IJRASET

International Journal For Research in
Applied Science and Engineering Technology

" INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 10 Issue: IX Month of publication: September 2022

DOIl: https://doi.org/10.22214/ijraset.2022.46914

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

Quantum Al: Deep Learning optimization using
Hybrid Quantum Filters

Kaushik Ganguly
MTECH- Data Science & Engineering, Birla Institute of Technology and Science, Pilani, India
Senior Data Scientist, Cognizant Technology Solutions India Pvt. Ltd.

Abstract: Deep learning algorithms have shown promising results for different image processing tasks, particularly in remote sensing
& image recognition. Till now many studies have been carried out on image processing, which brings a new paradigm of innovative
capabilities under the umbrella of intelligent remote sensing and computer vision. Accordingly, quantum processing algorithms have
proved to efficiently solve some issues that are undetectable to classical algorithms and processors. Keeping that in mind, a Quantum
Convolutional Neural Network (QCNN) architecture along with Hybrid Quantum filters would be utilized supported by cloud
computing infrastructures and data centers to provide a broad range of complex Al services and high data availability.

This research summaries the conventional techniques of Classical and Quantum Deep Learning and it’s research progress on real-
world problems in remote sensing image processing as a comparative demonstration. Last but not least, we evaluate our system by
training on Street View House Numbers datasets in order to highlight the feasibility and effectiveness of using Quantum Deep
Learning approach in image recognition and other similar applications. Upcoming challenges and future research areas on this
spectrum are also discussed.

Keywords: Deep Learning, Quantum Convolutional Neural Network (QCNN), Quantum Computing, Hybrid Quantum-CNN

I. INTRODUCTION/OBJECTIVE

Objective of the project is to:

1) Make use of Quantum Computing and Deep Learning - CNN to develop a more efficient and outperforming technique that can be
applied to solve complex machine learning tasks like digit recognition from high resolution images taken from a distance to identify
addresses of congested households too many at a time

2) Use superposition and entanglement theories, which are not seen in traditional computing environments, to achieve high
performance through qubit parallelism. Here qubit is referred to as the quantum bit which is basically a unit of quantum information.

3) Extend the key features and structures of existing CNN to quantum systems defined in the many-body Hilbert space is transferred to
a classical computing environment, the data size grows exponentially in proportion to the system size, making it unsuitable for
efficient solutions. Because data in a quantum environment can be expressed using qubits, the problem can be avoided by applying a
CNN structure to a quantum system

Il. PROPOSED APPROACH
Quantum Convolutional Neural Network (QCNN) provides a fresh approach to the solution of the problem to solve with CNN using a
quantum computing environment, and also an effort to improve the model performance in recognizing digits.

1) The first part of the solution to be introduced proposes a model to effectively solve the classification problem using classical Deep
Learning by applying the structure of CNN to the classical convolution environment.

2) The second part introduces a method to check whether the algorithm could be performed by adding a layer using Quantum
Computing to the CNN learning model used in the existing computer vision. Hybrid Quantum filters can be introduced to optimize
model accuracy and loss.

This model can also be used in small quantum computers, and a hybrid learning model can be designed by adding a quantum convolution
layer to the CNN model or replacing it with a convolution layer. If successful, this solution could be applied on UAV’s or Quantum
Drones (QD) by building an Internet of Quantum Drones (Io0QD) network to effectively process high resolution images of house
addresses to recognize digits from the later to enhance commercial activities like smart delivery hence making it unique.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1720

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

11l. POTENTIAL CHALLENGES & RISKS
A. Issues, knowledge gaps and futuristic aspects of the 10QDs and related architectures for which this solution could be actually
implemented
Lack of enough opportunities and time for implementing this disruptive technology stack
Scientific knowledge lacking
Energy and Environmental challenge in testing this project
Tracking transmission delays and other challenges involved with space communication
Cyberattack protection
Achieving performance with compact resource-constrained devices
Security based on Quantum Computation

