

Department of MCA Ballari Institute of Technology and Management, Ballari, Karnataka, India

Abstract: Peer-to-peer (P2P) file sharing has evolved significantly since its early adoption in platforms like Napster and
Gnutella, offering a decentralized alternative to traditional client-server architectures. Despite their scalability and bandwidth
efficiency, P2P systems often face challenges such as network congestion, peer misbehavior, and lack of fairness in data
distribution. To address these issues, this research presents a python-based BitTorrent-like file sharing system that implements
dynamic peer selection through choking and optimistic unchoking mechanisms, secure handshake protocols, and multithreaded
socket communication for efficient and resilient data exchange. The system ensures secure remote deployment using SSH and
incorporates a detailed logging mechanism to monitor peer interactions. Experimental results demonstrate improved download
speeds, balanced bandwidth allocation, and enhanced fault tolerance. The findings validate the effectiveness of the proposed
Framework as a robust and scalable solution for decentralized file sharing.
Keywords: Peer-to-Peer, BitTorrent, File Sharing, Choking Algorithm, Decentralized Systems, python, Network Optimization,
Secure Communication.

I. INTRODUCTION

Peer-to-Peer (P2P) file sharing has become a foundational technology for decentralized content distribution. Since the late 1990s,
systems like Napster, Gnutella, and Kazaa have demonstrated the ability to eliminate central servers by distributing data across
users' devices. While early models were limited by bandwidth constraints and poor fault tolerance, advancements in P2P protocols
have made large-scale distributed systems viable for applications such as media streaming, collaborative data hosting, and real-time
communication.
Traditional client-server architectures often suffer from scalability bottlenecks, single points of failure, and increased infrastructure
costs. In contrast, P2P systems redistribute these responsibilities across multiple peers, each contributing computational resources,
storage, and bandwidth. However, despite these benefits, modern P2P systems still encounter significant challenges. These include
ensuring fair bandwidth allocation, avoiding free-riding behaviors, mitigating malicious peer participation, and handling high churn
rates where nodes frequently join and leave the network. Moreover, the absence of centralized control raises concerns about data
integrity and network reliability.
BitTorrent, a popular and efficient P2P protocol, introduced an innovative approach to file sharing by dividing files into small pieces
and allowing peers to download simultaneously from multiple sources. This piece-wise parallel downloading dramatically improves
bandwidth utilization and download speed. Furthermore, BitTorrent employs a tit-for-tat algorithm that encourages reciprocal data
sharing, ensuring that cooperative peers are rewarded while discouraging passive behavior. Choking and optimistic unchoking
algorithms within BitTorrent help dynamically manage peer selection based on current performance and participation levels.
This paper presents a python-based implementation of a BitTorrent-inspired file sharing system. The proposed method uses socket
programming and multithreading to simulate a real-time decentralized network. The system includes core BitTorrent concepts such
as piece selection, handshake verification, choking/un-choking logic, and interest propagation. Additionally, it features a remote
deployment mechanism using SSH to simulate a realistic distributed environment across machines. Robust logging is integrated for
monitoring peer interactions and transfer metrics, ensuring visibility and auditability of all network activities.
The key contribution of this research lies in enhancing system fairness, bandwidth efficiency, and peer reliability through a modular
and secure architecture. By applying rigorous unit and integration testing, the system is validated under various network conditions
and configurations. The implementation also considers scalability, fault tolerance, and security against common P2P attacks, such as
Sybil attacks and man-in-the-middle interceptions.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

