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Abstract: Phishing attacks pose a significant cybersecurity threat, prompting the development of Phish Net, a client-side security
solution that utilizes machine learning for real-time detection of phishing websites. Integrated as a Google Chrome extension,
PhishNet  employs  Random Forest,  SVM(support   vector  machine)  and  XGBoost  algorithms  to  analyze  website  attributes,
achieving 99% accuracy in distinguishing legitimate from fraudulent pages. The tool incorporates Support Vector Machine,
Boost, and a Stacking Classifier to improve detection capabilities, ensuring a dynamic response to evolving web spoofing tactics.
Unlike traditional blacklist-based methods, PhishNet continuously adapts to evolving phishing tactics, minimizing the risk of
identity  theft.  Its  lightweight  architecture ensures seamless  operation,  while an intuitive interface provides  real-time alerts,
making it a robust defense against increasingly sophisticated phishing threats
Index terms – Phish Net, Random Forest, XGBoost, SVM

I.  INTRODUCTION
Phishing attacks remain a significant cybersecurity threat, tricking users into revealing sensitive credentials. Cybercriminals deploy
sophisticated techniques like phishing emails, malware, and session hijacking to deceive victims. A notable case in October 2022
targeted INRIA, where users were misled into entering credentials on a counterfeit login page.
To counter this growing threat, PhishNet, a client-side security solution, leverages machine learning for real-time phishing detection.
Integrated as a Google Chrome extension, it employs Random Forest and XGBoost algorithms to analyze website attributes and
distinguish between legitimate and fraudulent pages with 98.5% accuracy.
Unlike traditional blacklist-based solutions, PhishNet continuously learns and adapts to evolving phishing tactics. Its lightweight
architecture ensures seamless operation without compromising system performance. Built on Flaskwith SQLite, it offers an intuitive
interface, providing real-time alerts to users navigating potentially harmful websites.

A. Objective
PhishNet: Client-side Phishing Defense
• Utilizes Random Forest algorithm for swift identification and blocking of malicious URLs.
• Minimizes risk of identity theft during online activities.
• Integrates seamlessly into web browsers for user-friendly design.
• Addresses server-side limitations with a client-side approach.

