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Abstract: Infectious disease outbreaks pose ongoing challenges to global public health, particularly due to the recurrent and 
dynamic nature of many pathogens. Mathematical modeling offers a powerful tool for analyzing and predicting the spread of 
infectious diseases. This study focuses on the SIRS (Susceptible–Infectious–Recovered–Susceptible) model, a compartmental 
framework that accounts for temporary immunity and its loss over time. We present two case studies—Influenza and Pertussis—
to examine how variations in transmission rate, recovery rate, and immunity loss rate influence epidemic behavior. Simulations 
reveal that diseases with slower immunity loss, such as influenza, tend to stabilize over time with predictable seasonal peaks, 
whereas faster immunity loss, as in pertussis, leads to sharper and more frequent outbreaks. These insights underline the 
importance of tailoring vaccination strategies and public health interventions to specific epidemiological dynamics. The results 
demonstrate the SIRS model’s utility in forecasting disease trends and informing control policies, thus providing a foundational 
approach for anticipating and managing future outbreaks. 
Keywords: SIRS Model, Disease Outbreak Prediction, Infectious Disease Modeling, Mathematical Modeling, Compartmental 
Models, Differential Equations, Computational Epidemiology. 
 

I. INTRODUCTION 
The global health landscape is constantly threatened by the emergence and re-emergence of infectious diseases, which have the 
potential to cause significant morbidity, mortality, and socio-economic disruption. In the face of such threats, mathematical 
modeling has emerged as a powerful and indispensable tool for understanding the spread of infectious agents, evaluating control 
strategies, and predicting potential future outbreaks. Among the various mathematical approaches, compartmental models such as 
SIR, SEIR, and SIRS remain foundational due to their simplicity and ability to capture core epidemiological mechanisms. 
The SIRS (Susceptible–Infectious–Recovered–Susceptible) model is a natural extension of the classical SIR model that incorporates 
the phenomenon of temporary immunity. Unlike permanent immunity assumed in the SIR model, the SIRS framework allows 
recovered individuals to return to the susceptible class after a period, modeling diseases where immunity wanes over time. This 
feature makes it particularly suitable for studying diseases like influenza, pertussis, and coronavirus variants, where reinfection is a 
common concern. 
Recent advancements in the SIRS (Susceptible–Infectious–Recovered–Susceptible) model have significantly enhanced our 
understanding of diseases with temporary immunity and informed public health strategies. El Khalifi and Britton (2022, 2023) 
extended the classic SIRS framework by modeling gradual immunity waning—either linear or exponential—and incorporating 
vaccination dynamics. Their work reveals that standard SIRS underestimates both endemic prevalence and required vaccine supply, 
particularly when immunity decays gradually or heterogeneously. 
Páez Chávez et al. (2025) introduced an SIRSV model accounting for temporal vaccine efficacy decay and periodic revaccination. 
Their bifurcation and optimization analyses shed light on vaccine scheduling and non-pharmaceutical interventions, uncovering 
critical dynamics such as bistability and fold bifurcations. Marenduzzo et al. (2025) discovered that even in absence of seasonality 
or behavior change, intrinsic oscillations can emerge in SIRS models—consistent with real-world COVID-19 variant periodicity—
due solely to waning immunity dynamics. 
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Complementing these, Alahakoon et al. (2023) proposed a hierarchical stochastic SIRS framework to improve estimation of 
heterogeneous immunity loss rates. They emphasize that waning immunity plays a central role in disease persistence and fade-out 
behavior in post-outbreak phases. A 2025 study in European Physical Journal B (Huang et al.) examined how the statistical 
distribution of immunity durations (e.g. non-exponential dwell times) significantly affects epidemic oscillations, identifying key 
parameter regimes that trigger recurrent outbreaks. Earlier foundational study (characterized as SIRS with immunity heterogeneity) 
compared classic SIRS to models with heterogeneous waning—showing that individualized immunity loss leads to substantially 
higher vaccination needs. 
Finally, Lai et al. (2024) explored a two-patch, SIRS-based model incorporating precaution behavior and mobility. They 
demonstrated how dispersal and public response shape outbreak dynamics and thresholds in connected communities.  Together, 
these contributions show a clear research trajectory: moving from classical SIRS to nuanced variants that account for immunity 
decay, heterogeneity, vaccination strategies, stochastic noise, and spatial interactions. The models provide actionable insights for 
policy design—especially regarding booster timing, herd immunity targets, and outbreak forecasting in complex settings. 
This study focuses on the application of the SIRS model to simulate and analyze disease dynamics under different immunological 
and epidemiological conditions. By adjusting parameters such as the transmission rate (β), recovery rate (γ), and immunity loss rate 
(ξ), we explore how outbreaks evolve, oscillate, or stabilize over time. Through case studies of influenza and pertussis, we 
demonstrate the model’s effectiveness in capturing real-world outbreak behaviors and providing insight into appropriate public 
health interventions, such as vaccination schedules and booster policies. 
The proposed research introduces a refined SIRS epidemiological model that integrates gradual immunity loss, re-vaccination 
strategies, and seasonal perturbations to enhance outbreak prediction accuracy. Unlike classical compartmental models, which 
assume abrupt transitions between immune and susceptible states, this work incorporates nonlinear waning immunity functions, 
allowing a more realistic simulation of diseases like influenza, COVID-19, or pertussis. Additionally, the inclusion of real-world 
vaccination rates, periodic interventions, and population heterogeneity adds depth to outbreak forecasting. The study also employs 
both deterministic and stochastic modeling approaches to evaluate conditions under which disease outbreaks stabilize, oscillate, or 
go extinct—something often overlooked in existing literature. 
 