275 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

II. LITRATURE SURVEY
Over the years, numerous studies have explored the evolution and optimization of peer-to-peer (P2P) networks, particularly in the
context of file sharing and bandwidth efficiency. Cohen [1] introduced the foundational principles of the BitTorrent protocol,
outlining the incentive-based tit-for-tat strategy that promotes active contribution among peers. His work demonstrated that
prioritizing contributing peers could drastically reduce file download times and alleviate the problem of free-riders in distributed
networks. This incentive-driven approach laid the groundwork for further enhancements in fairness and scalability.
Lua et al. [2] provided a comprehensive comparison of various P2P overlay network architectures, identifying key trade-offs
between structured and unstructured designs. Their survey concluded that while unstructured networks offer higher fault tolerance,
structured systemsparticularly those based on Distributed Hash Tables (DHTs)enable more predictable and scalable resource
discovery. This understanding guided later systems to adopt hybrid designs that merge the benefits of both.
Rhea et al. [3] addressed the challenge of churn in dynamic P2P systems by implementing stabilization techniques in DHTs to
maintain routing accuracy. Their study focused on handling the frequent joining and leaving of peers, which is essential in
maintaining consistent performance. Their results showed that periodic updates and successor caching significantly improved
network resilience and lookup success rates, thereby reducing routing failures.
Stoica et al. [4] proposed the Chord protocol, a scalable and distributed lookup service that enables efficient key-value mapping
using consistent hashing. The paper demonstrated how logarithmic search time could be achieved regardless of network size,
making it suitable for large-scale deployments. The design principles of Chord influenced various modern P2P systems that require
scalable and fault-tolerant indexing.
Xu et al. [5] reviewed P2P streaming applications, emphasizing their reliance on adaptive buffering, chunk scheduling, and delay
minimization techniques. Their analysis revealed that synchronization between peers and efficient chunk dissemination policies
were critical for ensuring smooth playback in real-time systems. While not directly applicable to static file sharing, the insights into
chunk scheduling informed improvements in our proposed system’s transfer prioritization.
Qiu and Srikant [6] provided a mathematical model to analyze BitTorrent-like networks, quantifying the effect of peer upload
capacity and swarm size on download times. Their simulation results validated that performance degrades rapidly without effective
peer contribution. This underscores the necessity of incorporating mechanisms like choking and optimistic unchoking, both of
which are central to our implementation.
Zhang et al. [7] introduced adaptive choking algorithms that dynamically adjust peer selection based on recent performance metrics.
Unlike static tit-for-tat strategies, their adaptive approach ensured that high-performing peers consistently received bandwidth
priority, improving overall efficiency. Our system integrates a simplified version of this method to enhance download speeds while
maintaining fairness.
Li et al. [8] and Guo et al. [9] both explored economic incentive models for P2P systems. They proposed mechanisms where peers
are rewarded for sharing based on reputation or virtual currency systems. While our current model does not implement financial
incentives, these papers highlight the importance of fostering trustworthy behavior and hint at future directions involving reputation
scoring or blockchain-based verification.
Levine et al. [10] conducted an in-depth survey of Sybil attack mitigation strategies in decentralized environments. Their findings
showed that without proper identity management, P2P systems are vulnerable to manipulation by malicious entities. In our system,
basic peer authentication and validation mechanisms are implemented to prevent such attacks, with future scope aimed at integrating
decentralized trust models.

III. PROPOSED FRAMEWORK

Fig1 : Flow Diagram

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

276 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The flow diagram visually represents the basic operational cycle of a peer in a BitTorrent-like peer-to-peer (P2P) file-sharing
system. It begins with the peer initializing its connection through a handshake, which is essential for validating communication with
another peer. Once the handshake is successful, the peer proceeds to request a specific piece of the file it needs. This request is sent
to connected peers who hold that piece, initiating the data exchange.
After the requested chunk is received, the system checks whether all file chunks have been successfully downloaded. If the file is
incomplete, the cycle continues with additional piece requests. This loop ensures that the peer progressively gathers missing chunks
from the network. Once all pieces are collected, the peer moves to assemble the complete file, and the process concludes, marking
the end of the file transfer operation. This loop ensures efficiency and redundancy in data acquisition, which is a core principle of
the BitTorrent protocol.

1) Knowledge Refinement and Requirement Design
The project began with a thorough exploration of existing literature, standards, and protocols related to P2P file sharing. The study
included the BitTorrent protocol’s working principles, the tit-for-tat strategy, choking and unchoking mechanisms, and the
handshake protocol. Based on these learnings, a modular system was conceptualized that emphasizes multi-threaded concurrent
communication, piece-wise file transfer, and dynamic peer behavior. No dataset is required as the system is not data-driven but
architecture-driven, focusing on protocol behavior rather than AI-based prediction.