I OmMmOOw

1V. BACKGROUND OF PREVIOUS WORK DONE
Quantum Convolutional Neural Networks (QCNN) Using Deep Learning for Computer Vision Applications
Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors
3D Object Detection and Tracking Methods using Deep Learning for Computer Vision Applications
Pneumonia classification using quaternion deep learning
Deep Learning based Object Detection Model for Autonomous Driving Research using CARLA Simulator
Quantum Neural Network-Based Deep Learning System to Classify Physical Timeline Acceleration Data of Agricultural Workers
Acrtificial Intelligence (Al) Enabled Vehicle Detection and counting Using Deep Learning

®TMMmMoUoO®>

V. IMPLEMENTATION
A. Technology Stack Used — Resources
1) Code repository will contain implementation of Quantum Neural Network as well as Classical Convolutional Neural Network
for Classification Task on Street View House Numbers dataset.

2) Python 3.9
3) For the Quantum Implementation we would need:

0 TensorFlow-Quantum

o Cirqg

4) For the Classical Implementation we would need:
0 TensorFLow 2.x
o0 TensorBoard

5) The Jupyter Notebooks are developed in Google Colab.
6) The Repository contains weights for trained Classical and Quantum Models.
7) Deployment feasibility of the entire QuantumAl setup on GCP, Qiskit Runtime Simulation, etc.

B. Datasource And Loading

» Dataset Chosen: The Street View House Numbers (SVHN) dataset is one of the most popular benchmarks for object recognition
tasks in academic papers. The images were obtained from house numbers in Google Street View images, are hosted by Stanford
University and are very similar in philosophy with the MNIST dataset. However, the original purpose of this dataset is to solve a
harder problem: that of recognizing digits and numbers in natural scene images.

» Dataset Format: The data of the Street View House Numbers dataset, which can originally be found here are originally in .mat, i.e.
files which can be best processed with MATLAB; thus, some preprocessing is. It is important to note that the data are divided into
two formats and in this particular kernel we are going to use Format 2.

1) Format 1: The original, variable-resolution colored house-number images with character level bounding boxes.

2) Format 2: The cropped digits (32x32 pixels) which follow the philosophy of the MNIST dataset more closely, but also contain
some distracting digits to the sides of the digit of interest.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1721

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

C. Workflow Operations

1) Classical Deep Learning with TensorFlow
a) Configurations/Libraries

° Keras

e Tensorflow

b) Preprocessing Functions

o FormatArray()

o fixLabel()

e rgh2gray()

The above three functions formats the array in proper shape, fix the label range and convert the pixels from RGB to GrayScale
format.

2) Data Preprocessing
Let's have a look at the first image from our X_train and the corresponding label from y_train.

Wisualization of the Dataset

0] w15 X B B

From the colorbar in the above visualization, we see that there are grayscale images in the dataset and hence their values range from
0 to 255. It's better to scale these pixel values in our dataset so that the values range from 0 to 1. This will help us to converge our
CNN training faster.

3) Normalizing the Train and test Image Data

X_train = X_train/255.0

X_test = X_test/255.0

Post normalizing let's again have a look at the first image from our X_train.

Visualization of the Dataset

10

15

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1722

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

Before proceeding, we need to reshape our images in the dataset to include the grayscale parameter at the end.
X_train = X_train.reshape(X_train.shape[0], *(32,32,1))
X _valid = X_valid.reshape(X_valid.shape[0], *(32,32,1))
X_test = X_test.reshape(X_test.shape[0], *(32,32,1))
» The shape of the X_train is (58605, 32, 32, 1)
» The shape of the X_valid is (14652, 32, 32, 1)
» The shape of the X_test is (26032, 32, 32, 1)

4) Building the Deep Learning Model

Now that we are aware of the dataset, we can start building our Deep Learning model. We will use TensorFlow and specifically the

tensorflow.keras API for building the model. TensorFlow is one of the leading Machine Learning libraries that is being used these days

and can be used for constructing Neural networks. Building our network involves the following steps which together create Python code:

e Adding imports: we depend on other packages for building our Neural network. We have to import the specific components that
we require first.

e Specifying the configuration options: configuring a Neural network involves specifying some configuration options.

e Creating the model skeleton: we then actually create the Neural network, or more specifically the model skeleton. We will then
know what our model looks like, but it's not real yet.

e Compiling the model: when compiling the model, we make it real, by instantiating it and configuring it. It can now be used.

e Fitting data to the model: in other words, training the model.

e Evaluating the model: checking how well it works after it was trained.

