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Abstract: Underwater welding is the process of connecting materials underwater in the presence of water. It is used to maintain 
and improve the structure in marine and offshore applications. It's utilized for underwater pipeline maintenance, submerged 
offshore oil drilling, and ship repairs. It can also be found in nuclear power plants and deep-sea mining. Underwater welding is 
divided into two categories dry welding and wet welding. Dry welding entails enclosing the weld zone in a hyperbaric tank filled 
with a gas mixture and welding at the prevailing pressure. Wet welding is a type of welding that uses waterproof electrodes and is 
done directly on the component to be welded. The major benefit of this welding is its simplicity and cost effectiveness, but we 
can't obtain high weld quality as easily as we can with dry welding. Dry welding, on the other hand, may provide high weld 
quality, but it is a time-consuming procedure that needs the welder to secure the region with the hyperbaric vessel, and it is also 
a costly method. Underwater welding has a number of issues, including bubble arc generation, cold cracking, microstructural 
deformation, and more. We attempted to bring together the most recent developments in the field of underwater welding. We've 
outlined several techniques that were used to improve welding characteristics as well as important issues that must be addressed. 
This review article may be used to figure out what measures need to be taken to enhance the underwater weld joint quality.  
Keywords: Underwater welding, underwater wet welding, underwater dry welding, hyperbaric vessel, underwater welding 
development. 

I. INTRODUCTION 
Underwater welding is used in underwater pipeline maintenance and repairs, naval projects, and marine and offshore applications. It 
is critical in nuclear power plants, deep sea mining, and submerged offshore oil drilling because they are prone to corrosion, 
constructional difficulties, material fatigue, unknown variables, assembly issues, and operational overload that require maintenance 
and repair. 

Fig. 1 Classification of underwater welding 
 
Wet underwater welding (W-UWW) and dry undersea welding (D-UWW) are the two major categories of underwater welding (D-
UWW). In comparison to underwater dry welding, which has a sophisticated operation setup as well as less operational space for the 
diver, underwater wet welding is of utmost importance because it has a low cost of operation, easy operational setup with free 
degree of movement for the diver, high production efficiency, and a simple device. As a result, several studies in the field of 
underwater wet welding have been performed to address this issue [30]. 
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Fig. 2 Underwater wet welding 

 
Underwater welding procedures are executed based on the material to be welded, the welder's competence, the cost of operation, 
and water variables such as water velocity, temperature, and so on. Welding procedures are simple to implement. Shielded Metal 
Arc Welding (SMAW), Flux-cored Arc Welding (FCAW), and Gas Tungsten Arc Welding are examples of these types of welding 
(GTAW). Shielded Metal Arc Welding (SMAW) is a method of melting the work piece and electrode using heat generated by an 
electric arc discharge [43]. Flux shields the electrode, and the filler metal deposits as slag on the material, protecting the weld zone 
throughout the cooling process. FCAW (Flux Cored Wire Arc Welding) is a welding process in which flux is utilized as a shielding 
layer and alloying elements are added to the welding metal placed on the electrode. FCAW is simple to use and can be done in any 
position. TIG (Tungsten Inert Gas Welding) or GTAW (Gas Tungsten Arc Welding) is a welding technology that employs tungsten 
electrode and filler metal that are introduced separately to the welding process. Suitable for low-welding-performance metals and 
alloys. Because it utilizes a little current, it generates a steady arc [43]. 
Even though underwater wet welding (UWW) provides a number of advantages, such as smaller equipment, more mobility, reduced 
preparation time, and lower costs. However, the drawbacks of UWW, such as lower material ductility, increased material hardness 
in the Heat Affected Zone (HAZ), weld metal flaws, unstable arc flames, and water waves surrounding the welding region, are 
rapidly becoming apparent. It must be rectified since it will have an impact on underwater welding results, such as fracture 
propagation, excessive porosity, and poor welding performance, as well as lower mechanical characteristics of the weld joint [64] 
The magnitude of the water waves near the underwater welds fluctuates continually throughout the application of underwater welds, 
resulting in periodic stresses on the material structure. In addition, the material's structure will be unfavorable. Furthermore, a 
significant number of welding inclusions might speed up the formation of fatigue cracks. 
Porosity and inclusions become a problem when the structure ages. Porosity causes hydrogen trapping, which can then lead to 
hydrogen embrittlement, which causes damage in the form of fractures and decreases the structure's dependability. 

