Plains in a Special Case. The Relationship Between the Planes

Qozaqova Munojat Sharifjanovna
Teacher of the Department of Architectural and Software Design of Namangan Engineering and Construction Institute

Abstract

Annotation: To develop students' understanding of straight lines and planes and to develop skills and competencies in working on related issues. The listener must complete the given task on A4 paper with the necessary tools. Keywords: straight lines, perpendicular, horizontal projection, frontal projections.

I. INTRODUCTION

To develop students' understanding of straight lines and planes and to develop skills and competencies in working on related issues. The listener must complete the given task on A4 pAaper with the necessary tools..
Solution: The plane in space $\mathrm{H}, \mathrm{V}, \mathrm{W}$ can be in the following position with respect to the plane of projections: the plane of all projections - in the general case, the plane perpendicular to one of the planes of projection - the projection plane, perpendicular to the plane of two projections at the same time, ie the third projection parallel to the plane - level plane.

II. MAIN PART

Projection planes: horizontal projection plane (perpendicular to H), frontal projection plane (perpendicular to V), profile projection plane (perpendicular to W).
The frontal trace F_{2} of the horizontal projection plane is perpendicular to the plane of projections H and the axis OX , the horizontal trace can be located at any angle. The horizontal trace of the plane has the property of accumulation, i.e. any point lying in the plane F, the shape is always projected on the horizontal trace F_{1}, the same applies to the point A lying in the plane F (see Figure 1, b).

Figure 1

Figure c depicts a triangle ABC that occupies a projection position with respect to the plane of projections H . The point K lies in this triangle. Its K 2 frontal projection overlaps with $\mathrm{K}\left(\mathrm{K}_{2} \equiv \mathrm{~K}\right)$. K_{1} The horizontal projection of the triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ projected to the horizontal projection. X of the plane of the axis F_{1} relative to the horizontal trace β angles, as well as an angle between the horizontal projection of the triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ and the X axis, which is the angle of inclination formed by the plane F and the plane of the frontal projections of the triangle ABC .

The frontal projection plane R, a clear image of R_{2}, R 1 , and the angular $\mathrm{BCD}\left(\mathrm{B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{BB}_{2} \mathrm{C}_{2} \mathrm{D}_{2}\right)$ are shown in Figure 2 .

Figure 2
In this case (see Figure 2 a) the horizontal trace P_{1} is perpendicular to the V and X axes. Point B lying in the plane P is forcibly projected onto the frontal trace P_{2}. With respect to the frontal projection plane V , the BCD occupies a triangular projection position (Fig. 2 c), so that its projection is projected in the form of a straight line section $\mathrm{V}_{2} \mathrm{~S}_{2} \mathrm{D}_{2}$.
P_{2} va X o'qi orasidagi hamda $\mathrm{B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$ vaX o'qi orasidagi α (2 bac shaklga qarang) burchak P va BCD uchburchak tekisliklarining H proektsiyalar tekisligiga nisbatan qiyalik burchagi hisoblanadi.
The profile projection plane is depicted in Figure 3. The point A corresponding to the profile projection plane and its projection are depicted in Figure 3 a. The A_{3} profile projection lies on the F_{3} profile track. Figures 3 b and c depict the profile projection plane given by the traces $\mathrm{F}\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right)$ of the plane and the triangle $\mathrm{CDE}\left(\mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1} ; \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2} ; \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3}\right)$.
X The projection plane of the profile passing through the axis is called the profile projection plane along the axis, and the profile projection plane dividing the angle between the projections H and V by two is called the bisector plane.
The level plane consists of the following planes: the horizontal plane - parallel to H , the frontal plane - parallel to V , and the profile plane - parallel to W . These plane planes are perpendicular to the two projection planes at the same time. For example, the horizontal plane is parallel to the frontal and profile planes at the same time.

Figure 3

Figure 4 a shows a clear representation of the horizontal plane $\mathrm{F}\left(\mathrm{F}_{2}, \mathrm{~F}_{3}\right)$ in the system of projections H, V and W , and Figure 4 b shows the frontal and profile traces of this plane $\left(F_{1}\right.$ and $\left.F_{3}\right)$. It is also shown that the point A lying in the plane F is projected onto the plane of projections.

Figure 4
The horizontal plane of the triangle ABC (see Figure 4 c) is given by projections $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$, and $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$. In this case, the frontal and profile projections are represented by the intersections of a straight line, and the horizontal projection is equal to the actual size of the triangle, i.e. ABC , and is in a position parallel to the plane of horizontal projections H in space.
Figures $5 a$ and b show the K frontal plane and show the horizontal traces K_{1} and profile K_{3} of this plane and the projections of point A corresponding to this plane. In this case, the horizontal and profile projections of point A overlap with the corresponding traces of the plane.
The horizontal projections $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ and the profile projections $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$ of the plane ABC are projected as a straight line, the frontal projection is projected in the form of a triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$, and the frontal projection is equal to the actual size of the triangle, ie $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}=\mathrm{ABC}$.

Figure 5

REFERENCES

[1] ENGINEERING GRAPHICS. ESSENTIALSFourthEdition Text and Independent Learning DVD. Kirstie Plantenberg University of Detroit Mercy 2010. SDC . www.SDCpublications.com.
[2] DescriptiveGeometry 1 by PálLedneczkiPh.D
[3] Azimov T.J. CHizma geometriya. O’quv qo'llanma. T.: TDTU, 2005 y.
[4] Akbarov A. CHizma geometriya va muhandislikgrafikasi. Toshkent2005 y.
[5] Sharifjanovna, Q. M. (2021). Perpendicularity of a Straight Line to a Plane and a Plane to a Plane. International Journal of Innovative Analyses and Emerging Technology, 1(5), 70-71. Retrieved from http://openaccessjournals.eu/index.php/ijiaet/article/view/378

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