5) Libraries to be imported to build CNN

The first thing we have to do is adding the imports.

e First of all, we'll be using the Extra Keras Datasets package for importing SVHN Dataset.

e Wethen import the Sequential Keras API, which is the foundation for our Keras model. Using this API, we can stack layers on top
of each other, which jointly represent the Deep Learning model.

e We will also use a few layers: we'll use Convolutional ones (Conv2D) for 2D data (i.e., images), Densely-connected ones (for
generating the actual predictions) and Flatten (Dense layers can't handle non-1D data, so we must flatten the outputs of our final
Conv layers).

e For optimization, we use the Adam optimizer (tensorflow.keras.optimizers.Adam) and for loss we use categorical_crossentropy loss.

o Finally, because we use categorical crossentropy loss, we must one-hot encode our targets. Using the to_categorical util, we can
achieve this.

6) Configuration Parameters

e batch_size = 250

e no_epochs =150

o validation_split_size = 0.20

e verbosity =1

e optimizer = Adam()

e loss_function = categorical_crossentropy
e additional_metrics = ['accuracy’]

7) Creating the Model Skeleton

We can then create the model skeleton:

e We firstinitialize the Sequential API into the CNN_model variable.

e We then stack a few layers on top of each other and indirectly on top of the model foundation. Specifically, we use 3
Convolutional layers, then Flatten the feature maps generated by the last layer, and use Dense layers for the final prediction
(using Softmax).

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1723

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

8) Compiling and Model Training

Model training at 100th Epoch:

Epoch 100/100

1832/1832 [=] - 39s 21ms/step - loss: 0.1311 - accuracy: 0.9592 - val_loss: 0.3571
- val_accuracy: 0.9256

9) Model Evaluation

>
>

The loss on the test set is 0.3858301639556885
The accuracy on the test set is 0.922633707523346

Epachs v Tadeing and Validatioe Aocusary Epochs vi, Traning and Lss

aining Accuracy
R Validatson Accuracy o o

D8

264 4
| us

B8 Y
&

03

3

8D

10) Quantum Deep learning - QCNN

>

>

About QML — Quantum Machine Learning: We shall perform QML on America’s household dataset using TensorFLow Quantum
and Cirg.

TensorFlow-Quantum is a great place to start learning QML and get into this amazing field. TensorFlow Quantum (TFQ) is a
quantum machine learning library for rapid prototyping of hybrid quantum-classical ML models. TensorFlow Quantum focuses on
quantum data and building hybrid quantum-classical models. It integrates quantum computing algorithms and logic designed in Cirg,
and provides quantum computing primitives compatible with existing TensorFlow APIs, along with high-performance quantum
circuit simulators.

Cirq is a Python software library for writing, manipulating, and optimizing quantum circuits, and then running them on quantum
computers and quantum simulators. Cirg provides useful abstractions for dealing with today’s noisy intermediate-scale quantum
computers, where details of the hardware are vital to achieving state-of-the-art results.

Configurations/Libraries
Cirq 0.7

Tensorflow 2.3.1
Tensorflow-quantum 0.2

Preprocessing Functions (same as CNN)
FormatArray()
fixLabel()

rgb2gray()

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1724

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

c) Image Plot

0o
o8B
8.7
RS
o5
04
03
d) Filter data to 4 x 4 size:
-~k 5 e
00
o8
0.5
18 06
15
2.0 a4
25
a2
e
a5 ¢

e) Data Preprocessing:

e Remove contradictions

o Determine the set of labels for each unique image
e Throw out images that match more than one label

f) Building Quantum Circuit:
In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits

findfont: Font family ['Arial’'] not found. Falling back to DejaVvu Sans.