A. Objectives are given below 
1) To formulate and analyze a modified SIRS model that accounts for partial immunity, waning immunity, and re-infection 

probabilities. 
2) To simulate outbreak dynamics under various vaccination schedules and immunity loss rates, including periodic interventions 

and natural recovery. 
3) To explore equilibrium behavior and threshold conditions (such as the basic reproduction number R0) to determine disease 

persistence or extinction. 
4) To compare deterministic and stochastic versions of the SIRS model to assess real-world outbreak unpredictability and the role 

of random perturbations. 
5) To apply the model to synthetic or real data (e.g., influenza or COVID-19 incidence) and validate its predictive capabilities over 

time. 
6) To derive policy-relevant insights regarding optimal vaccination timing, population-wide immunity thresholds, and potential 

risks of recurrent outbreaks. 
 

II. PRELIMINARIES 
To model disease dynamics using the SIRS framework, we begin with fundamental definitions and assumptions from deterministic 
epidemiological modeling. The population is assumed to be homogeneous, closed (no births or deaths), and constant in size. 
 
1) Definition 1: SIRS Model 
The SIRS (Susceptible–Infectious–Recovered–Susceptible) model divides the total population N into three compartments: 
 S(t): Number of Susceptible individuals at time t 
 I(t): Number of Infectious individuals at time t 
 R(t): Number of Recovered individuals with temporary immunity at time t 
The model is governed by the system of ordinary differential equations (ODEs): 
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൜
݀ܵ
ݐ݀
ൠ = + ܫ ܵ ߚ−    ܴ ߦ

൜
ܫ݀
ݐ݀
ൠ = − ܫ ܵ ߚ   ܫ ߛ

൜
ܴ݀
ݐ݀
ൠ  = − ܫ ߛ  ܴ ߦ

Where: 
 (݁݉݅ݐ ݐ݅݊ݑ ݎ݁݌ ݐܿܽݐ݊݋ܿ ݎ݁݌ ݀ܽ݁ݎ݌ݏ ݁ݏܽ݁ݏ݅݀ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌) ݁ݐܽݎ ݊݋݅ݏݏ݅݉ݏ݊ܽݎܶ :ߚ 
 ݁ݐܽݎ ݕݎ݁ݒ݋ܴܿ݁ :ߛ 
 (݈ܾ݁݅ݐ݌݁ܿݏݑݏ ݋ݐ ݊ݎݑݐ݁ݎ ݏ݈ܽݑ݀݅ݒ݅݀݊݅ ݀݁ݎ݁ݒ݋ܿ݁ݎ ℎ݅ܿℎݓ ݐܽ ݁ݐܽݎ) ݁ݐܽݎ ݏݏ݋݈ ݕݐ݅݊ݑ݉݉ܫ :ߦ 
 
2) Definition 2: Basic Reproduction Number R0 
The basic reproduction number, denoted R0, is defined as: 

ܴ଴  =  {ߛ}/{ߚ} 
It represents the expected number of secondary infections caused by one infected individual in a fully susceptible population. For 
the SIRS model, R_0 remains a threshold indicator of whether the infection will spread: 
 If R0 > 1: the disease will spread in the population. 
 If R0 < 1: the disease will die out. 
 
