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Abstract: With the growing need for public health and drug development, combination therapy has become widely used in 
clinical settings. However, the risk of unexpected adverse effects and unknown toxicity caused by drug-drug interactions (DDIs) 
is a severe public health issue for polypharmacy safety. Traditional investigational methods for detecting DDIs are expensive 
and time- consuming. Therefore, many computational methods have been developed in recent years to predict DDIs with the 
growing availability of data and advancements in artificial intelligence. In silico methods have proven to be effective in 
predicting DDIs, but detecting potential interactions, especially for newly exposed drugs without an existing DDI network, 
remains a challenge. In this study, we proposea predicting method of DDIs named HAG-DDI based on graph look networks. We 
consider the differences in mechanisms between DDIs and add learning of semantic-level attention, which can focus on superior 
representations of DDIs. By treating interactions as nodes and the presence of the same drug as edges, and constructing small 
subnetworks during training, we effectively mitigate potential bias issues arising from limited data availability. Our experimental 
results show that our method achieves an F1-score of 0.952, proving that our model is a viable alternative for DDIs prediction. 
The codes are available at: https://github.com/xtnenu/DDIFramework. 
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I.      INTRODUCTION 
Drug-drug interactions (DDIs) are a change in the effect of one drug due to the presence of another drug [1]. It can promote the 
efficacy or reduce the side effects and affect the drug absorption or produce adverse side effects. With the development of drugs, 
combination therapy is widely used clinically, and DDIs play an important part [2]. Therefore, the research of DDIs has great 
importance for new drugs and clinical pharmacy treatment. The medical research methods of DDIs are very diverse, including in 
vitro experiments, animal experiments and pharmaceutical experiments, as well as the research according to the clinical results. 
However, the above methods also have limitations which cannot predict DDIs on large scale datasets and it is important 
development of low-cost and high-efficiency DDIs research methods [3]. Hence, In silico methods provide a possibility and can 
provide certain references for clinical experiments. There are two types of computer experiments for DDI prediction [4]. The first 
type uses medical literature, databases and clinical records as research objects, and analyzes them using natural language processing 
[5, 6] or data mining methods [7–14]. Deep learning methods have been widely employed in various studies [5, 6, 8, 13]. The second 
type directly uses drug features to predict whether there is a DDI between two drugs [15–22]. In order to focus on the experimental 
results of predicting the potential interactions of new drugs with limited information, we will focus on the second type. predictable 
machine learning methods of DDI predictions use data features flexibly, and generallydo not require high-level experimental 
environments. Kastrin et al. [15] took the prediction of DDI asa link prediction problem, and used data from five databases to train 
five classifiers. Yan et al. [16] developed DDIGIP based on Gaussian interaction profile kernels. Qian et al. [17] developed a gradient 
boosting-based classifier and make obvious that targets of adversely DDIs are significantly more likelyto have synergistic genetic 
interactions than non-interacting drug pairs. 
The deep learning methods of DDI predictions have higher requirements on computing power of the experimental equipment. 
Compared with conventional machine learning, deep learning can learn more abstract data representation. Rohani et al. [18] 
developed a deep learning model based on drug substructure, target, side effect, off-label side effect, pathway, transporter and 
indication data, making full use of the computing power of deep learning. Ryu et al. [19] developed a deep learning framework that 
can concurrently predict DDIs and drug-food interactions. Deng et al. [20]developed an architecture that integrates four deep 
learning sub-models that learn different features. Liu et al. [21] developed an autoencoder-based deep learning framework that can 
predict new drugs with unknown interaction relationships. 
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The network-based methods of DDI predictions compute the graph structure of data. since many data in biology and medicine exist 
in the network structure, the network methods can more easily reflect the similarity between data features. Chen et al. [22] applied 
the Laplace regularized least squares method to the synergistic drug combination to develop the model NLLSS. Tripodi et al. [23] 
proposed a semantic-reasoning-based approach that can infer DDIs through network computing through biological knowledge 
bases. Yan et al. [24] proposed IDNDDI, which uses a cosine similarity calculation tool to calculate the similarity of drug features 
and infer whether a DDI exists. Huang et al. [25] developed a prophecy method based on the S-score calculation mechanism. 
In latest years, with the encroachment of deep learning technology, the incorporation of deep learningand network analysis methods 
for DDI research has been on the rise. Karim et al. [26], Wang et al. [27] and Xu et al. [28] have each proposed their own deep 
network model to address various issuesencountered in previous DDI studies. Graph convolutional neural networks and graph look 
networks, widely used algorithms in the field of bioinformatics, have also been applied to DDI research. Graph neural networks [29] 
have been proposed as a powerful method for processing graph representations based on deep learning. The graph structure can 
effectively represent various complex network structure data. Although graph neural networks can predict known graph structures, 
handling unknown graph structures remains challenging. To overcome this limitation, researchers have developed graph look 
networks [30]. In DDI research, Nyamabo et al. [31] proposed a graph look network model based on drug substructures, while Feng 
et al. [32] proposed a graph look network model based on chemical molecular graph calculations. Both studies have demonstrated 
the potential of graph look networks in DDI research. 
Although methods based on drug features have made progress in DDI research and have been confirmed feasible in in silico 
methods, there are still some limitations. First, deep learning methods are mostly trained based on independent samples, and a large 
amount of data is required to discover the similarity and correlation between samples. Second, the network-based models is lacking 
a mining ability for advanced representations and some methods using graph structure cannot predict for a drug outside the network. 
Third, for new drugs, many methods are unable to extract their features and predict their related interactions. 
In this study, we recommend a novel DDI prediction model based on heterogeneous graph look networks named HGAA-DDI. The 
HGAA-DDI uses DDIs as nodes and the same drugs as edges. To accommodate predictions for new drugs, we use only substructure 
molecular fingerprints of Pubchem as features. To strengthen the attention of the model to superior features, we use the node-level 
attention and the semantic-level attention mechanisms originally used in heterogeneous graph look networks. Our experimental 
results show that this new model achieves good performance. 
In outline, the major hand-outs of this work are: 
1) We develop a better performing graph look DDI prediction method. This is the first attempt to apply heterogeneous graph look 