Fig. 3 Underwater dry welding 
 
Underwater dry welding entails setting up a dry chamber inside the water to produce a dry environment as shown in the fig 1.3. 
Based on the aforementioned issues, a thorough investigation of the failures has been conducted, as well as the actions that must be 
taken to improve weld quality. This review article will serve as a resource for tracking recent advancements and developments in the 
field of underwater welding. It will also make recommendations on how to enhance the weld performance [30] 
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II. LITERATURE REVIEW 
Welding parameters are the most significant and decisive element in welded joint quality. Guo et al. discovered a link between the 
arc voltage and welding current in the UWW method and the kind of metal transfer. In UWW, I investigated the effects of heat input 
and metal transport on weld shape and microstructure. Furthermore, Wierczyska et al. [28] investigated the effect of welding 
settings on the diffusible hydrogen concentration of UWW deposited metal. When welding settings were modified, Mendonça and 
Bracarense looked at the link between formation frequency and bubble size. They came to the conclusion that the bubble diameter 
might be improved. Control welding settings to improve arc protection. Many researchers pay special attention to the welding speed 
as one of the welding processes factors since it has a significant impact on the welding process and weld quality (especially for 
UWW). Guo et al. investigated the effect of welding speed on the UWW transfer mode and discovered that a faster welding speed 
favors the repelling wide-angle transfer mode. [59] Wang et al. Bubble reliance on dynamic welding speed was investigated. They 
discovered that when the welding speed increases, the shape of the bubble changes, affecting the process's stability. As a result, it is 
clear that the welding speed has a significant impact on the molten pool's dynamics. As a result, the weld pool's dynamic behavior is 
investigated. UWW was tested at various welding speeds in the current study, and the connection between welding speed and 
welding dynamics, weld formation, and diffusible hydrogen concentration was assessed on this basis [13]. 
Arc welding is the most frequent underwater welding process. However, fracture sensitivity, high hydrogen diffusivity, and poor arc 
stability in wet and local dry welding are difficulties connected with underwater arc welding, which limit its growth. According to 
recent research, underwater laser welding is considerably more beneficial than traditional welding [2]. A protective substance is 
added to the base metal in advance of underwater laser wet welding to raise the depth of the welded water to 20 mm. The water 
around the laser irradiation region must be eliminated in order to achieve high-quality welds under typical water depth using 
underwater laser welding [78]. As a result, the method of underwater dry spot laser welding has been investigated. During the 
underwater laser welding process, Zhang et al. scanned the optical signal in the nearby drying cavity, and the results revealed that 
the infrared signal indicated protection. Sano et al. used local underwater dry laser welding technology to successfully apply an anti-
corrosion coating to the surface of underwater components. Underwater dry local laser welding, as demonstrated by Yoda et al., 
may resist stress corrosion cracking in underwater components [52]. Guo et al. looked at butt joints that were welded underwater 
utilizing local laser welding. Their findings revealed that pore flaws induced by water vapor impaired the mechanical characteristics 
of the butt joint, and owing to the cooling action of water, ferrite formed in the center of the weld. 
The frictional stir welding technique has a lot of advantages for alloys that have a negative relationship between weld quality and 
welding temperature. Many of these alloys have a high precipitating property in the weld zone, making them brittle and porous weld 
zones prone to formation [10]. 

Fig. 4 Crack initiation, propagation and fracture 
 

The frictional stir welding technique has a lot of advantages for alloys that have a negative relationship between weld quality and 
welding temperature. Many of these alloys have a high precipitating property in the weld zone, making them brittle and porous weld 
zones prone to formation [10]. Underwater laser welding keyhole and weld pool are studied using a mathematical framework. The 
behavior of the weld pool and keyhole at the same time in terms of laser depth and strength will be addressed later. The heat and 
mass transport characteristics of underwater laser welding is discussed. When a weld pool comes into touch with water, it cools 
rapidly, resulting in a new morphology. Furthermore, as the depth of the water increases, the temperature of the keyhole rises. To 
analyze the fatigue behavior of welded steel, elements such as water depth, water waves, and temperature are taken into account. 
Water waves and depth can have a significant impact on the welding current and arc stability. The development of fine 
microstructure is caused by the rapid cooling of the weld zone, decreasing the impact strength of the welded component. Post-weld 
heat treatment is recommended to combat this. Diverse materials are welded underwater. The mechanical properties and 
microstructural features of AA2519-T87 Aluminum alloy joints produced by underwater friction stir welding are investigated. The 
cooling system is good because the welding is done under water, thus grain coarsening and precipitation are significantly decreased, 
resulting in higher joint strength [99]. 
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III. EXPERIMENTAL PROCEDURE 
Table 1 lists the composition and mechanical characteristics of the austenitic 304 stainless steel utilized in this test. The filler rod is 
a 1.6 mm diameter self-shielded flux-cored wire made of CaF2- Al2O3 slag, which is the most sophisticated unique flux cored wire 
for UWW. Positive direct current electrodes were used in the UWW studies (DCEP). Figure 2 shows the welding settings. Other 
variables were maintained constant while welding speed was altered [77]. 
 

