Properties of the Ternary Cubic Equation $5 x^{2}-3 y^{2}=z^{3} \sum$
G. Janaki ${ }^{1}$, A. Gowri Shankari ${ }^{2}$
${ }^{1}$ Associate Professor, ${ }^{2}$ Assistant Professor, PG \& Research Department of Mathematics, Cauvery College for Women (Autonomous), Affiliated to Bharathidasan University, Trichy - 18

Abstract

To identify its different integral non-zero solutions, the ternary cubic equation $5 x^{2}-3 y^{2}=z^{3}$ is taken into consideration. Different integral solution patterns to the ternary cubic equation under consideration are obtained in each pattern by using the linear transformation and the method of factorization; interesting relationships between the solutions and some polygonal numbers, such as pyramidal and central pyramidal numbers, are also displayed. Keywords: Diophantine equations, Ternary equation, Cubic Equation with Three Unknowns, Integral Solutions

I. INTRODUCTION

Number theory, which is used to explain anything that can be quantified, is the language of patterns and relationships. A polynomial equation called a Diophantine equation can only have integers as solutions. Theories of numbers were featured in [1-3]. A unique Pythagorean triangle problem and its integral solutions are featured in [4, 5]. Higher order equations are taken into account for integral solutions in [6-10].
The non-homogeneous cubic equation with three unknowns represented by the equation is discussed in this communication, and in particular, a few intriguing relationships between the solutions are highlighted.

A. Notations

$\mathrm{T}_{\mathrm{m}, \mathrm{a}}$: Polygonal Number of rank a with side m
$\mathrm{Gno}_{\mathrm{a}}$: Gnomonic Number of rank a
Star $_{\mathrm{a}}$: Star Number of rank a
O_{a} : Octahedral Number of rank a
$\mathrm{P}_{\mathrm{a}}{ }^{\mathrm{m}}:$ Pyramidal Number of rank a with sides m
SO_{a} : Stella Octangula Number of rank a
CC_{a} : Centered Cube Number of rank a
CS_{a} : Centered Square Number of rank a
RD_{a} : Rhombic Dodecagonal Number of rank a
TO_{a} : Truncated Octahedral Number of rank a

II. METHOD OF ANALYSIS

A non-zero integral solution to the Cubic equation can be found by
$5 x^{2}-3 y^{2}=z^{3}$
Upon switching the transformations,
$x=X+3 T, y=X+5 T, z=2 Z$
in (1) leads to, $X^{2}-15 T^{2}=4 Z^{3}$
Below, we present illustration of distinct integer non-zero patterns (1)
A. Pattern: 1

Assume $Z=z(a, b)=a^{2}-15 b^{2}$

Where a and b are positive integers.
And write $4=(8+2 \sqrt{15})(8-2 \sqrt{15})$
Using the factorization approach, replacing (3) with (4) and (5),
$(X+\sqrt{15} T)(X-\sqrt{15} T)=(8+2 \sqrt{15})(8-2 \sqrt{15})(a+\sqrt{15} b)^{3}(a-\sqrt{15} b)^{3}$
Comparing real and imaginary elements while equating similar phrases, $X=8 a^{3}+360 a b^{2}+90 a^{2} b+450 b^{3}$
$T=2 a^{3}+90 a b^{2}+24 a^{2} b+120 b^{3}$
The appropriate integer solutions of equation (1) are provided by substituting the above mentioned values of X and T into equation

$$
x=x(a, b)=14 a^{3}+630 a b^{2}+162 a^{2} b+810 b^{3}
$$

(2) $y=y(a, b)=18 a^{3}+810 a b^{2}+210 a^{2} b+1050 b^{3}$

$$
z=z(a, b)=2 a^{2}-30 b^{2}
$$

Properties:

1. $-7 z(a, a)$ and $-28 z(a, a)$ are Perfect Squares
2. $-x(1,1)+y(1,1)-z(1,1)$ is a Harshad Number
3. $y(a, 1)-x(a, 1)-6 P_{a}{ }^{6}-\operatorname{star}_{a}-2 T_{29, a}-T_{26, a} \equiv 239(\bmod 123)$
4. $y(a, 1)-x(a, 1)-124 z(a, 1)-2 S O_{a}-91 G n o_{a} \equiv 0(\bmod 4051)$
5. $-y(a, 1)-z(a, 1)+18 P_{a}{ }^{3}+4$ Star $_{a} \equiv 1076(\bmod 852)$
6. $x(a, 1)+y(a, 1)-16 z(a, 1)-2 T O_{a}-29 T_{30, a} \equiv 2352(\bmod 1769)$
7. $-x(a, 1)+y(a, 1)-23 z(a, 1)+12 P_{a}{ }^{5}+T_{18, a} \equiv 930(\bmod 187)$
B. Pattern: 2

The modified form of equation (3) is
$X^{2}-15 T^{2}=4 Z^{3} * 1$
Put 4 in as, $4=(8+2 \sqrt{15})(8-2 \sqrt{15})$
and $1=(4+\sqrt{15})(4-\sqrt{15})$
When (7) and (8) are substituted in equation (6) and the process of factorization is used, as described in Pattern 1 , the corresponding

$$
x=x(a, b)=110 a^{3}+4950 a b^{2}+1278 a^{2} b+6390 b^{3}
$$

integer solutions of (1) are represented by $y=y(a, b)=142 a^{3}+6390 a b^{2}+1650 a^{2} b+8250 b^{3}$

$$
z=z(a, b)=2 a^{2}-30 b^{2}
$$

Properties:

1. $y(1,1)-x(1,1)+z(1,1)-22 T_{3,4}$ is a nasty number
2. $x(1,1)+y(1,1)-26 T_{3,4}$ is a perfect square number
3. $y(1,1)-x(1,1)+11 z(1,1)-T_{8,3}$ Is a cubic number
4. $y(a, 1)-x(a, 1)-8 R D_{a}-72 T_{15, a}-886 G n o_{a} \equiv 0(\bmod 2762)$
5. $y(a, 1)-x(a, 1)-186 z(a, 1)-48 O_{a}-712 G n o_{a} \equiv 0(\bmod 8152)$
6. $y(a, 1)-x(a, 1)-2 T O_{a}-47 T_{22, a} \equiv 1392(\bmod 1815)$
7. $y(a, 1)-825 x(a, 1)-213 O_{a} \equiv 33000(\bmod 6319)$
8. $2 x(a, 1)-426 z(a, 1)-110 S O_{a}-284 T_{26, a}-6567 G n o_{a} \equiv 0(\bmod 6567)$
C. Pattern: 3

Write $1=(31+8 \sqrt{15})(31-8 \sqrt{15})$
By replacing (7) and (9) in equation (6) and factorising the result using the steps in Pattern 1, the corresponding integer solutions of

$$
\begin{equation*}
x=x(a, b)=866 a^{3}+38970 a b^{2}+10062 a^{2} b+50310 b^{3} \tag{9}
\end{equation*}
$$

(1) are represented by $y=y(a, b)=1118 a^{3}+50310 a b^{2}+12990 a^{2} b+64950 b^{3}$

$$
z=z(a, b)=2 a^{2}-30 b^{2}
$$

Properties:

1. $y(a, 1)-16 z(a, 1)-2236 P_{a}{ }^{5}-1184 T_{22, a}-30483 G n o_{a} \equiv 0(\bmod 95913)$
2. $y(a, 1)-x(a, 1)+z(a, 1)-189 H O_{a}-827 T_{10, a}-5796 G n o_{a} \equiv 0(\bmod 23056)$
3. $\frac{1}{10}(x(1,1)-y(1,1))$ is a square number
4. $x(1, b)+y(1, b)+23 z(1, b)-138312 P_{b}{ }^{7}-3239$ Star $_{b}-44295$ Gno $_{b} \equiv 0(\bmod 42086)$
5. $y(1,1)-x(1,1)+24 T_{3,4}$ is a nasty number
6. $x(a, 1)-16 z(a, 1)-4336 C C_{a}-11329 C S_{a}+22658 T_{3, a} \equiv 39894(\bmod 71658)$
7. $-x(a, 1)+y(a, 1)-23 z(a, 1)-63 R D_{a}-239 T_{30, a} \equiv 14013(\bmod 14195)$
8. $y(a, 1)-x(a, 1)+19 z(a, 1)-126 S O_{a}-1483 T_{6, a} \equiv 14070(\bmod 12949)$

Note:
Additionally, 4 and 1 might be written as
$4=(62+16 \sqrt{15})(62-16 \sqrt{15}$
$1=\frac{(8+\sqrt{15})(8-\sqrt{15})}{49}$
In relation to these options, one may find many patterns of solutions of (1)

III. CONCLUSION

Three unique patterns of non-zero distinct integer solutions to the given non-homogeneous problem $5 x^{2}-3 y^{2}=z^{3}$ are shown in this paper.
For various options of cubic Diophantine equations, additional patterns of non-zero integer unique solutions and their corresponding characteristics may be found.

REFERENCES

[1] Carmichael R.D., "The Theory of Numbers and Diophantine Analysis", Dover Publications, New York, 1959
[2] Dickson L.E., "History of the theory of numbers", Chelsia Publishing Co., Vol II, New York, 1952
[3] Mordell L.J., "Diophantine Equations", Academic Press, London 1969
[4] Telang S. G., "Number Theory", Tata Mc Graw- Hill Publishing Company, New Delhi 1996

$$
x^{2}-y^{6}=z^{2}
$$

[5] Gopalan M.A, Manju Somnath and Vanitha N, Parametric Solutions of , Acta Ciencia Indica, Vol XXXIII, 3, 1083-1085, 2007

$$
\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-w^{2}\right) p^{3 \prime \prime}
$$

[6] Gopalan M.A and Janaki G, "Integral solutions of , Impact J. Sci, Tech., 4(1), 97-102, 2010

$$
x^{3}+y^{3}+x^{2}-y^{2}=4\left(z^{3}+z^{2}\right)
$$

[7] Gopalan M.A, Pandichelvi V, "Observations on the ternary cubic equation \quad ", Archimedes J. Math 1(1), 31-37, 2011

$$
\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-w^{2}\right) p^{3}
$$

[8] Gopalan M.A and Janaki G, "Integral solutions of ", Impact Journal of Science \& Technology, Vol-4, No. 97 - 102, 2010

$$
6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2 \prime \prime}
$$

[9] Janaki G, Saranya C, "Observations on Ternary Quadratic Diophantine Equation , International Journal of Innovative Research and Science, Engineering and Technology, Volume 5, Issue 2, February 2016
[10] Janaki G, Saranya P, " On the Ternary Cubic Diophantine Equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3 "}$, International Journal of Science and Research- online, Vol 5, Issue 3, Pg. No: 227 - 229, March 2016

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