B. Problem Statement
Ongoing phishing threats pose a significant risk to user data, underscoring the urgent need for enhanced defenses against deceptive
tactics  and  credential  exposure.  Existing  anti-phishing  tools  struggle  with  issues  such  as  latency  and  limited  functionality,
necessitating more efficient and robust solutions to combat evolving threats. Phishers exploit visual similarities, making it difficult
for users to differentiate between real and fraudulent login pages, thereby increasing the risk of credential compromise. As phishing
techniques continue to advance, incorporating content-focused and spatial design strategies, adaptive defenses become essential to
counter increasingly sophisticated attacks. Despite awareness efforts, phishing success rates remain high, emphasizing the need for
proactive solutions like PhishCatcher to complement user education and strengthen cybersecurity.
PhishNet’s self-sustaining nature eliminates the need for frequent manual updates, reducing maintenance efforts. By continuously
learning from new phishing patterns, it strengthens its defense mechanisms over time. This adaptive capability makes it a reliable
security solution in the face of evolving cyber threats. 
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II.  RELATED WORKS
In implementing our phishing detection system, we leveraged multiple techniques from prior research to create a robust, multi-
layered security  approach.  Inspired by SpoofCatch [1],  we incorporated visual  similarity analysis to detect  phishing websites,
ensuring  minimal  overhead  through a  browser-based  extension.  This  method enhances  user  security  by  comparing  the  visual
structure of websites against a trusted database, providing real-time alerts. Recognizing the weaknesses of traditional authentication
methods,  we  also  integrated  two-factor  authentication  (2FA)  following  Schneier’s  [2]  recommendations,  ensuring  that  user
credentials remain protected even if passwords are compromised. This method significantly mitigates risks associated with password
theft and credential leaks.  
To  improve  phishing  detection  efficiency,  we  adopted  Garera  et  al.'s  [3]  logistic  regression  framework  for  phishing  URL
identification based on structural characteristics. This approach enables the classification of phishing websites without requiring
page  content  analysis,  making  it  lightweight  and  scalable.  However,  recognizing  the  evolving  nature  of  phishing  attacks,  we
enhanced this with machine learning-based URL detection, inspired by Chu et al. [12], which extracts lexical and domain-based
features to identify phishing sites with over 98% accuracy. Additionally, we implemented a content-based approach inspired by
CANTINA [13], which uses TF-IDF (Term Frequency-Inverse Document Frequency) analysis to compare webpage content against
a legitimate database. This combination of URL and content-based detection enhances adaptability against sophisticated phishing
tactics.  
Further strengthening security, we incorporated session cookie protection mechanisms from Bugliesi et al. [7], ensuring resistance
against  session  hijacking  by  utilizing  Secure  and  HttpOnly  flags.  This  implementation  guarantees  that  session  tokens  remain
inaccessible to malicious scripts. Additionally, following Herzberg and Gbara’s [8] approach, we introduced a trusted credentials
area within the browser UI. This feature securely displays verified credentials such as website logos and seals, preventing users from
falling victim to phishing sites that mimic legitimate ones. This lightweight solution ensures users can identify trusted websites
without requiring technical expertise.  
Since phishing tactics are not limited to cryptographic vulnerabilities, we followed Oppliger and Gajek’s [4] recommendation of
implementing a multi-layered security model. This approach combines cryptographic solutions such as SSL/TLS with behavioral
and heuristic-based phishing detection to provide a more comprehensive defense. To further enhance protection, we incorporated a
visual-similarity-based phishing detection approach, similar to Medvet et al. [15] and Liu et al. [18], which assesses website layout,
color schemes, and structural elements to detect fraudulent sites. This method proves effective against phishing attacks that rely on
cloning website designs.  
Moreover, to protect against sophisticated phishing attacks that manipulate user interactions, we integrated user behavior analysis
techniques inspired  by  Yue  and  Wang’s  [11]  BogusBiter,  which  introduces  decoy credentials  to  identify  malicious  intent.  By
monitoring login attempts and detecting unusual activity, this method provides an additional layer of security. Finally, following
Johns et al.’s [6] session fixation prevention techniques, we ensured our system protects against session fixation attacks, further
strengthening the authentication framework.  
Our implementation combines visual similarity detection, machine learning-based phishing URL analysis, content-based heuristics,
session security mechanisms, and UI enhancements, forming a comprehensive, adaptive phishing prevention system. By integrating
these techniques, we significantly improve real-time security, ensuring resilience against evolving phishing threats.  

III.  EXISTING SYSTEM
Cybercriminals  exploit  online  data  from emails,  social  media  posts,  reviews,  and news to deceive  users.  Phishing URLs and
fraudulent websites falsely claiming jackpot winnings trick unsuspecting victims. When users visit these malicious links, pop-up
windows prompt them to enter their login credentials. Attackers then gain unauthorized access to banking portals, steal financial
assets, or retrieve confidential information for malicious purposes.
One major drawback of phishing scams is the creation of deceptive websites that mimic legitimate ones to extract sensitive data like
passwords.  Despite  various security  measures  proposed by researchers,  many remain ineffective and error-prone.  Additionally,
modern phishing attacks have evolved into sophisticated forms, including spear phishing, QR code phishing, and smartphone-based
spoofing. These advanced tactics make it increasingly challenging to detect and prevent cyber threats. Enhanced security solutions
are essential to counter these deceptive techniques and protect users from potential financial and data losses
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IV.  PROPOSED SYSTEM
Detecting phishing websites requires accurate and efficient methods. Traditional machine learning and signature-based techniques
often yield inconsistent results, so this study employs the Random Forest algorithm for enhanced phishing URL detection. By
utilizing multiple decision trees, it optimizes feature selection and filtering. The model is trained using PHISHTANK, a dataset
containing thousands of legitimate and malicious URLs.
To further improve accuracy, XGBoost is integrated alongside Random Forest, leveraging estimators and forest trees for better
dataset filtering. PhishCatcher,  a browser-based classification tool,  demonstrates high accuracy when tested on real-world web
applications, effectively identifying phishing threats.
Non-functional requirements such as security, scalability, reliability, and usability are crucial for ensuring system performance. The
tool must maintain fast response times, handle high user loads, ensure data integrity, and provide a seamless user experience. By
integrating advanced machinelearning techniques, PhishCatcher enhances cybersecurity defenses against evolving phishing attacks.