Table I 
Welding Process Parameter 

 
The experiment was carried out using an X-ray system, with the base metal held securely in place and high-resolution pictures of the 
weld pool taken using a high-speed camera. To compute the movement of the weld pool, a technique was devised that recorded the 
fluctuation in height from a fixed location [82]. 

Fig. 5 X-ray analysis of underwater laser welding 
 
A semiconductor laser with a wavelength of 915 nm was utilized in this experiment. The experiment was carried out with the 
assistance of a 6-axis robot. To establish a local dry cavity and safeguard the laser welding section in a water environment, a self-
designed shielding gas nozzle was employed. Argon was utilized as a shielding gas. The outer nozzle's diameter and height were 
120 and 110 mm, respectively, while the inner nozzles were 40 and 85 mm. A wire feeder injected the wire, and a shielding gas 
nozzle positioned the wire tube at a 30-degree angle in the front feed direction [77]. 
The base metal was a cold rolled stainless steel plate that was submerged in water during underwater laser welding, and the filler 
wire was a 1.0 mm diameter 304 stainless steel wire [82]. 
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Fig. 6 Schematic diagram of underwater filler wire laser welding system 

 
In a water and air environment, a 2 mm thick 6061 aluminum alloy was friction stir spot welded at varied tool speeds of 700, 900, 
and 1100 RPM. 
Welding is done utilizing a TiO2-Fe2O3 system with a diameter of 1.6 mm. Base metals and freight have different chemical 
compositions. 30 V, 5 m/min, or 2 mm/s are the welding voltage, wire feed speed, and welding speed. The contact to working 
element distance (CTWD) is 20 mm, while the cable extension length is 15 mm. The connection between arc bubble behavior and 
droplet transport is studied using X-ray imaging.  
A micro-focus X-ray tube, an image transducer that transforms the emitted X-ray picture into a visible image, and a high-speed 
camera (2000 images per second) make up the in-situ X-ray imaging system [114]. 
Options for high-speed for recording, a CR series camera with a 256256-pixel chip is utilized. 130 kV and 0.3A are the X-ray 
source's specifications. Extract and analyze continuous video pictures of droplet movement and bubble activity using wet welding 
[122].  
 
 

IV. RESULTS AND DISCUSSION: 
A. Weld Pool 
With varied welding speeds ranging from 1mm/s to 3mm/s, the dynamic behavior of the weld pool was studied. It was discovered 
that a droplet transfer procedure was taking place. The flow of gas in the weld pool and droplet hits produce variations in the molten 
pool. The droplets are a major contributor to the gas in the weld pool [11]. When liquid metal flows in the weld pool tails, the 
temperature of the liquid metal drops dramatically, resulting in gas entrapment. 
A huge amount of hydrogen was originally held in the liquid metal, which then attempted to exit the surface when the temperature 
dropped dramatically, reducing the gas solubility.  
As a result, each droplet causes gas to accumulate in the weld pool [11]. 
The provided problem was handled by doing the experiment at various welding speeds, and the following findings were made: when 
the welding speed rises, the length of the molten pool steadily grows, reducing the molten pool's strength [61]. 
The strength of the weld seam, on the other hand, steadily diminishes as the welding speed increases. Large bubbles become harder 
to produce. As a result, variations in the molten pool are considerably minimized. These two factors combine to lessen the standard 
issue, and as welding speed increases, the vibration of the molten pool reduces [9] 
 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue XI Nov 2021- Available at www.ijraset.com 
     

 
1772 ©IJRASET: All Rights are Reserved 

 

B. Nozzle Gas Flow Rates  

Fig. 7 Underwater filler wire laser welding process at different gas flow rates: (a) initial stage at 0 L/min gas flow rate, (b) stable 
stage at 0 L/min gas flow rate, (c) welding process at 30 L/min gas flow rate. 