2) System Architecture Design
The system architecture follows a decentralized network model where each node (peer) can function both as a client and a server.
All peers are equal and have the ability to request, receive, and serve file chunks to others. The architecture comprises the following
key modules:
 Peer Discovery and Communication
 File Transfer Manager
 Choking and Unchoking Handler
 Logging and Monitoring
 Handshake and Authentication Protocol
 Termination and Cleanup Handler

3) Peer Communication and Handshake Initialization
The process begins when a peer starts up and attempts to discover other peers using configuration files or broadcast messages. A
handshake message is sent using python Sockets to initiate communication. This handshake is validated using predefined
parameters like peer ID and file availability. Once validated, the connection is established and maintained in a thread-safe queue to
allow parallel communication with multiple peers.

4) File Chunking and Piece Exchange
When a file is selected for sharing, it is broken down into smaller fixed-size pieces (e.g., 256 KB each). Each peer is given some
pieces initially to avoid redundancy. A peer sends an interested message to another peer upon identifying missing pieces. Upon
acknowledgment, the pieces are requested and transferred over the established channel. The piece index, checksum, and timestamp
are included in the transfer message for integrity verification and logging.

5) Choking and Optimistic Unchoking Logic
To prevent network congestion and ensure fair bandwidth usage, a choking mechanism is implemented. Every peer maintains a list
of connected peers ranked by download rate. The top N peers are unchoked periodically while others are temporarily blocked
(choked). Additionally, every 30 seconds, one random peer is optimistically unchoked to prevent starvation. This method allows fair
rotation and network balancing without manual intervention.

6) Logging and Monitoring
All actionssuch as connection requests, successful handshakes, data transfers, choking events, and disconnectionsare logged in real-
time using python Logger or Log4j.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

277 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The logs include timestamps and event details, which are used for debugging, audit trails, and performance measurement.

7) Secure Remote Execution
To simulate a distributed real-world environment, each peer can be remotely deployed across different machines using SSH
scripting. This enables peer deployment in a LAN or cloud setup and allows testing under realistic network conditions such as
latency, congestion, and disconnections.

8) Fault Tolerance and Termination
The system includes resume download functionality in case of interruptions. Each chunk’s state is stored locally so that upon
reconnection, peers resume downloading only the missing pieces. Upon graceful termination, the system ensures all sockets are
closed, logs are updated, and remaining downloads are queued for retry.

IV. EVALUATION &RESULT

1) Download Completion Time vs Number of Peers

Fig 2:Download Completion Time vs Number of Peers

To validate the effectiveness of the proposed peer-to-peer file sharing framework, the system was evaluated using key performance
metrics such as Download Completion Time, Bandwidth Utilization, and Peer Fairness Index. These metrics were selected based on
their relevance to the problem statement, which aims to ensure efficient, fair, and scalable file sharing across dynamically connected
peers. Download Completion Time was measured as the total time taken by a peer to receive all file chunks and assemble the full
file. A comparative analysis was performed between different peer environments with varying numbers of nodes, file sizes, and
network delays. The results indicated a significant reduction in completion time when the number of unchoked peers was optimized
dynamically, validating the advantage of using the choking/unchoking strategy in maintaining consistent throughput under varying
load conditions.

2) Bandwidth Utilization Over Time

Fig 3: Bandwidth Utilization Over Time

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

278 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Bandwidth Utilization was another critical metric observed during simulation. It was calculated by tracking the average data transfer
rate per peer over time, including both uploads and downloads. The system implemented a logging module that captured real-time
network traffic, which was used to analyze peer contribution behavior. The results showed that active peers maintained higher
utilization, especially during optimistic unchoking intervals, leading to balanced network load and improved overall system
efficiency. Peaks in utilization aligned with periods of high concurrency, which confirmed that the multithreaded socket architecture
was functioning as expected. This metric is crucial as it reflects the system’s capacity to utilize available bandwidth without
overload or idle time, directly supporting scalability and resource optimization.

