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Abstract: Air pollution poses a significant threat, necessitating reliable predictive models for effective air quality management. 

This study employs a multi-model regression approach for AQI prediction using techniques like Extra Trees Regressor, SVR, 

LightGBM, and CatBoost. Real-time datasets from CPCB, combined with meteorological and pollutant data, are pre-processed 

to handle missing values, outliers, and imbalances. Feature selection enhances accuracy by focusing on significant variables. 

The performance evaluation of the models revealed that the ExtraTrees Regressor was the best performer, achieving the highest 

R² score of 0.8660 and the lowest RMSE of 56.98. These results highlight ExtraTrees Regressor’s superior ability to explain AQI 

variance and minimize prediction errors, making it the most effective model for AQI forecasting in this study. Visualization 

techniques compare model outcomes, while distributed computing ensures real-time AQI forecasting, supporting sustainable 

urban air quality strategies. 

Keywords: Air Quality Index (AQI), Feature Selection,  Root Mean Square Error (RMSE), R² Score, Environmental 

Sustainability. 

I. INTRODUCTION 

Air pollution remains one of the most critical challenges faced by urban and rural regions globally, with profound effects on human 

health, ecosystems, and climate change. The rapid growth of industrial activities, increasing vehicular emissions, and urbanization 

have exacerbated pollution levels in many cities, resulting in a marked decline in air quality [1]. According to the World Health 

Organization (WHO), air pollution is a leading environmental risk factor, causing millions of premature deaths each year. Long-term 

exposure to polluted air can lead to respiratory diseases, cardiovascular conditions, and finally premature mortality. Furthermore, 

pollutants like particulate matter (PM₂.₅, PM₁₀), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO), and ozone 

(O₃) can degrade environmental quality, harm ecosystems, and contribute to global warming. Therefore, predicting air quality 

accurately is essential for reducing exposure to harmful pollutants and mitigating their long-term impacts on human health and the 

environment [2]. The Air Quality Index (AQI) is a standardized tool used worldwide to quantify and communicate the concentration 

of air pollutants. AQI values range from 0 to 500, with higher values indicating poorer air quality. This index helps authorities issue 

timely warnings and guidelines to the public, particularly vulnerable populations such as children, the elderly, and individuals with 

pre-existing health conditions. While AQI provides a clear snapshot of air quality, its prediction is far more complex. Accurate 

forecasting of AQI is necessary for pre-emptive public health interventions, urban planning, and environmental management. 

However, air quality prediction is a challenging task due to the complexity of air pollution dynamics and the influence of multiple 

factors. Historically, statistical models have been used to forecast air quality, but these methods often struggle to capture the 

complex, non-linear relationships between air pollutants and meteorological variables such as temperature, humidity, wind speed, 

and atmospheric pressure. Moreover, traditional models may fail to accommodate missing data, measurement errors, and changes in 

pollutant levels due to local factors. With the advancements in machine learning and data science, more sophisticated approaches 

have been developed that can overcome these limitations by learning patterns from large, complex datasets [3]. 

Machine learning (ML) models, especially regression techniques, have shown great promise in predicting AQI by identifying 

patterns in historical and real-time data. These models can learn from various data sources, including air quality monitoring stations, 

meteorological data, and satellite observations, to provide accurate and dynamic predictions. One of the significant advantages of 

machine learning models is their ability to handle high-dimensional data, account for complex relationships between multiple 

pollutants, and provide real-time forecasts. In addition, these models can adapt to new data, improving their predictive performance 

over time. The primary objective of this study is to apply multi-model regression approaches to predict AQI using various machine 

learning techniques. This approach combines multiple algorithms to enhance prediction accuracy by selecting the best-performing 

model based on specific evaluation criteria. Techniques such as Extra Trees Regressor, Support Vector Regressor (SVR), 

LightGBM, and CatBoost are explored to evaluate their effectiveness in predicting AQI in different environmental conditions. 
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These models were chosen because they excel in handling complex, non-linear relationships and large datasets, which are common 

in environmental studies. 

The research focuses on several key aspects of AQI prediction. First, the study utilizes real-time data obtained from the Central 

Pollution Control Board (CPCB) and other sources to create a comprehensive dataset that includes pollutants such as PM₂.₅, NO₂, 
SO₂, and O₃, alongside meteorological data like wind speed, temperature, and humidity. The preprocessing techniques such as 

missing data handling, outlier detection, and feature scaling are applied to ensure that the models receive clean and reliable data for 

training and evaluation. 

