

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 9 Issue: X Month of publication: October 2021

DOI: https://doi.org/10.22214/ijraset.2021.38605

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Performance of Oil Fired Steam Boiler (100 Kg / Hr)

Sandip D Patil¹, Rahul M Pawar², Ganesh R Sharma³

¹PG Scholar, Rajarambapu College of Sugar Technology And Project Co coordinator Datacone Engineers Sangli Maharashtra ²HOD Sugar Technology Department, Rajarambapu College of Sugar Technology Islampur Dist Sangli Maharashtra ³ Project Engineer Datacone Engineers Sangli Maharashtra

Abstract: Steam boiler or simply a boiler is basically a closed vessel into which water is heated until the water is converted into steam at required pressure. To study the performance, Graphs are to be plotted for Pressure, Temperature, Boiler Efficiency, Equivalent Evaporation.

I.

Keywords: Dryness Fraction, Pressure, Boiler Efficiency, Equivalent Evaporation, Separating And Throttling, Condenser Efficiency.

INTRODUCTION

The basic working principle of boiler is very simple and easy to understand. The boiler is essentially a closed vessel inside which water is stored. Fuel is bunt and hot gasses are produced. These hot gasses come in contact with water vessel where the heat of these hot gasses transfer to the water and consequently steam is produced in the boiler. Boiler efficiency depends upon the size of boiler used . Actually there are some losses occur like incomplete combustion, radiating loss occurs from steam boiler surrounding wall, defective combustion gas etc. In water tube boiler the water is heated inside tubes and hot gasses surround these tubes. In sugar industries mostly water tube boiler is used.

To study the performance, Graphs are to be plotted for Pressure variation , Temperature variation , Boiler Efficiency , Equivalent Evaporation

Fig. 1 Boiler setup with condenser and Separating And Throttling Calorimeter

II. EXPERIMENTAL SETUP

The experimental setup consist of oil fired Non IBR Boiler of 100 Kg/Hr Capacity with economizer. To measure the dryness fraction of steam separating throttling calorimeter is provided. Shell and tube type condenser with reciprocating type vaccum pump. The whole setup is mounted on a self-contained sturdy iron Frame

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue X Oct 2021- Available at www.ijraset.com

(

III. FORMULAS USED

1) Boiler Efficiency = (Heat Exported by Outlet Steam / Heat Supplied by Fuel) x 100

 $= M_a(h_s-h_w) / M_f x C_V$

Where M_a is the mass of steam in Kg/hr = 100kg/hr

hs is the final enthalpy of steam in KJ/kg (from the steam table corresponding to steam pressure

Absolute Pressure) in bar and dryness fraction, (X=0.8) , ~=~ h_{\rm f} + x~h_{\rm fg}

hw is the initial enthalpy of steam in KJ/kg from the steam table corresponding to water inlet temperature to boiler

Mf is the mass of fuel in kg/hr = 5.25 kg/hr

C. V. is the calorific value of uel (Diesel) = 45980 KJ/kg.

- 2) Equivalent Evaporation = $M_a(h_s h_w) / 2257$ Kj / Hr
- 3) Dryness Fraction = $(X_1) \times (X_2)$, Where
 - X_1 = Dryness fraction of steam by separating method = $M_T / (M_T + M_S)$
 - (M_T = Mass of water collected inn separating calorimeter , M_S = Mass of water collected in throttling calorimeter)
 - X_2 = Dryness fraction of steam by throttling method = $(h_{g2} + C_p (T_2 -) h_{f1}) / h_{fg1}$ Where,
 - h_{g2} = Total Heat of Steam at Pressure P_2 in KJ/Kg.
 - C_p = Specific Heat Of Steam after Throttling(T_2) in KJ/Kg = 2.01 KJ/Kg
 - T₂ = Temperature of Steam Inside Throttling Calorimeter
 - T_{s2} = Saturated Temperature of Steam at Pressure P₂ in ^OC
 - h_{f1} = Enthalpy of water at Pressure P_1 in KJ/Kg.
 - h_{fg1} = Enthalpy of Evaporation at Pressure P_1 in KJ/Kg.
- 4) Condenser Efficiency = Actual cooling water temperature rise / Max. Possible temperature rise

$$= (t_{w2} - t_{w1}) / (t_s - t_{w1})$$

Where t_{w1} is the circulating cooling water inlet temperature

- t_{w2} is the circulating cooling water outlet temperature
 - t_s is saturation temperature corresponding to Condenser pressure 0.2 bar = 60.09° C

(From steam table)

	Boiler Details				
Sr	Technical				
No	Specification				
1	Steam	100 kg/Hr			
	Output				
2	Working	10 kg/cm^2			
	Pressure				
3	Fuel	5.25 kg/hr			
	Consumption				
	(Diesel)				
4	Blower and	0.5 HP			
	Fuel Motor				
5	Feed Water	0.5 HP			
	Pump				
6	Design	Three Pass			