3) Definition 3: Endemic Equilibrium 
An endemic equilibrium is a steady-state solution (S*, I*, R*) of the system where the disease persists in the population over time 
(i.e., I* > 0). 
To find the equilibrium points, we solve: 
dS/dt = dI/dt = dR/dt = 0 
Theorem 1: Stability of the Disease-Free Equilibrium 
Let E0 = (S0, 0, 0) be the disease-free equilibrium (DFE) of the SIRS model. 
Theorem: 
The DFE is locally asymptotically stable if R0 < 1, and unstable if R0 > 1. 

 
III. MODEL – SIRS 

Lets consider the SIRS model – a classical and very useful model in epidemiology, especially for diseases that do not provide 
permanent immunity. 
SIRS Model: Susceptible–Infectious–Recovered–Susceptible 
The SIRS model extends the classic SIR model by allowing recovered individuals to lose immunity after some time and become 
susceptible again. This is particularly realistic for diseases like influenza, cholera, or COVID-19 variants, where reinfection can 
occur. 
 
Compartments 
 S(t): Number of susceptible individuals at time t 
 I(t): Number of infectious individuals at time t 
 R(t): Number of recovered individuals (with temporary immunity) 
 Population size is assumed constant: 
  N = S(t) + I(t) + R(t) 
 
Model Assumptions 
1. Everyone mixes homogeneously (equal chance of contact). 
2. Immunity is temporary – after recovery, individuals can become susceptible again. 
3. No births or deaths (or considered balanced). 
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Differential Equations 
The dynamics of the model are governed by: 
݀ܵ
ݐ݀ = + ܫ ܵ ߚ−    ܴ ߦ
ܫ݀
ݐ݀ = − ܫ ܵ ߚ   ܫ ߛ
ܴ݀
ݐ݀ = − ܫ ߛ  ܴ ߦ

Where: 
= ߚ   ݁ݐܽݎ ݊݋݅ݏݏ݅݉ݏ݊ܽݎݐ 
= ߛ   ݁ݐܽݎ ݕݎ݁ݒ݋ܿ݁ݎ 
= ߦ   ݌ݑ݋ݎ݃ ݈ܾ݁݅ݐ݌݁ܿݏݑݏ ℎ݁ݐ ݋ݐ ݊ݎݑݐ݁ݎ & ݕݐ݅݊ݑ݉݉݅ ݁ݏ݋݈ ݈݁݌݋݁݌ ݀݁ݎ݁ݒ݋ܿ݁ݎ ℎ݅ܿℎݓ ݐܽ ݁ݐܽݎ 
 
Interpretation 
The Susceptible (S) population decreases as they become infected (−ܫ ܵ ߚ) and increases as immunity wanes in recovered 
individuals (+ߦ ܴ). 
The Infectious (I) group increases via transmission (+ܫ ܵ ߚ) and decreases due to recovery (−ܫ ߛ). 
The Recovered (R) group increases as people recover (+ܫ ߛ) and decreases as they lose immunity and return to ܵ (−ߦ ܴ). 
 Endemic Equilibrium is possible in the SIRS model, unlike the basic SIR where the disease may die out. This means diseases can 
persist over time due to immunity loss. 
The model is excellent for studying seasonal diseases or recurrent epidemics. 
 
Example Parameters 
−   ߚ  −  ݁ݐܽݎ ݊݋݅ݏݏ݅݉ݏ݊ܽݎܶ   0.5           
−  ߛ  −      ݁ݐܽݎ ݕݎ݁ݒ݋ܴܿ݁   0.1          | 
−     ߦ − ݁ݐܽݎ ݏݏ݋݈ ݕݐ݅݊ݑ݉݉ܫ   0.01         | 
Graphical Behavior 
In a typical SIRS simulation: 
The infectious population shows oscillatory behavior—rising and falling periodically. The disease never fully disappears due to 
susceptible individuals being replenished from the recovered pool. 