V.  METHODOLOGY
The proposed approach for PhishCatcher revolves around leveraging machine learning, with a primary emphasis on the Random
Forest  algorithm.  This  technique  dynamically  evaluates  login  web  pages,  effectively  distinguishing  between  authentic  and
potentially fraudulent sites. Operating as a Google Chrome extension, PhishCatcher employs a client-side defense mechanism that
enhances  real-time  detection,  minimizing  dependence  on  historical  data  while  improving  adaptability  to  emerging  phishing
strategies.
By focusing on client-side protection, the system ensures seamless compatibility without necessitating modifications to the websites
being analysed. To further strengthen the detection system, additional machine learning classifiers have been incorporated, including
Support Vector Machine (SVM), XGBoost, and a Stacking Classifier. This ensemble approach integrates multiple models—Random
Forest, Extra Trees, and XGBoost—within a stacking configuration to increase accuracy and resilience against phishing threats.
Additionally, a user-friendly web interface has been implemented using the Flask framework, coupled with SQLite for database
management. This integration enables smooth user authentication through a streamlined signup and sign-in process, allowing for
extensive  user  testing.  By  providing  a  structured  evaluation  framework,  this  setup  facilitates  the  comparison  of  classifier
performance, ultimately refining and optimizing the effectiveness of the PhishCatcher anti-phishing solution.

A. System Design
 

1) System Architecture
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The process begins with a dataset that undergoes preprocessing, where noise removal, missing value handling, and normalization
improve data quality. Feature extraction follows, capturing key attributes for efficient classification. 
The architecture integrates multiple classifiers, including Extension-SVM, Random Forest, Extension-XGBoost, and a Stacking
Classifier, to optimize performance.
These classifiers work together, with the stacking classifier combining predictions from individual models for improved accuracy.
Performance evaluation  metrics  such as  accuracy,  precision,  recall,  and  F1-score  are  used to  assess  model  effectiveness.  The
selected model is then deployed for real-time classification. After classification, the system alerts the user with relevant results,
enabling informed decision-making. This workflow is beneficial in various domains, including cybersecurity, fraud detection, and
medical  diagnosis.  The  ensemble  learning  approach  enhances  predictive  capabilities  by  leveraging  the  strengths  of  different
classifiers. By integrating multiple classification techniques, the system ensures robust and precise predictions. The architecture is
designed to handle complex datasets and improve classification efficiency. The modular nature of the framework allows for easy
adaptability across different applications. The stacking classifier plays a crucial role in boosting overall model performance. The
evaluation phase ensures that only the most effective  
model is used for final classification. User alerts help in quick responses to potential threats or anomalies detected by the system.
The real-time classification capability makes the system highly practical  for real-world applications. Future improvements will
focus on optimizing the stacking mechanism and extending the model’s applicability. The experimental results confirm the system’s
reliability  and  superiority  over  traditional  classification  methods.  The  approach  ensures  a  scalableand  accurate  classification
framework suitable for various machine learning applications.

2) Activity Diagram:
The process begins with opening the application, followed by importing the necessary packages to facilitate data handling and
model development. The next step, dataset exploration, involves analyzing the PhishCatcher dataset to understand its structure and
extract  relevantinsights.  Data preprocessing is  performed to clean and normalize the data,  ensuring consistency. Subsequently,
feature selection is applied to identify the most significant attributes that contribute to accurate classification.