Second, the research explores various feature engineering techniques to enhance model performance. By selecting the most relevant 

features and creating new ones (e.g., pollutant ratios, time-lagged features), the models can capture important trends and 

relationships that may not be immediately apparent in the raw data [4]. This step is crucial in improving the accuracy and 

interpretability of the prediction models. 

Third, the study evaluates the performance of the models using standard metrics like R² (coefficient of determination) and Root 

Mean Square Error (RMSE). R² measures how well the model explains the variance in the AQI, while RMSE assesses the 

magnitude of errors in prediction. Both of these metrics are critical for understanding how well the models predict real-world AQI 

values and provide insights into their generalization ability. Moreover, to visualize and compare the models' performance, scatter 

plots and bar charts are employed. These visualizations allow for clear comparison between actual and predicted AQI values, 

offering intuitive insights into how well each model captures air quality trends. 

 

II. LITERAUTURE SURVEY 

In this section, various authors have presented various air quality prediction using diverse models and methodologies. 

In [5], machine learning models—Support Vector Regression (SVR), Random Forest Regression (RFR), and CatBoost Regression—

were used to predict AQI in four Indian cities. Data balancing through SMOTE improved accuracy, with RFR and CatBoost 

emerging as the top-performing models. However, the study’s limited geographic scope restricted its generalizability. 

In [6], applied KNN, Gaussian Naive Bayes, SVM, Random Forest, and XGBoost to AQI data from 23 Indian cities. XGBoost 

demonstrated the highest accuracy, highlighting its scalability for large datasets. However, variations in model performance across 

cities revealed challenges in adapting models to diverse regional conditions. 

In [7], SARIMA, SVM with RBF kernel, and LSTM models were compared for AQI prediction in Ahmedabad. SVM with RBF 

kernel achieved the highest accuracy, demonstrating its effectiveness for industrial regions, though the study was limited to a single 

city. 

In [8], the ARIMA model to predict pollutant levels in Surat. While the model effectively forecasted short-term AQI trends and 

analysed lockdown-related pollution reductions, the lack of alternative model comparisons limited its insights. 

In [9], evaluated CatBoost, Random Forest, and XGBoost models for AQI prediction in Visakhapatnam. CatBoost achieved the best 

performance (R² = 0.9998) and identified PM₂.₅ and PM₁₀ as key pollutants. However, the study’s scope was restricted to a single 

city without real-time testing. 

In [10], high-resolution spatiotemporal models for six pollutants were developed using satellite and ground monitoring data. The 

study provided detailed AQI maps for Shanghai, identifying O₃ as a dominant pollutant. However, the exclusion of meteorological 

data limited the model’s accuracy and broader applicability. 

In [11], employed GIS-based spatial interpolation and Geographically Weighted Regression models to predict AQI in Iraq using 

remote sensing and ground station data. The study highlighted PM₂.₅ as a major pollutant but focused on a single season and lacked 

real-time monitoring, restricting its generalizability. 

In [12], developed a linear regression model in R to predict pollutant levels in Belgrade, focusing on PM₂.₅, PM₁₀, SO₂, NO₂, and 

CO. The approach was cost-effective and adaptable, but it was limited to winter data and lacked meteorological integration, 

impacting its prediction precision. 

In [13], a hybrid VMD–EEMD–LSTM model was proposed for ozone prediction. The model achieved high accuracy (R² = 98%) by 

handling complex, non-stationary data but focused solely on ozone and did not incorporate meteorological factors. 

In [14], introduced a multi-scale, attention-enhanced CNN model combining low-cost sensor data, satellite AOD, and LiDAR-

derived 3D urban features for PM₂.₅ prediction at 30-m resolution. The model effectively captured fine-scale pollution patterns and 

urban-rural disparities but was limited to Denton County, Texas, requiring broader validation for widespread application.  
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Table 1. Taxonomy of AQI prediction. 

Ref Pap No. Methodology Contributions Advantages Limitations 

N. Srinivasa 

Gupta et al. 

(2023)  

  [5] 

Applied SVR, RFR, and 

CatBoost for AQI prediction 

in four Indian cities with 

SMOTE for data balancing. 

Identified RFR and 

CatBoost as top-

performing models for AQI 

prediction. 