 
IV. METHODOLOGY 

A. SIRS Model for Disease Outbreak Prediction 
1) Step 1: Define the Model Framework 
Establish the compartments and assumptions: 
Compartments: Susceptible (S), Infectious (I), Recovered (R) 
Total population: N = S + I + R 
Disease assumptions: 
Immunity is temporary 
Constant population (no significant birth/death) 
Homogeneous mixing 
 
2) Step 2: Formulate the Differential Equations 
The dynamics are modeled by the system: 
݀ܵ
ݐ݀ = + ܫ ܵ ߚ−    ܴ ߦ
ܫ݀
ݐ݀ = − ܫ ܵ ߚ   ܫ ߛ
ܴ݀
ݐ݀ = − ܫ ߛ  ܴ ߦ
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Where: 
 ݁ݐܽݎ ݊݋݅ݐ݂ܿ݁݊ܫ :ߚ 
 ݁ݐܽݎ ݕݎ݁ݒ݋ܴܿ݁ :ߛ 
 ݁ݐܽݎ ݏݏ݋݈ ݕݐ݅݊ݑ݉݉ܫ :ߦ 
 
3) Step 3: Parameter Estimation 
Estimate or assume biologically realistic parameter values: 
From literature or historical data (e.g., influenza, COVID-19) 
Values like: 
= ߚ    = ߛ    ,0.3  = ߦ   ,0.1   0.01. 
 
4) Step 4: Initial Conditions 
Define the state of the population at t = 0: 
S(0) = 0.9 (90% susceptible) 
I(0) = 0.1 (10% infected) 
R(0) = 0 (no one initially immune) 
 
5) Step 5: Numerical Simulation 
Solve the system of ODEs using methods like: 
Euler’s method 
Runge–Kutta (RK4) – common for higher accuracy 
Software tools: Python (`SciPy.integrate.odeint`), MATLAB, R 
Simulate for a suitable time period (e.g., 100–365 days) and analyze the time evolution of S, I, R. 
 
6) Step 6: Analysis & Interpretation 
Plot I(t) to examine peaks in infection 
Compute basic reproduction number: 

ܴ଴  =
ߚ
 ߛ

If R0 > 1, an outbreak is expected. 
Study how changing ߦ (immunity loss) affects long-term dynamics. 
 
7) Step 7: Validation with Real Data 
Fit the model to actual outbreak data using optimization methods. Evaluate model accuracy with RMSE, MAE, or R² metrics. 
 
8) Step 8: Sensitivity Analysis 
Analyze how sensitive the model is to changes in:  ߚ,  ߦ ݀݊ܽ,ߛ
Helps in identifying critical control parameters 
Step 9: Policy Implications 
Use model outputs to: 
Predict future waves 
Evaluate effects of vaccination or immunity boosters 
Help public health officials plan interventions 

 
V. EXAMPLES 

A. Example 1: Predicting Disease Outbreak Using the SIRS Model 
Step 1: Define the Problem 
We want to model the spread of a seasonal disease (e.g., influenza) in a closed population using the SIRS model, accounting for 
temporary immunity. 
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Step 2: Set the Differential Equations 
The SIRS model is: 
݀ܵ
ݐ݀ = + ܫ ܵ ߚ−    ܴ ߦ
ܫ݀
ݐ݀ = − ܫ ܵ ߚ   ܫ ߛ
ܴ݀
ݐ݀ = − ܫ ߛ  ܴ ߦ

 
Step 3: Assign Parameters 
Let’s assume: 
−  ߚ  −  ݁ݐܽݎ ݊݋݅ݏݏ݅݉ݏ݊ܽݎܶ            0.4    
ߛ  − −    ݁ݐܽݎ ݕݎ݁ݒ݋ܴܿ݁             0.1    
ߦ  − −  ݏݏ݋݈ ݕݐ݅݊ݑ݉݉݅ ݂݋ ݁ݐܴܽ         0.05   
 ܰ  − − ݊݋݅ݐ݈ܽݑ݌݋݌ ݀݁ݖ݈݅ܽ݉ݎ݋݊ ݈ܽݐ݋ܶ        1.0    
 
Step 4: Initial Conditions 
At time t = 0: 
 S(0) = 0.95 
 I(0) = 0.05 
 R(0) = 0 
This means 95% of the population is susceptible, 5% infected, and none are immune. 
 