(0.0):

o, 1):

(0. 2): H

(0, 3):

I

(1,0): H

(1, 1

I

(1.2):

(1, 3):

I

(2, 0):

(2 1

I

I

@ 2):

I

2 3):

I

(2, 0):

(3 1)

I

(3, 2):

I

HEBEEEEEEEEEEEE

I

(3. 3):

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1725

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

g) Encode truncated classical image into quantum datapoint:

e Function convert_to_circuit(image)=> Take image and convert to circuit using gates

e convert data to circuit using the above convert_to_circuit() function

e convert data to tensor format — Apply convert_to_tensor function of tensorflow_quantum library to convert to
tensorflow_quantum circuits

h) SVG Circuit Representation

0.0

i) Build Model — QCNN Layers:
We then define model layer by using the Cong and Lukin QCNN paper.
Apply SVGCircuit for the above layer representations:

SWGCircuit(one_qubit_unitary(cirg.GridQubit(@, @), sympy.symbols('x@:3')))

SVGCircuit (two_gubit_unitary(cirg.GridQubit.rect(1, 2), sympy.symbols('x8:15"')))

(0, 0): | Zmx2 | zz } 1 vy ‘ l KX ‘ Kkl
1 1
{0, 1): X3 ¥ 25

SWGCircuit (two_qubit_pool(*cirg.GridQubit.rect(1, 2), sympy.symbols{'x@:6"}))

(o, 0): Xox3 25 } /i
(0, 1): —| X0 || yax | | zm2 | % } | 2702 | {Y"E-xl] | [xnc_xm |
L 1 i

R ali] 1 211 |

I
4 ZZ6 Youla b Il I

{ YY T

XX B ‘ -| Xhel2 |

j) Create Model Rebuild QCNN + CNN:

e Define GridQubit in 4X4 form

e Take symbols — sympy.symbols to pass as parameters

e Add layers one by one to fulfill the grid

e Append to circuit -> apply Hadamard Gate -> GridQubit

e Define Cluster State and form the PQC — Parameterized Quantum Circuit

e Ultimately form the gcnn_model initialized with all parameters to use in training

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

k) Train Model

o Define Hinge Accuracy
e Compile genn_model with learning_rate=.02, loss=mse & metrics=hinge_accuracy (defined above)
e Capture history of model training — gcnn_model.fit(..)

I) Training History Report

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

accuracy loss val_accuracy wval_loss
0 0511719 1.002065 0467068 1.002244
1 0.566406 0.995914 0.624421 0.970553
2 0.617188 0.953655 0.624421 0.936903
3 0.617188 0956728 0.624421 0.932841
4 0.617188 0.954910 0.624421 0.932542

m) Model Evaluation

Epochs vs. Training and Validation Accuracy Epochs vs. Training and Validation Loss

Famng Loss
Validation Loss

050 1 \
099 1 \

098 1
0974

09 1

052 1 r i Y e —

048 4

— Taining Accuracy
alidaton Accuracy

093 4
oo as 10 15 20 5 10 3s a0 00 as 10 15 20 25 30 is 40

D. Model Optimization/Improvement Plan

Of course, there is room for quite a bit of tuning in order to improve performance such as:

» Change the way the images are transformed in the augmentation process.

» Change the architecture of our model by modifying the embedded circuit layers etc.

» Train multiple CNNs and make ensemble predictions.

» Use some of the extra data which can be found along with the original dataset.

Referred from Cong and Lukin paper on Quantum Convolutional Neural Network (QCNN)

Implementing #2 and #3 of Performance Optimization/Improvement Plan:
e Changing Model Definition
e Introducing Hybrid Models:

0 Hybrid model with a single quantum filter

0 Hybrid convolution with multiple quantum filters

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

1) Changing Model Definition
We will now construct a purely quantum CNN. We will start with 8 qubits then we pool down tol.
Below code snippets Referred from Cong and Lukin paper on Quantum Convolutional Neural Network (QCNN)

o def create_model_circuit(qubits):