Improved accuracy 

through balanced 

data. 

Limited to four 

cities, reducing 

generalizability. 

 K. Kumar & 

B.P. Pande 

(2023)     

[6] 

Used KNN, Naive Bayes, 

SVM, Random Forest, and 

XGBoost on six years of 

AQI data from 23 Indian 

cities. 

Found XGBoost to have 

the highest accuracy among 

tested models. 

Scalable framework 

for large datasets. 

Variations in model 

performance across 

cities limit 

adaptability. 

Nilesh N. 

Maltare & 

Safvan Vahora 

(2023)   [7] 

Compared SARIMA, SVM 

with RBF kernel, and LSTM 

for AQI prediction in 

Ahmedabad. 

Demonstrated SVM with 

RBF kernel’s high 

accuracy in AQI prediction. 

Effective for 

industrial regions. 

Focused on 

Ahmedabad; 

limited testing in 

other geographies. 

H. N. 

Mahendra et 

al. (2023)    

[8] 

Applied ARIMA model to 

predict pollutant levels in 

Surat using COVID-19 

lockdown data. 

Showcased ARIMA’s 

capability for short-term 

AQI forecasting. 

Useful for analysing 

lockdown effects on 

air quality. 

Did not explore 

alternative models, 

limiting 

comparative 

insights. 

G. Ravindiran 

et al. (2023) 

[9] 

Evaluated CatBoost, 

Random Forest, XGBoost, 

and others for AQI 

prediction in 

Visakhapatnam. 

CatBoost outperformed 

other models (R² = 

0.9998); identified PM₂.₅, 
PM₁₀ as key contributors. 

Highly accurate AQI 

predictions. 

Restricted to one 

city, no real-time 

applicability. 

Yiyi Wang et 

al. (2023) 

[10] 

Developed high-resolution 

spatiotemporal models for 

six pollutants in Shanghai 

using satellite and ground 

data. 

Created detailed AQI maps 

revealing spatial variability 

and key pollutants. 

High-resolution 

analysis for urban 

pollution. 

Excluded 

meteorological 

factors like wind 

and humidity. 

Huda Jamal 

Jumaah et al. 

(2023) 

[11] 

Used GIS, Least Squares, 

and GWR to predict AQI in 

Iraq using remote sensing 

and ground station data. 

Generated AQI maps 

identifying PM₂.₅ as a 

major pollutant. 

Effective framework 

for under-monitored 

regions. 

Focused on a single 

season; lacked real-

time monitoring. 

Zoltan Kazi, 

Snezana Filip, 

and Ljubica 

Kazi (2024) 

[12] 

Built a linear regression 

model in R for pollutant 

prediction in Belgrade. 

Provided a cost-effective 

pollutant prediction tool for 

PM₂.₅, PM₁₀, SO₂, and 

others. 

Adaptable and 

simple to use. 

Limited to winter 

data; no 

meteorological 

factors included. 

Tang et al. 

(2024) [13] 

Proposed hybrid VMD–

EEMD–LSTM model for 

ozone prediction using dual 

series decomposition. 

Achieved high accuracy 

(R² = 98%), outperforming 

traditional models. 

Effective for 

complex, non-

stationary data 

forecasting. 

Focused only on 

ozone; lacked 

meteorological 

integration. 

Lu Liang et al. 

(2024) [14] 

Developed multi-scale CNN 

using sensor, satellite, and 

LiDAR data for PM₂.₅ 
prediction at 30-m 

resolution. 

Highlighted urban-rural 

pollution disparities with 

high accuracy (R² = 0.80). 

Captures fine-scale 

pollution variations. 

Limited to Denton 

County; needs 

broader validation. 
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III. AIR QUALITY PREDICTION APPROACH 

 The air quality prediction process involves several sequential steps, starting from data acquisition to model evaluation. The primary 

objective is to predict the Air Quality Index (AQI) by leveraging machine learning algorithms with high accuracy and reliability. 

The approach ensures the inclusion of vital preprocessing techniques to prepare raw data, followed by the implementation of various 

regression models for prediction and performance evaluation. 

The provided flowchart visually represents the proposed methodology for predicting air quality. It outlines a systematic workflow 

starting with loading datasets and installing necessary libraries, followed by preprocessing steps such as handling missing values 

and normalizing the data. The dataset is then split into training and testing sets, and scaling is applied to standardize the features. 