Step 5: Numerical Simulation (Python Code) 
```python 
import numpy as np 
from scipy.integrate import odeint 
import matplotlib.pyplot as plt 
 
 Parameters 
beta = 0.4      infection rate 
gamma = 0.1     recovery rate 
xi = 0.05       immunity loss rate 
 
 Differential equations 
def sirs_model(y, t, beta, gamma, xi): 
    S, I, R = y 
    dSdt = -beta  S  I + xi  R 
    dIdt = beta  S  I - gamma  I 
    dRdt = gamma  I - xi  R 
    return [dSdt, dIdt, dRdt] 
 
 Initial conditions 
S0 = 0.95 
I0 = 0.05 
R0 = 0.0 
y0 = [S0, I0, R0] 
 
 Time points (days) 
t = np.linspace(0, 160, 160) 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue X Oct 2025- Available at www.ijraset.com 
     

379 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
 Solve ODE 
solution = odeint(sirs_model, y0, t, args=(beta, gamma, xi)) 
S, I, R = solution.T 
 
 Plot 
plt.figure(figsize=(10,6)) 
plt.plot(t, S, label='Susceptible') 
plt.plot(t, I, label='Infectious') 
plt.plot(t, R, label='Recovered') 
plt.xlabel('Time (days)') 
plt.ylabel('Population Fraction') 
plt.title('SIRS Model Simulation') 
plt.legend() 
plt.grid(True) 
plt.show() 
``` 
 
Step 6: Interpretation of Results 
 I(t) shows periodic spikes – this reflects seasonal outbreaks. 
 The disease does not die out, due to immunity loss. 
 Susceptible population is continually replenished. 
 Over time, the system settles into oscillations – a hallmark of endemic diseases. 
 
Step 7: Discussion 
 This simulation confirms that temporary immunity (ݐℎ݃ݑ݋ݎℎ ߦ) causes recurring infections. 
 Increasing ߦ leads to more frequent outbreaks. This matches real-world scenarios like influenza, which returns annually in waves. 
 
B. Example 2: Modeling Pertussis (Whooping Cough) Outbreak using SIRS Model 
Problem Setup 
The impact of faster immunity loss in a population affected by pertussis, a disease known to reappear due to temporary immunity 
(either from infection or vaccination). 
Model Equations 
݀ܵ
ݐ݀ = + ܫ ܵ ߚ−    ܴ ߦ
ܫ݀
ݐ݀ = − ܫ ܵ ߚ   ܫ ߛ

ܴ݀
ݐ݀ = − ܫ ߛ  ܴ ߦ

Parameters 
We use a faster immunity loss rate to simulate pertussis: 
−  ߚ − ݁ݐܽݎ ݊݋݅ݏݏ݅݉ݏ݊ܽݎܶ   0.6    
ߛ − −     ݁ݐܽݎ ݕݎ݁ݒ݋ܴܿ݁     0.1    
ߦ − ݁ݐܽݎ ݏݏ݋݈ ݕݐ݅݊ݑ݉݉ܫ     −   0.2  
 ݕݐ݅݊ݑ݉݉݅ ݂݋ ݏݏ݋݈ ݐݏ݂ܽ ݏݐ݈݂ܿ݁݁ݎ ߦ ݎℎ݁݃݅ܪ ,ݕݐ݅ݒ݅ݐ݂ܿ݁݊݅ ℎ݅݃ℎ ݏݐ݈݂ܿ݁݁ݎ ߚ ݎℎ݁݃݅ܪ 
Initial Conditions 
S(0) = 0.90 
I(0) = 0.10 
R(0) = 0.0 
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This assumes 10% of the population is already infected. 
Simulation Code 
```python 
# Updated parameter values for pertussis 
beta = 0.6     # higher transmission 
gamma = 0.1    # recovery 
xi = 0.2       # faster immunity loss 
 
# Re-run the same model 
solution = odeint(sirs_model, y0, t, args=(beta, gamma, xi)) 
S, I, R = solution.T 
 
# Plotting the results 
plt.figure(figsize=(10,6)) 
plt.plot(t, S, label='Susceptible') 
plt.plot(t, I, label='Infectious') 
plt.plot(t, R, label='Recovered') 
plt.xlabel('Time (days)') 
plt.ylabel('Population Fraction') 
plt.title('SIRS Model for Pertussis (Fast Immunity Loss)') 
plt.legend() 
plt.grid(True) 
plt.show() 
``` 
 
Interpretation 
The graph will show frequent and sharper infection spikes. 
Due to the high ߦ =  0.2, people lose immunity quickly, making S(t) rise fast. 
Infection never vanishes, unlike in SIR or low-ξ SIRS models. 
This behavior closely matches pertussis outbreaks, which recur even with vaccination due to waning immunity. This example 
demonstrates how the SIRS model captures the reality of cyclical diseases, especially those with short-lived immunity. It shows how 
parameter tuning reflects different disease characteristics, aiding in epidemic forecasting and control planning. 
 