network algorithm to predict DDIs based on drug molecular fingerprints. Moreover, the performance of the model in this paper 
is relatively good, which can help with research on new drugs. 

2) In terms of algorithm innovation, this work successfully applies the method of heterogeneous network to a homogeneous 
network. Although the graph structure of drug interactions is a homogeneous network, multiple different mechanisms exist 
between drug interactions, making it critical to pay attention to advanced representations that conventional graph look network 
methods cannot. The semantic-level attention mechanism of this method becomes a solution. 

3) The HGAA-DDI only utilizes structural features from drugs, and innovatively treats each interaction as a node and the 
existence of same drugs as edges. This allows for the construction of a graph structure based on a large amount of existing 
known data when predicting interactions between new drugs, without compromising the performance of the model. 

 
II.      MATERIALS AND METHODS 

A. Datasets 
Our data is sourced from two databases, Drugbank and Twosides. Drugbank [33] consists of two parts: bioinformatics data and 
cheminformatics data. It integrates a vast amount of drug biochemical data, target structure and other information for drug research. 
Twosides [34–36] database collects only DDIs and is a sub-database of adverse DDIs derived from the FAERS (FDA Adverse 
Event Reporting System) database. We screened 1017 small molecule drugs and 202,304 DDIs that fit the FDA standards and 
feature extraction requirements of this work from Drugbank version 5.1.7. Subsequently, we selected 39,813 intersections recorded 
in Twosides as positive samples. To facilitate experimental grouping and address the imbalance of actual drug effects, we randomly 
generated 60,187 negative samples that did not appear in both databases, which brings the dataset total to 100,000 by selecting 
records that do not appear in Drugbank and Twosides. 
Molecular fingerprint [37] encodes molecule information into a bit string where each bit represents a molecular feature. In this study, 
we used molecular fingerprints to represent drugs.  
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Through the Pubchem database, we extracted the substructure fingerprint of drugs as the learning features. The substructure 
fingerprint has 881 bits, covering a wide range of different substructures and functional groups. To build the graph data structure, we 
used the DDIs as nodes of the graph, and edges represent whether a drug is involved in two DDIs. For each DDI, we integrate the 
features of the relationship by comparing the features of each position between the two corresponding drugs. If a position is the 
same and equal to 1 for both drugs, it is set as 1 in the integrated feature. If the position is the same and equal to 0 for both drugs, it 
is set as 0 in the integrated feature. Otherwise, it is set as 0.5. Finally, each DDI is encoded as a 881-dimensional vector. 
To verify the model on unknown drugs with limited data, we divided the data into 200 random sub-nets for batch training and 
randomly selected 2% of each sub-net as public validation and testing datasets. The final data distribution is shown in Figure 1: 