3) Peer Fairness Index Distribution

Figh 4: Peer Fairness Index Distribution

Peer Fairness Index (PFI) was computed to evaluate the equity of file sharing across the network. This metric is defined as the ratio
between the amount of data uploaded by a peer and the amount downloaded, averaged over the network. A value close to 1.0
indicates balanced participation, where peers both contribute and consume resources fairly. The experiment revealed that peers with
higher upload-to-download ratios were less likely to be choked, reinforcing the effectiveness of the tit-for-tat policy implemented in
the system. Moreover, the optimistic unchoking allowed underperforming peers occasional access, promoting inclusiveness and
deterring free-riding. Fairness directly supports the core objective of the projectbuilding a reliable, cooperative, and decentralized
file sharing environment.

V. CONCLUSION
The proposed peer-to-peer (P2P) file sharing system, inspired by the BitTorrent protocol, successfully addresses the fundamental
challenges associated with decentralized data distributionnamely fairness, bandwidth optimization, and robustness against peer
misbehavior. By leveraging python-based multithreading, socket communication, and dynamic peer selection strategies, the system
ensures efficient and reliable transmission of file chunks across a distributed network of peers. The implementation of handshake
authentication, piece-wise exchange, and choking/unchoking mechanisms collectively contributes to the system’s stability and
equitable resource allocation, validating its relevance as a solution to the scalability and fairness concerns outlined in the initial
problem statement.
The evaluation metrics, including download completion time, bandwidth utilization, and peer fairness index, confirm that the
framework not only meets but exceeds performance expectations in distributed environments. The system maintains high
throughput, ensures balanced participation among peers, and provides resilience in the presence of network volatility. Additionally,
the real-time logging and monitoring capabilities enable transparent tracking of operations, making the system auditable and
maintainable for extended use. These results collectively demonstrate that the framework is not only technically sound but also
practical for real-world deployment in large-scale file distribution scenarios.
Looking forward, the current system can be further enhanced by integrating advanced encryption protocols such as AES for end-to-
end security and blockchain-based trust models to prevent Sybil and spoofing attacks. Additionally, the incorporation of AI-driven
peer selection algorithms and bandwidth prediction models could further optimize resource allocation. Expanding the system with a
user-friendly graphical interface and mobile support would also improve accessibility and adoption. These future directions aim to
evolve the framework into a scalable, intelligent, and secure platform suitable for next-generation decentralized content delivery
networks (CDNs) and edge-based data systems.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue IX Sep 2025- Available at www.ijraset.com

279 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] Cohen, B. (2003). Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer Systems.
[2] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications

Surveys & Tutorials, 7(1), 72-93.
[3] Rhea, S. C., Geels, D., Roscoe, T., & Kubiatowicz, J. (2004). Handling churn in a DHT. In USENIX Annual Technical Conference.
[4] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup protocol for internet applications. ACM

SIGCOMM Computer Communication Review, 31(4), 149-160.
[5] Xu, M., Liu, J., & Liu, J. (2011). A survey of P2P streaming applications. Future Internet, 3(4), 329-366.
[6] Qiu, D., & Srikant, R. (2004). Modeling and performance analysis of BitTorrent-like peer-to-peer networks. ACM SIGCOMM Computer Communication

Review, 34(4), 367-378.
[7] Zhang, H., Xie, G., Li, M., & He, H. (2014). Adaptive choke algorithms in BitTorrent-like P2P networks. IEEE Transactions on Parallel and Distributed

Systems, 25(3), 579-589.
[8] Li, X., Li, B., & Lau, W. C. (2005). A BitTorrent-like P2P system with incentive mechanisms. IEEE International Conference on Communications (ICC).
[9] Guo, L., Chen, S., & Deng, L. (2006). BitTorrent-like file sharing with fairness and incentives. IEEE Transactions on Multimedia, 8(6), 1166-1177.
[10] Levine, B. N., Shields, C., & Margolin, N. B. (2006). A survey of solutions to the Sybil attack. ACM Computer Surveys, 38(4), 1-28.