"""Create sequence of alternating convolution and pooling operators
which gradually shrink over time."""
model_circuit = cirq.Circuit()
symbols = sympy.symbols('qconv@:63')
Cirq uses sympy.Symbols to map learnable variables. TensorFlow Quantum
scans incoming circuits and replaces these with TensorFlow variables.
model_circuit += quantum_conv_circuit(qubits, symbols([@:15])
model_circuit += quantum_pool_circuit(qubits[:4], qubits[4:],

symbols [15:21])
model_circuit += quantum_conv_circuit(qubits([4:], symbols[21:36])
model_circuit += quantum_pool_circuit(qubits[4:6], qubits[G:],

symbols [36:42])
model_circuit += quantum_conv_circuit(qubits[6:], symbols[42:57])
model_circuit += quantum_pool_circuit([qubits[6]], [qubits([7]],

symbols [57:63])
return model_circuit

Create our qubits and readout operators in Cirg.
cluster_state_bits = cirq.GridQubit.rect(1, 8)
readout_operators = cirg.Z(cluster_state_bits[-1])

Build a sequential model enacting the previously defined logic of this notebook.
Here you are making the static cluster state prep as a part of the AddCircuit and the
"quantum datapoints" are coming in the form of excitation
excitation_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)
cluster_state = tfq.layers.AddCircuit()(
excitation_input, prepend=cluster_state_circuit{cluster_state_bits))

quantum_model = tfg.layers.PQC{create_model_circuit{cluster_state_bits),
readout_operators) (cluster_state)

genn_model = tf.keras.Model(inputs=[excitation_input], outputs=[gquantum_model]}

. =
mputLayer |20t | ()
output: | [(2,)]

' ?
AddCircuit [Pt { ()
output: | (?,)

mput: | (2)

P

aa output | (?, 1)

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1723

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

2) Model Training

‘, # Generate some training data.
train_excitations, train_labels, test_excitations, test_labels = generate_data(
cluster_state_bits)

Custom accuracy metric.

@tf.function

def custom_accuracy(y_true, y pred}:
y_true = tf.squeeze(y_true)
y_pred = tf.map_fn(lambda x: 1.0 if x >= @ else -1.@, y_pred)
return tf.keras.backend.mean(tf.keras.backend.equal(y_true, y_pred))

gcnn_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.002),
loss=tf.losses.mse,
metrics=[custom_accuracy])

history = qcnn_model.fit(x=train_excitations,

y=train_labels,

batch_size=16,

epochs=20,

verbose=1,

validation_data=(test_excitations, test_labels))

[» Train on 112 samples, validate on 48 samples

3) Model Evaluation

Epoch 16/20
112/112 |

Epoch 17/20
112/112 |

Epoch 18/20
112/112 |

Epoch 19/20

112/112 |
Epoch 20/20
112/112 |

0.90 1

0.85 1

0.80 1
% 075 4
L

0.70 1

0.65 1

0.60 1

] - 125 103ms/sample

] - 125 106ms/sample

1 - 125 107ms/sample

Training a Quantum CNN to Detect Excited Cluster States

] - 125 187ms/sample - loss: @.6973 - custom_accuracy: 0.8125 - val_loss: 0.6015 - val_custom_accuracy:

] - 125 108ms/sample - loss: @.6884 - custom_accuracy: 0.8125 - val_loss: 0.5826 - val_custom_accuracy:

—— Taining
Validation
0.0 25 5.0 75 10.0 125 15.0 175
Epochs

loss: @.7049 - custom_accuracy: ©.8125 - val_less: ©.6120 - val_custom_accuracy:

loss: @.6887 - custom_accuracy: ©.8036 - val_loss: ©.5881 - val_custom_accuracy:

loss: @.6695 - custom_accuracy: ©.8304 - val_less: ©.5727 - val_custom_accuracy:

0.8750

0.8750

0.8750

0.8750

0.8750

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

1729

E. Introducing Hybrid Models

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

We perform 2 rounds of quantum convolution and feed the results into a classical neural network. This part explores classical-

quantum hybrid models. (HQ-C)