Figure 1. Construction of datasets 
B. Prediction Framework 
The HGAA-DDI includes two parts as shown in Figure 2. 
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Figure 2. Overview of HGAA-DDI. (a) The subnets retrieve drug molecular fingerprints from the PubChem database. (b) The 
heterogeneous graph look network layer extracts graphembeddings of DDIs, which are then fed into the MLP classifier for 
classification. (c) We compare the performance of our proposed graph look network layer with baseline graph embedding algorithms. 
(d) We conduct an analysis of the model to evaluate its effectiveness. 
Because DDIs networks are complex graph structures, in this work, we applied graph look network [30], which is suitable for graph 
problems, as the core algorithm. The graph look network employs an attention mechanism as its main algorithm, eliminating the 
need for complex calculations involving matrices like Laplace. Instead, it updates node features through the representation of 
neighboring nodes. In the graph look network, the learning weights from target nodes to neighbor nodes differ. The adjacency 
matrix defines the representation of the relevant node, and the calculation of the relationship weights depends on the features of 
both the node and its neighbor. Specifically, the weight of the neighbor to the node is calculated as follows: 

 
 
where e is attention coefficient, a is attention mechanism, hi is input feature vector and hj is output feature vector, ai j is the 
importance from node j to node i. 
In this work, we added the semantic-level attention which has applied in heterogeneous network by Wang et al. [38]. Meta-path is 
defined by Wang et al. as different connection modes of nodes, and each meta-path can represent a semantic-level information of 
nodes. Learning the attention mechanism node embeddings of different meta-paths can provide the different importance. The 
following formula is represent features from graph look layer output as the input of semantic level attention: 

 
The importance WΦi of each meta-path Φ is calculated as following: 

 
where V is node, W is the weight matrix, b is the bias vector and q is the semantic-level attention vector. 
After normalization, the final embedding of model is: 

 
 
where βΦi is the weight of meta path Φi, ZΦi is the embedding of meta-path Φi. 
The overall process of graph look network is as follows: 
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After computing the embeddings of drug nodes, the second part of HGAA-DDI is a Multilayer Perceptron (MLP) classifier by using 
the embeddings as input. To train the MLP classifier, we performed ten-fold cross-validation. In each fold, 10% of the data from the 
test set was randomly selected as the testing portion for evaluating the performance of the MLP classifier, while the remaining 90% 
of the data was used for training the MLP classifier. We repeated this process ten times, each time using a different 10% portion for 
testing and the rest for training. The final performance of the model was determined by averaging the results of these ten folds, 
taking into account the performance of each individual model. 
In this study, we propose two meta-paths: the Interaction Independent Feature Meta-Path (IIFM) and the Interaction-Drug-
Interaction Meta-Path (IDIM). IIFM is represented by a diagonal matrix, which indicates that the network uses its own features. 
The mathematical expression of IIFM is as follows: 
IDIM refers to the Interaction-Drug-Interaction Matrix. For a given node, if there exists a shared drug between that node and 
another node, the corresponding element in IDIM is set to 1. Conversely, if there is no shared drug, the element is set to 0. Notably, 
all diagonal elements in the matrix are set to 1. 
 
C. Baseline models 
To validate the overall effectiveness of the model, we compared two state-of-the-art open-source drug-drug interaction (DDI) 
models based on graph look networks. The first model, SSI-DDI [31], has released all its training code, while the second model, 
GNN-DDI [32], has shared its model architecture. We successfully reproduced both models and compared the results by extracting 
the SMILES representations of drug molecules from the test set used in this study. 
Additionally, in order to test the ability of the graph look network used in HGAA-DDI to extract embeddings, we compared the 
embedding features extracted by five baseline models based on graph algorithms, and also used MLP classifier for comparison. The 
introductions of the five algorithms are as follows: 
 
1) Deepwalk 
DeepWalk [39] is a network-based language modeling algorithm that utilizes local information obtained from truncated random 
walks to learn latent representations. It treats walks as the equivalent of sentences and consists of a random walk generator and an 
update procedure. 
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2) SDNE 
Structural Deep Network Embedding (SDNE) [40] is a semi-supervised deep learning algorithm that incorporates two orders of 
similarity. The first-order similarity primarily reflects the local characteristics of the graph and is used as supervised information in 
the supervised component. The second-order similarity mainly reflects the global characteristics of the graph, which is used by the 
unsupervised component. 
 
3) LINE 
Large-scale Information Network Embedding (LINE) [41] optimizes an objective function and proposes an edge-sampling 
algorithm that improves both the effectiveness and efficiency of stochastic gradient descent. 
 