 
The impact of the flow rate of the return flow from the nozzle, the travelling speed, and the wire feeding speed on the surface 
appearance, as well as the mechanical characteristics of the welding connection, were studied in order to achieve a high-quality butt 
junction [89]. Underwater laser welding was carried out on the upper surface of the butt joint using a single sided gas-shielding 
nozzle at various gas flow rates. The impact of displacement rate on weld formation and weld cross section is investigated using an 
optimum return air flow rate (50 l/min) and wire feeding speed of 50 mm/s [116].  
 
C. Microstructural Composition For Different Materials 

Fig. 8 Microstructural cross-sectional view of friction stir spot welding (FSSW) 
 

To begin with, some types of weld zones with ripples in them have been noticed as they move away from the axis. Second, there are 
certain zones on the specimen that are neither too close nor too far away from the axis; these zones suffer some mechanical 
deformation and temperature impact, but are not greatly affected. Finally, there are zones that are impacted thermally but not 
mechanically. Fourth, any mechanical or thermal changes have no effect on the base metal [135]. 
Because the rate at which heat is generated in friction stir spot welding (FSSW) is significantly higher than in thermo mechanical 
affected zone (TMAZ), both in the tool pin and shoulder area, the grain size is seen to be more refined [145]. 
There are a variety of ways to improve the quality of underwater welding, including heat treatment. Heat treatments, such as 
preheating and post-weld heat treatment, are extremely helpful in improving weld quality. The microstructure of the weld region is 
homogenized after heat treatment. Heat treatment after the weld prevents the material from breaking. Many elements influence the 
quality of a weld, including the depth at which it is performed, the humidity in the welding region, and the arc stability supplied 
throughout the welding process. 
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The size of these processes can have an impact on the size of faults. The size of ferrite microstructures in the weld region grows as a 
result of post-weld heat treatment [66]In a water and air environment, a 6061-aluminium alloy with a thickness of 2 mm was friction 
stir spot welded at varied tool speeds of 700, 900, and 1100 RPM. 
As welding takes place in water, the weld zone is subjected to rapid cooling, resulting in microstructural refinement and increased 
strength when compared to welding on land [93]. 
AA2519-T87 The mechanical properties and microstructural features of aluminum alloy joints produced by underwater friction stir 
welding are studied. The cooling system is good since the welding is done under water; thus, grain coarsening and precipitation are 
significantly minimized, resulting in higher joint strength. The thermal mechanical impacted zone seen in FSW is substantially 
decreased in UWFSW, resulting in low and consistent heat input along the weld line, resulting in grain coarsening and precipitate 
formation [99]. 
 
D. Advanced Welding Techniques 

 
Fig.9 %Wt. composition of S355J2G3 steel 

 
In Friction Stir welding, heat input is critical for dynamic crystallization. At low rotating speeds or high welding speeds, grain size 
is regulated by strain rate, whereas at high rotational speeds or low welding speeds, grain size is controlled by heat [61]. 
 

Table II 
 HY 100 STEEL, S355J2 + N STEEL And 316TI STEEL (WT. %) Chemical Composition 
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 Table III 
 Mass Measurements Of Welded Steel 

 
Table IV 

Mass loss of each welded specimen after the integration of the salt spray test. 

 
 
The maximal tensile strength is directly proportional to grain size. The corrosion of HY 100 and S355J2+ N welded steels is pitting, 
but the corrosion of X6CrNiMo17-12–2 (316Ti) austenitic stainless welded steel is exfoliation. Residual stress, stress concentration, 
corrosion, temperature, maximum tensile stress, metallurgical structure, and material overload all play a role in weld fatigue failure. 
Pre-weld heat treatment has been recommended to reduce failure [35]. 
Dry welding is more expensive than wet welding since it necessitates the use of a hyperbaric tank, but it is also more precise. Wet 
welding, on the other hand, is considerably less expensive but creates a low-quality weld. It's ideal for repairs. Underwater friction 
stir welding solves the difficulties of excessive heat input and grain coarsening in friction stir welding. Because of the improved 
cooling mechanism, precipitation production is significantly decreased [69]. 
When doing underwater laser welding, the weld pool cools more quickly than the other components, resulting in a new morphology. 
With increasing depth, the temperature of the keyhole tends to rise. In the case of Friction Stir welding, it has been shown that the 
weld zone cools more quickly, resulting in novel morphology and grain refinement, resulting in increased strength. The 
development of delta and gamma ferrite dual phases reduces the fatigue behavior of stainless steel in borated and polluted water 
[46]. 
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The border between the two phases contributes to hydrogen trapping and the beginning of fractures. Any material's hardening 
process can be greatly influenced by continuous and repeated fatigue cycles. Timing and fatigue cycles are important factors in 
hardening [98]. 
The mathematical model proposed in this work may be used to analyze the fatigue of any reactor component. We can get a better 
weld in underwater laser welding if we utilize a filler wire and a double side gas nozzle that can generate a local air cavity. The 
heat-affected zone (HAZ) is reduced by the water [18]. 