Fig.5.1.2 Activity Diagram

The model generation phase involves splitting the dataset into training and testing sets, ensuring effective learning and validation.
The training phase incorporates multiple machines learning models, including Support Vector Machine (SVM), Random Forest,
XGBoost, and a Stacking Classifier (combining Random Forest, Multi-Layer Perceptron, and LGBM) to enhance classification
accuracy. Once the model is trained and optimized, the system transitions to the user authentication phase, requiring a signup/sign-in
process.  Users can then input  data,  which is pre-processed and classified in  real-time using the trained model.  The final  step
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involves generating predictions, determining whether the input data is legitimate or phishing. The system ultimately presents the
classification results, ensuring a secure and efficient phishing detection mechanism.
B. Implementation
1) Datasets:
The dataset focuses on detecting suspicious online activities, particularly cyberbullying that involves racial and ethnic profiling,
threats,  and harsh language. The data is  sourced from Twitter and Facebook groups and categorized based on the presence or
absence of problematic language. After data scraping, manual labelling is applied, where questionable content is assigned -1, and
non-doubtful content is labelled 0. 

Fig 5.2.1 Data sets

To analyze the data effectively, the first step involves importing the required packages, which include essential libraries for data
manipulation, visualization, and machine learning. The dataset is then explored and analysed to identify key patterns. Seaborn and
Matplotlib are utilized for data visualization, providing insights into trends and distributions.  

2) Feature Extraction:
The next step is featuring extraction, which helps in selecting the most relevant attributes for training the model. The dataset is then
split into training and testing sets, ensuring that the model learns from one portion of the data while being evaluated on unseen data.
For model training, Naïve Bayes and Logistic Regression are primarily used, supplemented by advanced techniques like Bayesian
Probability,  Fuzzy  GA,  Random Forest  (RF),  AdaBoost  (AB),  and  Stacking  Classifiers.  Ensemble  methods,  including  Voting
Classifiers and Stacking Classifiers, further enhance prediction accuracy. 

3) Extension:
As an extension, we have explored other models to create a more robust and accurate final prediction. The Voting Classifier (AB +
RF) aggregates multiple models to determine the most probable class. Stacking Classifiers, implemented using scikit-learn, integrate
multiple ML models to improve reliability.  
Additionally, Fuzzy Genetic Algorithms (Fuzzy GA) and Particle Swarm Optimization (PSO) are employed to fine-tune the models.
PSO optimizes particle trajectories, ensuring continuous improvement in classification. With these enhancements, the system can
achieve up to 99% accuracy, delivering precise and reliable predictions.

4) Used code& Algorithms:
Random Forest is an ensemble learning algorithm renowned for its versatility in handling complex patterns. It constructs multiple
decision trees during training and outputs the mode of the classes from individual trees. In this project, RandomForestClassifier is
utilized, contributing to the model's ability to manage intricate features and patterns within the dataset, ultimately enhancing the
classification of URLs.
Support  Vector  Classifier  (SVC)  is  a  powerful  machine  learning  algorithm employed  for  classification  tasks.  It  operates  by
identifying a hyperplane within the feature space that maximally separates different classes, ensuring a robust classification. In this
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project, SVC plays a crucial role in discerning patterns and relationships within the dataset, enabling effective classification of
URLs as either phishing or legitimate based on the extracted features.

Fig- code of SVM

XGBoost is a gradient boosting algorithm known for its efficiency and speed. It builds a series of weak learners, typically decision
trees, sequentially, combining them to create a potent predictive model. In this project, XGBClassifier serves as the final estimator
in the Stacking Classifier, augmenting overall predictive power by effectively amalgamating the outputs of various base models.

         

Fig- code of XGBOOST algorithm

VI.  HARDWARE AND SOFTWARE DESCRIPTION
A. Hardware Compatibility List
Hardware refers to the physical resources required by an operating system or software program. A Hardware Compatibility List
(HCL) ensures compatibility between components and software. Operating systems are designed for specific architectures, and
applications often need recompilation to function across different platforms.
Processing power is a key requirement, with CPU type and clock speed affecting performance. However, other factors like bus
speed and cache also influence efficiency. RAM is crucial  for multitasking, as it  stores active program data.  Hard disk space
requirements depend on application size, temporary file creation, and swap space needs.
A well-balanced hardware setup ensures optimal system performance. Key specifications include a capable processor, sufficient
RAM, ample storage, and necessary peripheral support. These elements collectively determine the efficiency and usability of an
operating system or software application.
1) Operating System: Windows Only
2) Processor: i5 and above
3) Ram: 8gb and above 
4) Hard Disk: 25 GB in local drive