4) Node2Vec 
Node2Vec [42] learns continuous feature representations of networks and maps nodes to low- dimensional feature representations to 
maximize the likelihood representation of network neighbor nodes. It defines a flexible notion of a node’s network neighborhood, 
designs a biased random walk procedure and learns to explore a variety of neighbor representations. 
 
5) Struc2Vec 
Struc2Vec [43] uses a hierarchy to measure node similarity at different scales and constructs a multi-layer graph to encode structural 
similarities and generate structural context for nodes. 
To validate the rationality of the MLP classifier of HGAA-DDI, we compared it with several machine learning methods. They are 
Support Vector Machines (SVM), Random Forests (RF), Gradient Boosting Decision Tree (GBDT) and K-Nearest Neighbor (KNN) 
Classifier. 
 

III.      RESULTS AND DISCUSSION 
A. Metrics 
In order to evaluate the performance, we use precision (PRE), sensitivity (SEN), specificity (SPE), accuracy (ACC), F1 score and 
Matthews correlation coefficient (MCC) as metrics, and their formulas 

Model ACC PRE SEN SPE F1 MCC 
SSI-DDI 0.931 0.920 0.943 0.918 0.931 0.862 
GNN-DDI 0.908 0.913 0.903 0.912 0.908 0.816 
HGAA-DDI 0.952 0.964 0.939 0.965 0.952 0.904 

 
In comparison to two state-of-the-art graph look networks, HGAA-DDI demonstrated the best performance across all metrics, 
showcasing the overall computational superiority of the model. However, during the comparison, it was noted that one limitation of 
HGAA-DDI is its inability to predict the types of drug interactions. This will be addressed and improved upon in our future work. 
 
B. Sensitivity Analysis Of Graph Embedding Methods 
To verify the graph look network, we conduct five baseline models which used to calculate drug graph embedding on testing 
datasets of this work. The results are in Table 2. 

 
Table 2. Comparison with other graph embedding algorithms. 

Model ACC PRE SEN SPE F1 MCC 
Deepwalk 0.834 0.972 0.688 0.980 0.806 0.698 
SDNE 0.779 0.941 0.595 0.963 0.729 0.600 
LINE 0.809 0.958 0.645 0.972 0.771 0.653 
Node2Vec 0.846 0.978 0.708 0.984 0.821 0.720 
Struct2Vec 0.761 0.921 0.570 0.951 0.704 0.564 
HGAA-DDI 0.952 0.964 0.939 0.965 0.952 0.904 
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The Table 2 presents the comparison results, demonstrating the superior performance of HGAA- DDIin terms of ACC, SEN, F1-
score and MCC. These results indicate the competence of HGAA-DDI in DDI prediction. While other graph embedding algorithms 
may exhibit a bias towards encoding data towards positive samples due to data imbalance, this results in HGAA-DDI not achieving 
the best performance in terms of PRE and SPE metrics. However, when considering comprehensive metrics such as F1 andMCC, it 
becomes evident that HGAA-DDI possesses better capability in distinguishing between positive and negative samples. This 
discriminative ability highlights the advantage of the heterogeneous graph look network employed by HGAA-DDI. Furthermore, 
the highest ACC value obtained by our model suggests its accuracy in identifying DDI samples and its effective extraction of graph 
embeddings using the graph look network. Figure 3 provides a visual representation of the comparison results. 

 
Figure 3. Visualization of graph embedding methods comparison results 

 
C. Sensitivity Analysis Of Classifier Algorithms 
To validate the rationale and performance of the MLP classifier model, we compared it with several machine learning methods. The 
results are in Table 3. 

Table 3. Comparison with other classifier algorithms 
Model ACC PRE SEN SPE F1 MCC 

SVM 0.946 0.951 0.939 0.952 0.945 0.891 

RF 0.939 0.938 0.941 0.937 0.939 0.878 

GBDT 0.928 0.927 0.929 0.927 0.928 0.856 

KNN 0.943 0.967 0.918 0.967 0.941 0.887 

MLP 0.952 0.964 0.939 0.965 0.952 0.904 
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Figure 4. Visualization of classifier algorithms comparison results 

 
In Table 3, similar to the comparison with other graph embedding algorithms, the MLP algorithm did not outperform in all metrics. 
These slight differences may be attributed to algorithmic errors and the learning tendency of the classifier itself. However, the MLP 
classifier performed the best in terms of ACC, F1, and MCC, which are comprehensive measures of the model’s predictive ability 
for both positive and negative samples. This aligns with our expectations, and thus we can consider MLP as the most suitable 
classifier algorithm for HGAA-DDI among the current options. Figure 4 provides a visualrepresentation of the comparison results. 
 