 
Table V 

Chemical Composition of HJ350(WT.%) 

 
If the weld is being affected by abrupt water currents and disturbances, a 4:6 weight ratio of biphenyl- epoxy resin and welding flux 
might be used. This combination preserves the weld and aids in the production of a better weld. In high temperatures, the fatigue 
strength of dissimilar metals is greatly diminished. Water that has been borated or disputed raises it even more. Residual strain can 
be detected at the welding contact between two different materials, which can lead to dip cracking [147]. 
 

Table VI 
Chemical Composition of HJ350(WT.%) 

 
The weld joint was tested for microstructural features and mechanical qualities using various wires with varying CaF2 
concentration. In welding, the weld speed and angle are extremely important. The length of the weld pool grows as the weld speed 
rises, but the time it takes to solidify and alter the weld pool decreases. The angle of the weld pool determines the form of the pool. 
Electrodes with polymer coatings were chosen over traditional electrodes for greater penetration power [67]. The application of 
DCEP polarity decreases hydrogen infusibility. The results of the tests to determine the diffusible hydrogen reveal that the hydrogen 
in the weld metal ranges from 5 to 21 ml / 100 g Fe and is dependent on the welding conditions, particularly the weld metal 
consumption. Welds produced using local drying chambers function better than wet welds and can fulfil classification society 
parameters for depths of up to 200 meters [17] [59]. 
All electrodes are waterproofed with varnish, with a coating thickness of 0.2 mm on average. Ten different types of electrodes were 
tested for arc stability, metal transfer, and welding performance. The molten metal lowers and fills with air as the arc travels along 
the weld. However, this is due to the cooling rate. The metal hardens and produces mounds and deep incisions when welded 
underwater [54]. 
We can assure high welding quality without the dangers associated with basic arc welding by utilizing a properly insulated electrode 
for underwater welding. If this study continues, we can calculate the welding speed [60] to get the optimal strength of the 
underwater welded connection. Underwater welds have stronger strength and lesser ductility, according to experimental evidence. 
Underwater weld strength rose from 6.9% to 41%, but ductility of most welds decreased by roughly 50%. Basic steel material, 
welding direction, and corrosion of basic steel material are all part of the study. The phase content of marten site (M) and upper 
bainite (BU) phases reduces as the induction heating voltage increases, whereas the phase content of hypo eutectoid ferrite (PF) and 
cycloferrite (AF) phases increases. [8] As the heating voltage grows, the temperature rises as well.  
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E. Graphical Analysis of Weld Zone 
Wet solderability has been enhanced thanks to recent developments in nickel-based flux core fillers, and a halogen-free flux 
formulation for wet soldering has been particularly created. For the actual implementation of the Gas Tungsten Arc Welding 
(GTAW) process in the over pressure mode, the particular relationship diagram of the service life of the electrodes WL 10 & WT 20 
with ambient pressure & arc power is extremely significant. Arc current and voltage are both selected. Because it is high in low 
ionization elements like potassium and sodium, liquid glass is an essential arc stabilizer and surfactant. 
The welding arc is more stable, and the underwater welding process window is more stable, thanks to the density and low ionization 
potential around the underwater arc. 
 

Fig. 10 da/dN vs delta K curve 
 

To scale the fatigue propagation rate in the welded material, a graph of da/dN against. K using log function was created. The water 
depth, humidity in the underwater welding region, and arc stability are all elements that influence the fatigue behavior of underwater 
welds. 
 