Comparison Value: SIRS Model for Influenza vs. Pertussis 
Feature / Aspect             Example 1: Influenza            Example 2: Pertussis (Whooping 

Cough) 
Transmission Rate (β)    0.1                          0.6 
Recovery Rate (γ)        0.1 0.1 
Immunity Loss Rate (ξ)   0.05 (slow loss)                    0.2 (fast loss)                           
Initial Susceptible (S₀) 0.95                                0.90                                          
Initial Infected (I₀)    0.05                                0.10                                           
Initial Recovered (R₀) 0.00 0.0 

Influenza scenario: Slower immunity loss → more stable population health over time. Pertussis scenario: Fast immunity loss → 
more aggressive recurring outbreaks. 

VI. RESULTS AND DISCUSSION 
In this study, we simulated disease outbreak dynamics using the SIRS (Susceptible–Infectious–Recovered–Susceptible) model for 
two representative infectious diseases—Influenza and Pertussis. Both models were implemented using realistic epidemiological 
parameters to demonstrate how transmission rate (ߚ), recovery rate (ߛ), and immunity loss rate (ߦ) influence the long-term 
behavior of an epidemic. 
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1) Simulation 1: Influenza Outbreak (Slow Immunity Loss) 
With parameter values ߚ = = ߛ,0.4  = ߦ ݀݊ܽ,0.1   0.05, the simulation showed moderate infection waves with an eventual 
decline in the amplitude of oscillations. The disease tends to reach an endemic equilibrium, where the fractions of susceptible, 
infected, and recovered populations stabilize over time. This pattern mirrors seasonal influenza outbreaks where most of the 
population gains temporary immunity, leading to a periodic but predictable wave of infections. 
Interpretation: 
The low ξ value allows immunity to last longer, keeping the susceptible population low for extended periods. As a result, infection 
peaks are controlled, and the disease does not persist aggressively in the population. Vaccination strategies such as yearly flu shots 
align well with this dynamic. 
 
2) Simulation 2: Pertussis Outbreak (Fast Immunity Loss) 
With higher values of ߚ = = ߦ ݀݊ܽ 0.6   0.2, the system exhibited sharp and frequent oscillations in the infectious population. This 
reflects diseases like pertussis, where immunity wanes more quickly after recovery or vaccination. The increased susceptibility 
causes the infection to reignite periodically, resulting in cyclic and sustained outbreaks. 
Interpretation: 
 The high ξ value means people re-enter the susceptible pool quickly, increasing the chance of repeated outbreaks. 
Despite the same recovery rate (ߛ =  0.1), the epidemic cycles more aggressively due to the replenishment of susceptibles. 
 This demonstrates the importance of booster vaccination programs for pertussis. 
 
A. Epidemiological Significance 
These simulations demonstrate the SIRS model's utility in predicting outbreak patterns and guiding public health policies. For 
example: 
Diseases with slow immunity loss (low ξ) can be effectively managed with single or periodic vaccinations. 
 In contrast, high ξ diseases demand more aggressive intervention strategies, including booster campaigns and close monitoring of 
outbreak cycles. 
 

VII. CONCLUSION 
In this work, we have applied the SIRS (Susceptible–Infectious–Recovered–Susceptible) mathematical model to investigate the 
spread and recurrence of infectious diseases such as Influenza and Pertussis. By simulating disease dynamics under different 
parameter settings, we demonstrated how key epidemiological factors—namely the transmission rate (β), recovery rate (γ), and 
immunity loss rate (ξ)—profoundly affect the outbreak pattern and long-term behavior of infectious diseases. 
The simulations revealed that low immunity loss (Influenza) leads to controlled, periodic outbreaks with eventual stabilization, 
while high immunity loss (Pertussis) produces frequent and intense infection cycles due to the rapid return of individuals to the 
susceptible pool. These findings highlight the importance of tailoring public health strategies to disease-specific characteristics, 
particularly the duration of post-infection or post-vaccination immunity. 
Overall, the SIRS model provides a valuable and interpretable framework for predicting disease outbreaks, designing vaccination 
policies, and understanding the conditions under which a disease may become endemic or epidemic. It forms a basis for more 
complex models that incorporate population heterogeneity, seasonality, spatial distribution, and control interventions. 
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