Once the data is prepared, the training of machine learning models is carried out, followed by their evaluation based on performance 

metrics such as R² and Root Mean Square Error (RMSE). A decision step evaluates the model's accuracy, and adjustments are made 

to parameters or models if required. Finally, the model with the best performance is selected for predicting AQI. 

This step-by-step approach ensures a comprehensive analysis of data and optimizes the prediction process. The figure 1 gives a 

detailed explanation of the components in the flowchart, which serves as the foundation of the air quality prediction methodology. 

                                                  
                                                                     Figure 1. Flowchart of prediction model of AQI. 

 

A. Dataset Description 

The dataset utilized for this project comprises air quality data collected from the city of Amaravati. It records various 

pollutants and their concentrations on specific dates, along with an overall assessment of air quality. The dataset includes key 

features such as the date of data collection, pollutant concentrations, and the corresponding Air Quality Index (AQI) values. 

Each entry in the dataset represents measurements taken for multiple pollutants, including Particulate Matter (PM2.5 and 

PM10), Nitric Oxide (NO), Nitrogen Dioxide (NO2), Ammonia (NH3), Carbon Monoxide (CO), Sulfur Dioxide (SO2), and 

Ozone (O3). Additionally, it tracks concentrations of volatile organic compounds like Benzene (C₆H₆), Toluene (C₇H₈), and 
Xylene (C₈H₁₀). 
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The AQI, an essential feature of the dataset, is calculated based on pollutant concentrations and is used to categorize the air quality 

into qualitative buckets such as "Good," "Moderate," or "Poor." For example, in this dataset, a recorded AQI of 184 falls into the 

"Moderate" category, indicating a noticeable level of pollution. The dataset's structure allows for a comprehensive analysis of the 

relationship between different pollutants and their contribution to air quality. 

This rich collection of variables not only facilitates the training and evaluation of machine learning models but also enables 

deeper insights into the dynamics of air quality. The dataset's temporal dimension (i.e., measurements taken on specific dates) 

further allows for the exploration of trends and patterns over time, making it an invaluable resource for predicting AQI and 

aiding in environment. 

 

B. Data Pre-Processing 

Data pre-processing is a crucial step in the air quality prediction approach as it ensures that the dataset is clean, consistent, 

and suitable for machine learning analysis. The dataset undergoes several pre-processing techniques to handle issues such as 

missing values, outliers, and scaling inconsistencies, which can impact the accuracy of the predictive models. 

The first step in data pre-processing involves addressing missing values, which are common in real-world datasets. Missing 

data points are either filled using statistical methods such as mean, median, or mode imputation or removed if they are minimal 

and their absence does not significantly affect the overall data structure. This ensures that the dataset remains complete and 

representative of the underlying air quality patterns. Outlier detection and handling are also performed to ensure that extreme 

values, which may result from measurement errors or anomalies, do not skew the predictions. Outliers are either corrected or 

removed based on their impact on the dataset. Next, categorical variables, such as the AQI bucket (e.g., "Good," "Moderate," 

"Poor"), are encoded into numerical formats to make them compatible with machine learning models. Techniques like label 

encoding or one-hot encoding are used for this purpose. Normalization or scaling of numerical features is then performed to 

ensure that all variables contribute equally to the model's performance. Pollutant concentrations often have varying units and 

ranges, which can lead to biased predictions if not scaled. Standardization methods, such as Min-Max scaling or Z-score 

normalization, are applied to bring all features into a uniform range. Lastly, the dataset is split into training and testing sets. The 

training set is used to train the machine learning models, while the testing set is reserved for evaluating the models' performance. 

This split is essential for assessing the models' generalization capabilities on unseen data. Through these data pre-processing steps, 

the dataset is transformed into a format that is optimal for machine learning analysis, enhancing the accuracy and reliability of 

the air quality prediction models. 

 

C. AQI Calculation 

The Air Quality Index (AQI) is a critical measure used to quantify air quality and assess the impact of pollution on human 

health and the environment. It aggregates the concentrations of various pollutants, such as PM2.5, PM10, NO2, SO2, O3, and 

others, into a single, standardized value. AQI is categorized into qualitative buckets, such as "Good," "Moderate," or "Poor," 

to provide an easy-to-understand representation of air quality. 