 
Fig.11 Distribution of hardness in the welded joint 

 
A graph of hardness vs. distance along the weld axis from the root is examined, and the varied behavior of HAZ on different 
materials may be examined, revealing the weld's structural composition. In addition, maximum softening area, hardness decrease, 
and other parameters may be computed [69]. 
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F. Mechanical Behavior of Materials 
Apply sophisticated welding techniques, including as friction and laser welding, to better understand and optimize the behavior of 
materials and the welding process. Invented a novel welding process and investigated its potential for use in underwater welding. 
Cables and hoses used for electricity and gas supply typically restrict the robot's wrist mobility during the welding process [16]. The 
welding flame may be moved to each welding location and positioned perpendicular to the welding seam by the robot. It may 
approach locations in the work area from any angle and has one or more motion axes. This allows the robot to position the welding 
gun to weld components in a variety of ways. 
In most cases, GMAW is the preferred method for robotic welding. Apart from minor radiation attenuation, the laser welding 
mechanisms for air and wet welding appear to be very similar. Although welds in holes deeper than 10 mm (0.4 inches) are porous, 
the majority of welds have mechanical strength in terms of strength and toughness. 12) Welded deposits on 2205 duplex stainless 
steel produced by the local cavity technique in air and under water revealed similar microstructure and characteristics [27]. 
The heat affected zones in all welds were extremely tiny, ranging in width from 0.2 to 0.6 mm, and increasing the welding heat 
input to 1.8 kJ/mm only marginally increased the width of the heat affected zone [37]. 
Tensile properties: Results indicated that underwater friction stir welding had a better joint efficiency than regular friction stir 
welding (60 percent and 55 percent respectively). There was a finding that friction welded joints performed better in terms of 
elongation generated, with 11.2 percent for the parent material vs. 4.56 percent for the welded junction [146]. 
1) Macro and Microstructure: When comparing the defect-free trapezoidal shape of the friction stir welding joint to the defect-

free trapezoidal shape of the underwater friction stir welding joint, the defect-free trapezoidal shape is seen in friction stir 
welding but not in underwater friction stir welding. The grain size found in underwater friction stir welding is larger in SIR, 
smaller in MTR (Material Test Report), and finer in PIR [103]. 

2) Micro Hardness: During testing, it was discovered that the hardness level in underwater friction stir welding joints varies from 
108 HV to 131 HV, whereas the hardness level in friction stir welding joints ranges from 108 HV to 120 HV. Lower hardness 
area [63] shows 90 to 94 HV. 

3) Fracture Surface Analysis: Near the edge of tungsten metal arc welding, significant grain deformation occurs, resulting in local 
fractures with a reduced hardness. 

4) Finite Element Analysis: In a friction stir welding joint, temperature is measured at the tool's leading and trailing edges in a 
lateral direction that is likewise asymmetrical. 

The heat delivered to the preheat zone in underwater friction stir welding is given off by convective heat transfer through water. The 
warmup zone temperature was too low for underwater friction stir compared to friction stir. The temperature range was about 400 
degrees Celsius at the FSW joint, which suggests a larger TMAZ area. Material takes on a plastic character at such high 
temperatures, but only a small portion of the ocean encounters such temperatures [41]. 
Ni-based weld metals are found to be completely austenitic in character, with columnar sub grain. Because of the fast-cooling rate 
and short retention period at high temperatures, grain boundary migration forms Type II boundaries in the austenite temperature 
range. The grain boundary thickens and liquefies in the microstructure of the base metal 304L. In the nickel-based weld, the 
columnar structure is visible. 
The key components C, Fe, Cr, and Ni were studied, and it was discovered that the amount of Fe was substantially reduced, while 
Ni and Cr content steadily rose. When inspecting the interaction under a microscope. The Fe concentration of 304L/ER308 seldom 
changes, while the Cr level is negligible. As a result, the chemical composition distribution at the weld's contact between ferrite base 
metal and austenitic metal is more complex than at the uniform interface [63]. 

Fig. 12 micro hardness in underwater and in-air joints. 
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Underwater welding with moisture has a different melting point micro hardness curve than air welding. The nickel-based weld metal 
in the air has certain properties in common with water. Furthermore, the spacing between dendrites is affected by the cooling rate. 
On the 16Mn side, the measured limits of HAZ 304L and Type II HAZ are comparable to those observed underwater. The quantity 
of -ferrite present in the weld metal rises as the cooling rate increases in the microstructure of the DMW joint utilizing ER308 in the 
weld metal air [63].  
The strength of the electric field, which has a direct effect on current and arc length, will increase as the water column rises due to a 
decrease in current arc diameter. It was also discovered that the volume of bubbles is related to the welding process's stability. 
Halogen gases were shown to be troublesome for the welding process during testing [63]. 