1) Hybrid Model with a Single Quantum Filter

mput | [(7})
InputLayer ’]
output: | [(2)]
I
t ?
AddCrrout mput |)
output: | ()
Y
input: ?
PQC pu (%)
oufput | (?,4)
Y
input | (7,4
L p (2, 4)
output: | (2, 8)
Y
input | (7,8
Dense input | ©, 8)
output: | (2, 1)

r
_| Prepare || -
Cluster
= Test u
L

Apply one layer of quantum convolution, reading
out (Zn) on all bits, followed by a densely-
connected neural network,

2) Model Training & Model Evaluation:

Model Training —

* Generate Training data
Using Custom Accuracy
Metric
No. of Samples: 112
Validated samples: 48
Epochs: 20

Model Evaluation -

* Validation Custom
Accuracy: 97%

-+ Validation Loss: .24

L

QUaNtum vs Hybria CNN performance 3
— OCNN

Hybrid CNN \\

a0 28 '4p 715 110 125 150 D&
Frawrhe

At the end of Plan 3 execution with Hybrid Model
Single Quantum Filter we see that Accuracy has

increased from 87% to 97%. We will now execute Plan
3 with Multiple Quantum Filters to see if there is any
room for improvement

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

1730

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

3) Hybrid model with multiple quantum filters:
We now try an architecture that consists of multiple quantum convolutions followed by a classical neural network for consolidation.
a) Multiple Quantum Convolution architecture with a classical Neural Network to combine them:

Prepare

Cluster
State

b) Model Architecture with Parameterized Quantum Circuit and Dense Layers:

mput_¥ Tnpullaye
| ouput: | ()]
A |
add_cwrewit_6: Add Curcunt
—
_
/‘./
| . o | ; i —
input | (?) input | (2) N mput | (7}
qc_3: PQC pac_4:PQC - 1 | pac_5. PQC —
ouput: | (7,4) output: | (7, 4) output: | (7,4
e i /
\"\, _,/"/
' | P :
mput: | (2, 4). (% 4), (2. 4)
concatenate: Concatenate :
output 12) i
Y :
mput: | (2, 12)
dense_2: Dense -p—-—
output: | (?,8)
|
input. | (?,8)
dense 3 Dense Ll—

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1731

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

4) Model Training & Model Evaluation:

r Juantum vs HyDna CNN perrormance |
10 s ;
del i i /_”[,q\/_
Model Training —
+ Generate Training data MOde_l Ev-aiuation X g08] — =
Using Custom Accuracy * Validation Custom s 2
Metric Accuracy: 95%
Mo. of Samples: 112 ¥ . 06
Validated samples: 48 05 /
Epochs: 20 ¥ g /) — ocwn
/ Hybrid CNN - Single Quantum Filter
03 / = Hybrid CNN - Multiple Quantum FRiters i
00 25 50 75 100 15 150 15
b Enachs

At the end of Plan 3 execution with Hybrid Model
Multiple Quantum Filter we see that Accuracy has
decreased from 97% to 95%.

Result: Hybrid CNN with Single Quantum Filter gives the best result with an accuracy of ~97%

VI. CONCLUSION
Which is better between Classical and Quantum Deep Learning for high spectral image recognition use case?

Quantum vs Hybrid CN performance

[l
[~

joed
w

s
@

fed
Hnd

=
o

Validation Arcuracy

el
i

—— — NN

rd = Hybrid CNN - Single Quantum Filter
rd —— Hybrid CNN - Multiple Quantum Filters

=
E3

=
Lk

oo 25 50 15 we 125 15¢ 178

Epochs

The QCNN is much superior than it's classical Deep
Learning competitor.