 In the model, the AQI calculation involves determining the  AQI  for  individual  pollutants  based  on  their 

concentrations. The calculation follows standards set by environmental agencies, where the pollutant with the highest AQI 

value determines the overall AQI. The formula for calculating the AQI for a specific pollutant is:  

                                         AQI= 
ூష  ூೢష  ೢ ܥ) ݔ  − ௪ܥ  ) ௪ܫ +                                                                                          (1) 

C: The concentration of the pollutant (e.g., PM₂.₅, PM₁₀, NO₂) measured from monitoring stations. 
C_low: The concentration breakpoint that is less than or equal to C. 

C_high: The concentration breakpoint that is greater than or equal to C. 

I_low: The AQI value corresponding to C_low. 

I_high: The AQI value corresponding to C_high. 

                                          

D. Feature Engineering 

Feature engineering plays a vital role in improving the accuracy and efficiency of AQI prediction models by transforming raw 

data into meaningful inputs. The focus is on selecting key variables such as PM2.5, PM10, NO2, and O3, along with 

meteorological factors like temperature and humidity, which directly influence air quality. Unnecessary features are excluded 

to reduce noise and complexity. 
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Derived features are created to enhance model understanding, including pollutant ratios (e.g., PM2.5/PM10) and temporal 

features like the previous day’s AQI. Feature scaling, such as Min-Max normalization, ensures all variables have a uniform 

range, preventing any single feature from dominating the model training process. Categorical features like AQI buckets are 

numerically encoded to make them compatible with machine learning algorithms. These engineering steps ensure that the data 

is optimized for modeling, enabling more accurate and reliable AQI predictions. 

 

E. Splitting Data 

Splitting the dataset into training and testing sets is a crucial step in building and evaluating machine learning models for AQI 

prediction. This ensures that the model learns patterns from one portion of the data (training set) and is validated on an unseen 

portion (testing set) to assess its performance and generalization capability. 

In this model, the dataset is split into two subsets: the training set, which comprises 80% of the data, and the testing set, which 

includes the remaining 20%. The training set is used to fit the machine learning models, allowing them to learn the 

relationships between input features (pollutant concentrations and meteorological factors) and the target variable (AQI). The 

testing set is reserved for evaluating the model’s predictive accuracy and robustness on unseen data, ensuring it performs well 

on real-world scenarios. 

This split is performed randomly to ensure that the subsets represent the overall distribution of the data. Randomization 

minimizes bias and prevents overfitting, where the model might memorize specific data points instead of learning general 

patterns. By maintaining an appropriate balance between training and testing data, the approach ensures that the models are 

both accurate and capable of generalizing to new datasets. 

 

F. Regression Models Construction 

The final step in the air quality prediction approach involves constructing regression models to predict the Air Quality Index 

(AQI). For this task, the models are trained using advanced regression techniques, namely Extra Trees Regressor, Support 

Vector Regressor (SVR), LightGBM, and CatBoost. Each capable of capturing the complex relationships between pollutant 

concentrations, meteorological variables, and AQI. The following models are implemented and analyzed. 

1) Extra Trees Regressor: This is an ensemble learning method based on Decision Trees. Extra Trees Regressor improves 

prediction accuracy by constructing multiple Decision Trees during training and averaging their predictions. Unlike 

Random Forest, it splits nodes randomly, which reduces variance and enhances computational efficiency. This model is 

particularly effective for handling high-dimensional datasets with complex, non-linear relationships between input 

features and AQI. It leverages historical air pollution data to identify patterns and make accurate AQI predictions. 

2) Support Vector Regressor (SVR): SVR is a supervised machine learning algorithm that utilizes hyperplanes to model the 

relationship between input features and target variables. By using a kernel trick, SVR can map the data into higher-

dimensional spaces to capture non-linear patterns in pollutant concentrations and AQI. The model optimizes the margin of 

error between predicted and actual values, making it suitable for precise AQI forecasting. SVR is especially useful when the 

dataset contains noise or outliers, as it focuses on minimizing prediction errors while maintaining model robustness. 

3) CatBoost Regressor: CatBoost is a gradient boosting algorithm specifically designed to handle categorical and numerical 

data efficiently. It reduces the complexity of handling categorical variables while maintaining high accuracy. CatBoost is 

known for its speed and performance on large datasets, making it ideal for AQI prediction tasks. By training on pollutant 

concentrations, meteorological features, and historical AQI data, CatBoost generates reliable forecasts, even in the presence 

of non-linear and multi-dimensional data relationships. 