Fig. 13 Tensile stress curve vs. elongation 
 
The SN curve technique, which represents the rotational bending load, is used to calculate fatigue resistance and fatigue life, and the 
threshold value may be seen of as a region where cracks do not form during growth. The link between the crack growth rate and the 
difference in working stress intensity is shown in the realm of Paris's law [10]. The second step before fracture occurs is the rate of 
crack growth. The last step of the propagation process occurs at a very quick pace in the graph's ultimate failure zone, so that the 
tension intensity propagation exceeds the value of critical stress intensity [8]. 
The hand wheel and the bottom plate are used for explosive welding. The explosive explosion accelerates the flying board to the 
speed VP, and then the speed VP collides with the substrate at a certain angle (called the collision angle). It is proportional to the 
angle of contact. The kinetic energy of the flight board is transformed into various kinds of energy during the collision, resulting in 
high pressure at the connection's interface, and therefore the weld seam is created owing to the massive pressure of the metal flow 
[33]. 
 
G. Droplet and Bubble Formation 

Fig. 14 Force acting on the droplet 
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It may be determined whether the bubble size rises or decreases based on the solution of this equation (bubble-water- (1 / R1 + 1 / 
R2)). The horizontal expansion of the bubble is thicker than the bubble growth along the z-axis or along the height, according to 
both experimental and numerical findings. The contraction phase 1 begins at the bottom. Due to the frequent expansion and 
contraction of arc bubbles, be careful not to introduce water into the arc [1]. Bubble development is divided into three stages: 
growth, soil compression, and separation. The microstructure of UFCAW welded joints has been discovered to be made up of three 
parts: eutectoid ferrite, granular bainite, and acicular ferrite. The austenite grain size rises, the eutectoid ferrite (PF) repaired by 
ferrite changes into the eutectoid ferrite (PF) of the original eutectoid ferrite, and the upper bainite BU) is decreased and replaced by 
granular bainite under the action of ultrasound. 
The use of ultrasound has also been shown to enhance the ductility of the welded joint. It was also discovered that the split surface 
vanished when the upper sample of the underwater ultrasonic wet weld was destroyed. The two peaks with the greatest peaks raise 
the likelihood to 17.5 percent when evaluating the electrical signal from the welding process, confirming that the welding process in 
the two cases is more stable than in the other situations. As a result of the mixture's protective action, the speed is significantly 
slowed. The elongation and maximum tensile strength of submerged arc welding have also been observed to improve [7]. 

Fig. 15 Gas formed during welding process escaping water 
 
The relative distance between the welding flame and the centerline of the molten pool rises as the welding speed increases, resulting 
in the molten pool lengthening. Furthermore, when welding speed increases, the weld seam improvement becomes extremely tiny. 
Because big bubbles are difficult to produce in the molten pool, the fluctuation in the molten pool is considerably decreased [9]. The 
content of diffusible hydrogen progressively increases as the welding speed increases. The diffusible hydrogen concentration in the 
weld metal is lower when the welding speed is less than 2.0 mm/s, which is a significant observation. Weld ability is present, and 
intricate interactions may be seen between each continuous layer of the weld and the preceding weld, as well as between the 
microscopically observable phases in the heat-affected zone. The base metal is determined by the austenite's cooling rate. The water 
around the arc boils and transforms into vapor bubbles during underwater wet welding. The arc bubble's growth has a substantial 
impact on the fall. The molten droplet penetrates the welding pool and turns it into a mist, which is rejected by the molten droplet 
due to the strong repulsive force. The LUADTC technique, as compared to standard wet welding, reduces average weld width and 
average weld reinforcement strength, and improves the metal [45]. 
The last observation is to enhance underwater welding efficiency. Reduce the number of flaws and inclusions in your welds. Almost 
all of the tests utilizing various metals, restrictions, and parameters showed improvements in mechanical and microstructural 
characteristics. Some of these modifications have occurred. Is excellent, but the remainder must be managed so that the weld is 
successful. To avoid unneeded modifications, this must be done in a tightly controlled setting [15]. 
 