D. Analysis Of Meta-Paths 
In this work, we propose and use two meta-paths, IIFM and IDIM. The weights of the two meta- paths which indicate the learning 
of the importance assigned by our method are 0.964 and 0.036 respectively. The visualized results as shown in Figure 5: 

Figure 5. Visualization of classifier algorithms comparison results 
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As shown in the Figure 5, the meta-path IDIM is given a higher weight on our training datasets, which means that the method 
regards IDIM as the most critical meta-path for identifying drug interactions. The experimental results also reflect that IDIM has 
more effective features than IIFM. It also further confirms the validity of semantic-level attention and the difference in the 
effectiveness of the meta-paths. 
 
E. Case Study 
To verify the ability of this method to predict real data, we conduct database and literature studies as case studies. In the database 
study, to demonstrate the advancement of the model in considering interaction relationships with shared drugs as edges, we focused 
on studying newly developed drugs related to COVID-19. We collected a total of 1734 drugs related to Covid-19 from PubChem, 
differentiating them by whether they were included in PubChem between 2021 and 2022, resulting in 57 new drugs. We predicted a 
total of 98,718 potential relationships between each drug and all drugs. Using HGAA-DDI for prediction, a total of 19,055 
interactions were predicted as positive, with 8128 interactions classified as high-confidence samples (predicted probability of being 
positive greater than 95%). 
We statistically analyzed these high-confidence samples to identify the top 20 sensitive new drugs in terms of drug interactions. The 
results are in Table 4 (as some compounds were not named, they are represented by their PubChem ID and molecular formula): 
 

Table 4. The top 20 most sensitive new drugs in terms of drug interactions. 
PubChem ID PubChem inclusion date Molecular formula Number of related DDIs 
155803731 20210305 C27H18Cl2N4O4 1734 
156599206 20210922 C96H126N12Na6O21-6 1652 
155803730 20210305 C27H19ClN4O4 1444 
155801622 20210226 C26H30N4O2S 1418 
155803732 20210305 C27H20ClN3O2 1314 
155801623 20210226 C28H34N4O2S 1208 
155294426 20210114 C8H16N2O3S 889 
155294427 20210114 C12H17NO2 839 
155804576 20210316 C29H44N4O6 793 
155294420 20210114 C9H18N2O3S 768 
155294419 20210114 C8H14N2O2S 723 
155801621 20210226 C29H36N4O2S 683 
156592231 20210908 C31H53N3NaO49S8 601 
155804534 20210316 C9H19BrN5O4P 577 
155804577 20210316 C29H46N4O7 542 
155804568 20210316 C25H33N3O4 430 
162396309 20220119 C23H26ClN5O3 359 
165360157 20221011 C54H83N15O21S2 339 
155804583 20210316 C13H18N4O 288 
155804575 20210316 C29H38N4O6 256 

 
Through database research, we have demonstrated the potential of HGAA-DDI in predicting interactions for new drugs. 
Additionally, in the literature study, we collected the reports on DDIs from PubMed in recent three years, and found a total of 36 
DDIs, including clinical, pharmaceutical and in vitro experimental methods. Twenty DDIs are not all composed of small molecule 
drugs, and among 
16 DDIs that are composed with two small molecule drugs and have substructure molecular fingerprints on PubChem, only 2 of 
them not be included by Drugbank. They are interaction between voriconazole and tamsulosin hydrochloride [44] and interaction 
between voriconazole and methotrexate [45], which are also predicted to be positive samples. The results show that our method has 
the ability to correctly predict data outside our datasets. 
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IV.      CONCLUSIONS 
Drug-drug interactions have high value for medical and clinical studies, especially drug development. Capturing more and richer 
comprehensive information about DDIs is one of the key tasks in public health and drug development. In silico methods to predict 
drug interaction can effectively guide the medical experiment, and modeling DDIs as a graph structure can effectively analyze 
the correlation. In this work, we propose an interaction prediction method based on graph look mechanism, and the learning of 
semantic-attention mechanism is effectively used in the method. Finally, the prediction performance of this model is better than five 
comparison models on our testing datasets. Moreover, through the analysis of the meta-paths selection, the importance of the 
reference neighbor node weight of this problem is verified. Finally, through several testing cases, it demonstrated the availability of 
our method. 
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