4) LightGBM: Light Gradient Boosting Machine (LightGBM) is another gradient boosting framework known for its high 

computational efficiency and scalability. LightGBM constructs decision trees in a leaf-wise manner, which reduces computation 

time and improves accuracy on large datasets. Its ability to handle missing data and outliers makes it well- suited for AQI 

prediction. By analysing historical air quality data and identifying patterns, LightGBM provides accurate predictions of AQI 

and facilitates better decision-making for air quality management. 

Each regression model is trained and evaluated using key performance metrics, including R² scores and Root Mean Square 

Error (RMSE). These metrics help assess the predictive accuracy and robustness of the models, ensuring reliable AQI 

forecasting. By leveraging these advanced regression techniques, the model achieves a comprehensive understanding of 

pollutant behavior and its impact on air quality. 
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G. Evaluation Measures 

To evaluate the performance of the regression models used for AQI prediction, two widely recognized metrics are employed: R² 

Score and Root Mean Square Error (RMSE). These metrics provide a comprehensive understanding of the model’s accuracy and its 

ability to generalize to unseen data. 

The R² Score measures the proportion of variance in the target variable (AQI) that is explained by the input features. It quantifies 

how well the regression model fits the data, with values ranging between 0 and 1. A higher R² score indicates that the model 

effectively captures the relationships between pollutants, meteorological factors, and AQI. In this project, R² is used to assess the 

accuracy of regression models such as Extra Trees Regressor, SVR, CatBoost, and LightGBM, ensuring that they align closely with 

the actual AQI values. ܴଶ= 1 − ∑ (௬ି ௬ො)మసభ∑ (௬ି௬ത )మసభ  .ത: Mean of the actual observed valuesݕ .ො: Predicted value for the ith data pointݕ .: Actual observed value for the ith data pointݕ                     (2)                                                                                                                                                                           

n: Total number of data points. ∑ ݕ) − ො)ଶୀଵݕ  : Sum of squared errors (residual sum of squares). ∑ ݕ) − ത )ଶୀଵݕ : Total sum of squares, representing the variance in the observed data. 

 

The Root Mean Square Error (RMSE) calculates the average deviation between the predicted AQI and the actual AQI. It 

emphasizes larger errors by squaring the differences, making it particularly useful for identifying models that consistently provide 

accurate predictions. A lower RMSE value signifies better model performance, as it indicates that the predictions are closer to the 

observed values. RMSE is critical for comparing models in this project, as it highlights the precision and reliability of the regression 

approaches. 

Both metrics are integral to the evaluation process, offering insights into the predictive capabilities of the selected regression 

models. By analysing these measures, the most accurate and robust model can be chosen for AQI forecasting. 

RMSE = ටఀసభ (௬ି ௬ො)మ  .ො: Predicted value for the ith data pointݕ .: Actual observed value for the ith data pointݕ (3)                                                                                                                                                              

n: Total number of data points. 

ݕ) − ୀଵߑ .ො)ଶ: Squared difference between actual and predicted values (squared residual)ݕ  ݕ) −  .ො)ଶ: Sum of squared residualsݕ 

IV. RESULTS 

This section presents the findings from the multi-model regression approach developed for AQI prediction. It includes 

snapshots of model outputs, performance metrics, and a detailed evaluation of the prediction results. 

 

A. Model Performance Comparison 

The project evaluated four regression models: ExtraTrees Regressor, Support Vector Regression (SVR), CatBoost, and LightGBM, 

using metrics such as R-squared (R²) and Root Mean Square Error (RMSE) across multiple cities. 

 
Figure 2. shows scatter plot representation of the AQI model. 
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Figure 3. shows bar chart representation of the AQI model. 

 

 
Figure 4.  shows the results of the AQI model. 

 

This image presents a comparison of regression models based on R-squared and RMSE scores for the combined dataset of cities, 

identifying ExtraTrees Regressor as the best performer.  

 

B. Visualizations Of Predictions 

The performance of the regression models was assessed using scatterplots that compare predicted AQI values against actual AQI 

values. Instead of presenting multiple scatterplots for each model and city, Figure 5 is provided as a representative example. This 

scatterplot illustrates the predictive performance of the LightGBM model for a test city, with the predicted AQI values (y-axis) 

plotted against the actual AQI values (x-axis). The alignment of points near the diagonal dashed line reflects the model’s accuracy, 

while deviations from this line highlight areas where the model's predictions can be improved.  