H. Miscellaneous 
The pictures of arc bubble dynamic behavior in underwater arc welding at various times are exhibited, and it aids the material's 
underwater weld quality. It also assures the quality and stability of the weld zone. To produce but joints, different feed rates and 
travel speeds are utilized, and the effect of the speed determines the breadth of the weld. A graph of weld width vs. travel speed is 
created, followed by tensile and impact toughness calculations and drawings, all of which aid improve weld quality. The weld 
rotational & water rotational dynamical effects in the weld region are improved by plotting rotational speed vs. tensile strength. 
The weld in the rotating welding technique is also affected by the metal composition [45]. The solubility of hydrogen at different 
temperatures can impact the weld, since it can cause large bubbles to develop and the welded structure to collapse, according to a 
microstructural pool x-ray. The weld rotational & water rotational dynamical impacts in the weld zone region are improved by 
plotting rotational speed vs. tensile strength. The composition of the metal has an impact as well. Weld using a rotating welding 
technique the solubility of hydrogen at different temperatures can impact the weld, since it can cause large bubbles to develop and 
the welded structure to collapse [122]. Microstructural pool x-rays were drawn and observations were made. 
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On various materials, the tool rotation velocity (rpm) and transverse velocity (mm/min) are estimated to aid in the strength and 
tensile computation of the weld.  
In addition, graphs of thickness and rotation speeds have been created. The welding parameters such as wire feeding rate and arc 
voltage welding current fluctuation with respect to time were plotted using a high-speed camera. The microstructural characteristics 
of the weld aid in the appropriate dynamical concept [6]. 
Positive pressure welding is done in a sealed chamber close to the structure that has to be welded. At the main pressure, the chamber 
is filled with gas (typically helium with 0.5 bar oxygen). The habitat is enclosed in pipes and filled with a breathable helium/oxygen 
combination. At or slightly over the appropriate welding pressure. Despite the fact that the range of this area is smaller than 0.5 mm, 
the hardness value is close to 600 Hk (100 g). 
Because the greater the 3/16 inch, the more heat accumulated, HAZ hardening in underwater welding will not go out of hand. The 
less hardness induced by the electrode, the better. The weld form in underwater and air welding is found to be fairly comparable 
[86] when the welding current and velocity are the same. 
 

V.  CONCLUSION 
A. Wet welding and dry welding are the two main forms of underwater welding. Underwater wet welding (UWW) provides a 

number of advantages, including simpler equipment, more mobility, reduced preparation time, and lower costs. Underwater dry 
welding, on the other hand, is costly, requires a complex equipment, and limits the diver's movement. Dry welding can result in 
a high-quality weld. Wet welding, on the other hand, is ideal for maintenance and repair work since it is far less expensive than 
dry welding. 

B. The cooling system is good since the welding is done under water; thus, grain coarsening and precipitation are significantly 
minimized, resulting in higher joint strength. The weld's mechanical and microstructural characteristics are improved. 

C. The type of weld to be used is influenced by the depth of the water, the waves in the water, and the temperature of the water. 
They are extremely important in defining the weld characteristics. Porosity, brittleness, crack propagation, and bubble 
formation all increase as depth increases. 

D. Welding speed and angle are both important factors in determining weld quality and flaws. Welding at a slow pace can result in 
bulges, while welding at a fast speed might result in pits, lowering the quality of the weld. The number of passes in the 
superheated section of the welded connection is inversely related to the strength, according to experimental data. 

E. Underwater welding may be done both in water and in a dry environment using a specially constructed pressure shell. 
 

VI. FUTURE SCOPE AND RESEARCH DIRECTION: 
There are numerous unsolved difficulties in the field of marine and offshore welding, which need further study and knowledge. This 
article provides a basic overview of underwater welding, including the principals involved, as well as the benefits and drawbacks of 
various forms of underwater welding. The current traditional procedures are discussed, as well as some best practices. One of the 
most effective welding processes is underwater friction stir welding, which allows you to fuse a variety of materials while 
maintaining good mechanical and tensile strength. 
Water acts as a cooling medium, aiding the microstructural development of the weld, making this welding process more effective 
than its onshore counterpart. The use of a twin gas nozzle in submerged arc welding to form an air cavity above the weld zone, 
which separates the weld zone from the impact of water, is another helpful approach. Stick welding using polymer coated electrodes 
has been a huge success; the polymer serves as a flux and protects the weldment. 
The polymers can be further investigated in order to expand the possibilities for underwater welding. The addition of organic resin 
aided welding to the research is a bonus. These variables can be investigated further. All other welding processes, like the ones 
described above, have demonstrated outstanding performance throughout time and can be further investigated in order to achieve 
the aim of flawless underwater welding. Finally, with the advancement of technology, further research is recommended. 
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Fig. 16 Underwater welding research work over the years 

 
Furthermore, in recent years, research in the field of underwater welding has declined substantially. To achieve the aim of flawless 
welding, more effort must be done. 
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