When we used earlier model we get an accuracy
percentage of ~56-60%. Comparatively, when we
modified model parameters described above we found
the accuracy around 87%. As an optimization, plan we
introduced Hybrid Models which gave us a maximum
Accuracy achieved through out which is 97%

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1732

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

A. Directions For Future Work

Some directions for future work or scope for improvements described here:

1) Transfer learning — model should be tuned, and algorithm should be improved using hyperparameter tuning to train on more
diverse data

2) Train the model to classify data with highest possible accuracy

3) Batches used for training should be shuffled pretty well to reduce overfitting

4) Training should be continued even after achieving the best possible accuracy to increase likelihood and effectively use
classification threshold values

REFERENCES

[1] “Adiabatic quantum computation." [Online]. Available: https://en.wikipedia.org/wiki/Adiabatic quantum computation

[2] “Calculus on Computational Graphs: Backpropagation { colah's blog." [Online]. Available: http://colah.github.io/posts/2015-08-Backprop/

[3] “Classification datasets results.” [Online]. Available: http://rodrigob.github.io/are we there yet/build/classification datasets results.html

[4] “Continuous-variable quantum information.” [Online]. Available: https://en.wikipedia.org/wiki/Continuous-variable quantum information

[5] “Convolution as matrix multiplication.”" [Online]. Available: https://en.wikipedia.org/wiki/Toeplitz matrix#Discrete convolution

[6] “Convolution theorem.” [Online]. Available: https://en.wikipedia.org/wiki/Convolutiontheorem

[71 “Convolutional Neural Networks (LeNet) - DeepLearning 0.1 documentation.” [Online]. Available: http://deeplearning.net/tutorial/lenet.html

[8] *“CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available: http://cs231n.github.io/classi cation/

[9] “CS231n Convolutional Neural Networks for Visual Recognition." [Online]. Available: http://cs231n.github.io/convolutional-networks/

[10] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available: http://cs231n.github.io/optimization-1/

[11] *“CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available: http://cs231n.github.io/optimization-1/#numerical

[12] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available: http://cs231n.github.io/optimization-2/

[13] *“CS231n Convolutional Neural Networks for Visual Recognition.” [Online]. Available: http://cs231n.github.io/optimization-2/#mat

[14] “Deep learning book. Optimization chapter.” [Online]. Available: http://www.deeplearningbook.org/contents/optimization.html

[15] “Quantum logic gate." [Online]. Available: https://en.wikipedia.org/wiki/Quantum logic gate

[16] "Qubit." [Online]. Available: https://en.wikipedia.org/wiki/Qubit

[17] “TensorFlow clip by global norm." [Online]. Available: https://www.tensorflow.org/versions/rl.1/api docs/python/tf/clip by global norm

[18] S. Bai, J. Z. Kolter, and V. Koltun, \An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling," mar 2018. [Online].
Auvailable: http://arxiv.org/abs/1803.01271

[19] J.S.Bergstra, R. Bardenet, Y. Bengio, and B. K egl, \Algorithms for Hyper-Parameter Optimization," in Advances in Neural Information Processing Systems, 2011,
pp. 2546{2554. [Online]. Available: http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization

[20] T. Bluche, H. Ney, and C. Kermorvant, \A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling for
Handwriting Recognition,"” pp. 199{210, oct 2014. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-11397-5 15

[21] https://www.academia.edu/43006431/Effective_Handwritten_Digit_Recognition_using_Deep_Convolution_Neural_Network

[22] https://www.researchgate.net/publication/332880911 Improved Handwritten Digit Recognition using Quantum K-Nearest Neighbor Algorithm

[23] https://www.researchgate.net/publication/341179765_Hand_Written_Digit_Recognition_Using_Quantum_Support_Vector_Machine#pf5

[24] https://www.tensorflow.org/quantum/tutorials/gcnn

[25] https://jovian.ai/imammuhajir992/quantum-convolutional-neural-network

[26] https://github.com/yh08037/quantum-neural-network

[27] https://www.nature.com/articles/s41467-020-14454-2

[28] https://devblogs.microsoft.com/gsharp/hybrid-quantum-classical-
models/#:~:text=Naively%20speaking%2C%20%E2%80%9Chybrid%E2%80%9D%20means,Quantum%20Processing%20Unit%20(QPU).

[29] https://cupdf.com/document/masters-thesis-deep-learning-for-text-data-mining-.html

[30] https://www.nature.com/articles/s41567-019-0648-8

[31] https://arxiv.org/pdf/quant-ph/0504097.pdf

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1733

d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)