This approach, utilizing scatterplots across all models, effectively conveyed the prediction accuracy and allowed for a 

straightforward evaluation of model performance across diverse data conditions. 
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Figure 5. scatterplot for LightGBM predictions for a test city. 

 

The performance of each model was further analysed using the obtained scatter plots for all the models and cities and came to a 

conclusion that represent as follows:  

1) ExtraTrees Regressor: Scatter plots demonstrate that most points align closely with the diagonal, showing good prediction 

accuracy. Deviations at higher AQI values indicate slight overfitting. 

2) SVR: Scatter plots reveal a broader scatter around the diagonal, especially for extreme AQI values. This suggests difficulty in 

capturing non-linear patterns.  

3) CatBoost: Scatter plots indicate strong prediction performance, with most points clustered near the diagonal. Minor deviations 

suggest excellent generalizability.  

4) LightGBM: Scatter plots exhibit the best alignment with the diagonal, showcasing the model’s efficiency and robustness for 

AQI prediction. 

 

C. CITY-WISE Analysis 

The models were tested across cities, revealing interesting insights which is represented in Table 1: 

1) Ahmedabad: Both CatBoost and LightGBM achieved high R² and low RMSE values, making them ideal for AQI prediction in 

this region. 

2) Delhi: ExtraTrees Regressor showed superior performance in terms of R², but LightGBM performed better in RMSE, indicating 

its ability to handle outliers effectively. 

3) Bengaluru: ExtraTrees achieved high R², while LightGBM excelled in minimizing prediction errors. 

4) Mumbai: LightGBM emerged as the most balanced model, excelling in both R² and RMSE. 

These findings suggest that the optimal model can vary based on regional and data-specific characteristics, underscoring the 

importance of multi-model evaluation. 

 

Table 2. Result for best model according to different cities. 

City Best R² Model Best RMSE Model 

Ahmedabad ExtraTrees Regressor ExtraTrees Regressor 

Delhi ExtraTrees Regressor ExtraTrees Regressor 

Bengaluru CatBoost CatBoost 

Mumbai ExtraTrees Regressor ExtraTrees Regressor 
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D. Insights From Feature Importance 

Feature importance analysis revealed the following key predictors for AQI: 

1) PM2.5 and PM10: Consistently the most significant features across all models. 

2) Meteorological Variables: Factors like temperature, wind speed, and humidity moderately influenced predictions. 

3) Gaseous Pollutants: NO2 and SO2 had varying levels of significance, contributing more in specific regions or during 

certain periods. 

 

V. CONCLUSION 

In this work, a robust and efficient Air Quality Index (AQI) prediction model has been developed using a multi-model 

regression approach. The methodology integrates data acquisition, preprocessing, and feature engineering to create a reliable 

foundation for accurate predictions. By leveraging advanced machine learning techniques such as SVR, ExtraTrees 

Regressor, CatBoost Regressor, and LightGBM Regressor, the work ensures that the model captures complex relationships 

between meteorological factors and air pollutants. Through rigorous evaluation based on metrics like accuracy, precision, and 

efficiency, ExtraTrees Regressor has been identified and proved to be the best-performing model. This model excels in 

capturing intricate patterns within the data while maintaining high computational efficiency. 

The comprehensive pipeline ensures scalability and adaptability across various regions and environmental conditions. The 

work stands as a step forward in addressing air pollution challenges and promoting data-driven decision-making. 

The final AQI prediction model, with the ExtraTrees Regressor at its core, can be utilized in real-world applications, such as 

urban planning, public health monitoring, and early warning systems for air pollution. Its ability to integrate real-time data 

and critical meteorological parameters makes it an essential tool for mitigating the adverse effects of poor air quality. 

Furthermore, the model’s scalability ensures its effectiveness in diverse geographical areas, from densely populated cities to 

rural regions. By providing accurate and timely predictions, this system empowers policymakers, environmentalists, and 

individuals to take proactive measures. 

The work highlights the importance of combining technological advancements with environmental awareness to create 

sustainable solutions. Future work could focus on incorporating additional factors like industrial emissions and socio-

economic data to further improve prediction accuracy. 
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