	TA	BLE	Ι
_		_	

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue X Oct 2021- Available at www.ijraset.com

Boner Observation Table							
	Water Inlet Water outlet		Steam	Steam Pressure (Exhaust Gas		
	temperature to	temperature	Temperature	Gauge) Kg/cm ²	Outlet		
	economizer	from			Temperature		
		economizer					
1	28	36	123	1.5	194		
2	28	42	138	2.5	204		
3	28	50	157	5	212		
4	28	55	166	6	218		
5	28	56	170	7	220		

TABLE II Boiler Observation Table

TABLE III

Experimental Calculated values for Boiler Efficiency and equivalent Evaporation wrt observation Table

Sr No	Boiler	Equivalent
	Efficiency %	Evaporation Kg/
		Kg of Fuel
1	88	17.84
2	83.14	16.96
3	78.79	16.02
4	76.92	15.64
5	75.83	15.44

TABLE IV Observations for Separating and Throttling Calorimeter

Sr No	Separating	Separating	Mass of	Throttling	Throttli	Mass of	Dryness
	Calorimeter	Calorimeter	water	Calorimeter	ng	water	Fraction
	Temperature	Pressure kg /	collected in	Temperatur	Calorim	collecte	(X)
	T_1	cm ²	separating	e T ₂	eter	d in	Calculat
		P ₁	calorimeter		Pressure	Throttli	ed
					kg / cm^2	ng	
					P ₂	calorim	
						eter	
1	130	1.8	30	101	0.4	0.4	0.74
2	140	2.9	30	105	0.5	0.5	0.75
3	146	3.5	35	107	0.6	0.6	0.79
4	157	4.4	35	110	0.7	0.7	0.81

TABLE V

Condenser Details

Sr No	Technical Specification	
1	Shell Diameter	300 mm
2	Shell And Tube Length	1000 mm
3	Tube Diameter	20mm
4	No of Tubes	18
5	Water Inlet Pipe Diameter to Condenser	32 mm
6	Orifice Diameter in water supply Pipe	22 mm
7	Pressure Difference across orifice	0.2 Kg/cm^2

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue X Oct 2021- Available at www.ijraset.com

Condenser Observation Table							
	Steam Inlet	Condensate	water inlet	water Outlet	Condenser	Water	Condense
	temperature	outlet	Temperature	Temperature	Pressure	Flow	r
	to condenser	temperature from	to condenser	from	Bar with	Rate to	efficiency
		condenser		condenser	reciprocati	Condeser	Calculate
					ng vacuum	LPM	d %
					pump		
1	95	54	25	29	0.2	90	11.42
2	97	56	25	30	0.2	90	14.28

TABLE VI Condenser Observation Table

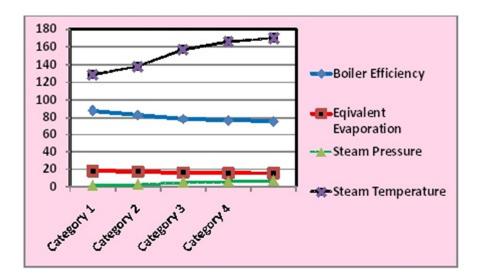


Fig. 2 Boiler Efficiency, Equivalent Evaporation, Steam Pressure, Steam Temperature Graph

IV. CONCLUSION

From the Graph of Boiler Efficiency and Equivalent Evaporation, It is observed that Equivalent evaporation increases with increase in boiler efficiency.

From the Graph of Pressure Vs Temperature, It is observed that as pressure increases corresponding temperature also increases.

REFERENCES

- [1] Warren L McCabe , Julian C. Smith, Peter Harriot. (1993) Unit Operations Of Chemical Engineering. Fifth Edition. New York: McGraw-Hill
- [2] J.M.Smith , H.C.VanNess, M.M.Abbott. (1996) Introduction to Chemical Engineering Thermodynamics. Fifth Edition. New York: McGraw-Hill
- [3] E Rathakrishan. (1993) Gas Tables. University Press (India)Limited Hydrabad
- [4] Steam and gas turbines and power plant engineering, by Dr. R. Yadav.
- [5] Power plant engineering , by GK Pathak

AUTHOR

Sandip D Patil, PG Scholar Rajarambapu College of Sugar Technology And Project Co coordinator Datacone Engineers Sangli Maharashtra – sandipdpatil456@gmail.com.

Rahul M Pawar , HOD Sugar Technology Department Rajarambapu College of Sugar Technology Islampur Dist Sangli Maharashtra – rahul.pawarsugartech@gmail.com

Ganesh R Sharma Project Engineer Datacone Engineers Sangli Maharashtra-sharma.ganesh77095@gmail.com

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)