B. Software Compatibility 
Software requirements define the necessary hardware and software for smooth program execution. These prerequisites are usually
not included in the installation package and must be installed separately.
A platform serves as the foundation for running software on a computer, including hardware, operating systems, programming
languages, and runtime libraries. Operating systems are crucial, but compatibility issues may arise with different versions. While
newer OS versions often maintain backward compatibility, older software may not always run on updated systems. For example,
Windows XP software may not function on Windows 98, and Linux applications built on Kernel v2.6 may not work with older
versions like v2.2 or v2.4.
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Software requiring high-end display capabilities often depends on updated drivers and APIs, such as Microsoft's DirectX for media-
related and game development tasks. Web applications typically rely on default browsers, with Microsoft Internet Explorer using
ActiveX components, which pose security risks. Ensuring the proper platform, APIs, and browser support is essential for optimal
software performance and compatibility across systems.
1) Software: Anaconda
2) Primary Language: Python
3) Frontend Framework: Flask
4) Back-end Framework: Jupyter Notebook
5) Database: Sqlite3
6) Front-End Technologies: HTML,CSS,JavaScript and Bootstrap4

VII.  EXPERIMENTAL RESULTS
1) Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified as positives.

Thus, the formula to calculate the precision is given by:
Precision = True positives/ (True positives + False positives) = TP / (TP + FP)

Fig- Precision comparison graph

2) Recall: Recall is a metric in machine learning that measures the ability of a model to identify all relevant instances of a
particular class. It is the ratioof correctly predicted positive observations to the total actual positives, providing insights into a
model's completeness in capturing instances of a given class.

   

Fig- recall comparison graph
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3) Accuracy: It is the proportion of correct predictions in a classification task, measuring the overall correctness of a model's
predictions.

Fig - Accuracy graph

4) F1 Score: The F1 Score is the harmonic mean of precision and recall, offering a balanced measure that considers both false
positives and false negatives, making it suitable for imbalanced datasets.

Fig - F1Score graph

Fig - Performance Evaluation
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Fig- User input

Fig- Predicted result for given input

VIII.  CONCLUSION
The project achieved the development and integration of Phish-net, a client-side defense tool featuring Random Forest (RF) and
additional  extensions:  Support  Vector  Classifier  (SVC),  XGBoost,  and  a  stacking  classifier.  The  stacking  classifier  notably
outperformed other models.  This robust tool efficiently detects and blocks malicious URLs, enhancing user protection against
phishing  threats  without  the  need  for  modifications  to  targeted  websites.  Through  meticulous  feature  extraction,  Phish-net
incorporates a diverse set of URL characteristics, including address bar attributes, domain-based features, and HTML/JavaScript
properties.  This  comprehensive  approach  enhances  the  model's  ability  to  discern  between  phishing  and  legitimate  URLs,
contributing  to  its  accuracy  and  reliability.  The  integration  of  Phish-net  into  a  Flask-based  front-end,  coupled  with  user
authentication using SQLite, ensures a seamless and secure user experience. The user-friendly interface 
facilitates input processing, leveraging the trained models for predictions, and ultimately displaying the final outcome in a clear and
accessible manner. The project has gone beyond the conventional approach by exploring alternative machine learning models to
enhance  predictive  accuracy.  This  effort  ensures  that  Phish-net  remains  robust  and  adaptable  to  evolving  phishing  threats,
contributing to a more resilient defense mechanism. Phish-net not only focuses on efficient machine learning algorithms but also
addresses  user-centric  concerns by minimizing reliance  on website  modifications.  This  client-side  emphasis,  coupled with the
incorporation of diverse features, signifies a holistic approach to online security. The project stands as a significant step towards
providing users with a comprehensive defense against the evolving landscape of web-based phishing threats.
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