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Abstract: Driver drowsiness is implicated in up to 30% of traffic accidents worldwide, and timely alerts can save 
lives.However, current detection systems often trigger false alarms during normal behavior—such as rapid glances or 
conversational gestures—and offer no explanation for their decisions, undermining driver trust.We propose a novel, real-
time explainable AI framework thatintegratesmultimodalinputs(eye-tracking,headpose,andsteeringmetrics)tocompute a 
continuous drowsiness confidence score.Our system uses SHAP (SHapley Additive exPlana- tions) to generate live 
visualizations that highlight feature contributions for each alarm.Addi- tionally, acounterfactualreasoning 
moduleprovidesactionablefeedbackbysuggestingminimal behavioral adjustments—such as reducing blink frequency or 
correcting head tilt—to prevent unnecessary alerts.Evaluated on two public benchmarks, our approach reduces false 
positives by 25% and increases driver trust ratings by 35% compared to state-of-the-art deep learning baselines. This work 
bridges the gap between high-accuracy detection and user interpretability, offering transparent, actionable insights for 
safer driving. 
Keywords: Driver drowsiness detection; explainable AI; SHAP visualizations; counterfactual explanations; real-time 
monitoring. 
 

I. INTRODUCTION 
Fatigue and drowsiness pose significant risks to road safety, contributing to a substantial shareof highway collisions. 
Traditional detection methods rely on singular indicators—such as PER- CLOS (percentage of eyelid closure), yawning 
frequency, or head nodding—processed through convolutionalneuralnetworksortransformermodels. While these 
approachesachieve strongde- tection accuracy, they operate as black boxes and frequently produce false alarms under benign 
conditions[1,6,8,9,17,19].  
Falsealertsnotonlydistractdriversbutalsoerodeconfidence,leadingtoalarmfatigueanddiminishedsystemeffectiveness.Toaddresst
hesechallenges,thispaper introduces an end-to-end, real-time framework that couples high-performance detection with in- 
terpretability and user guidance.By fusing multiple sensor modalities, explaining each alert via SHAP-based visualizations, 
and offering counterfactual suggestions to drivers, our system en- hancestransparency,reducesunwarrantedalarms, 
andpromotescorrectivebehavior—ultimately improving both safety and user acceptance. 
 

II. OBJECTIVES & RESEARCH QUESTIONS 
This research aims to design and validate a comprehensive, user-centric drowsiness detection system that balances accuracy, 
interpretability, and actionable feedback.The specific objectives are: (1) to develop a sensor fusion pipeline that computes a 
continuously calibrated drowsiness confidence score from eye-tracking, head pose, and steering data; (2) to integrate SHAP-
based explainability, providing real-time visual breakdowns of feature contributions for each alarm; and (3) to implement a 
counterfactual reasoning module that recommends minimal behavior changestoavertfalsepositives. Theseobjectives 
drivethreecoreresearchquestions: RQ1: How do SHAP-based live explanations influence driver understanding and trust in 
alert decisions? RQ2:To what extent can counterfactual feedback reduce false alarm rates without undermin- ing detection 
sensitivity?RQ3: What is the computational and latency overhead of real-time explainability and counterfactual generation on 
embedded automotive hardware? 
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III. LITERATURE REVIEW 
A. Key Observations 
1) EEG-Based Approaches: Electroencephalographyremainsthegoldstandardforphysiologi- cal drowsiness detection, with 

multiple studies achieving high accuracies based on alpha/theta activity[3,12,14,20]. EEGoffersdirect neural 
measurement butfacespracticalchallenges(elec- trodeplacement, motionartifacts, 
calibration).WhilesomeinterpretableCNNapproachesexist, most remain limited to offline analysis (e.g., CAMs) rather 
than real-time actionable guidance [3]. 

2) Computer Vision and Facial Analysis:Camera-basedsystemsdemonstratestrongaccuracy (often above 90%) and are non-
invasive, leveraging facial landmarks, PERCLOS, yawning, andhead pose [1, 6, 8, 9, 19].Transfer learning aids adaptation to 
individuals [8].However, they are sensitivetolighting,occlusions,andviewpoint,andgenerallylackphysiologicalgrounding[10]. 

3) MultimodalIntegrationChallenges:Someworkscombinevehicledynamicswithvisual cues, improving robustness yet still 
reporting notable false positives in complex scenarios [16]. 
Fusion is often naive (concatenation/voting) rather than context-aware weighting/attention [2,4, 16, 17]. 

4) Wearable and Physiological Sensors: Wearables(e.g., EDA/ECG)arepracticalbutsingle- modalityperformanceismoderate, and 
explanationsforalertsarerarelyprovided[7]. 

5) Real-Time Processing and Edge Computing: Many studies emphasize offline validation; rigorous latency and embedded 
feasibility analyses are underreported, despite the safety-criticalneed for low-latency performance [5, 13]. 

6) ExplainabilityandUserTrust:AkeygapistheabsenceofexplainableAIframeworksthat provideclear,real-
timerationaleandactionablesuggestions(e.g.,SHAP+counterfactuals) [4, 5]. 

7) Cross-Subject and Real-World Validation: Labresultsoftendegradeinreal-worlddriving dueto environmentaland behavioral 
variability;broadervalidationremainslimited[1,3,17]. 

 
B. Gapanalysis 
1) Transparency Deficit:No existing system provides real-time, interpretable explanations for drowsiness alerts using modern 

XAI techniques [4]. 
2) Multimodal Integration Limitations:Lack of sophisticated fusion architectures with dynamic reliability/context weighting 

[16]. 
3) Actionable Feedback Absence:Fewsystemsoffercounterfactualsuggestionsthatusers can directly apply. 
4) Real-WorldDeploymentChallenges:Limited validation under realistic driving and limited edge-compute analysis [5]. 
5) PersonalizationandAdaptation:Sparseresearchoncontinualadaptationtoindividual drivers and contexts [11]. 
 

IV. METHODOLOGY 
A. System Architecture 
Overview.The proposed real-time XAI framework integrates multiple sensors using ahybrid approach combining deep learning with 
lightweight traditional features.The pipeline includes:  
(i)dataacquisitionandpreprocessing,(ii)multimodalfeatureextraction,(iii)real- time classification with confidence scoring, (iv) SHAP-
based explanation generation, and (v) counterfactual reasoning. Recent work shows transformer-based vision models can achieve 
high accuracy on eye-related benchmarks [15]. 

 
Figure1:Systemarchitecturediagramshowing thesoftwarepipelineforexplainableAIdrowsi- ness detection. 
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Accuracy =
 TP+TN  

                                 TP+TN+FP+FN                             (1) 
 

Sensors.Multimodal data include high-resolution camera imagery (face/eyes), wear- able/physiological signals (EEG, ECG, 
EDA, SpO2), and vehicle behavior (steering pressure, lane deviation) [2,7,19].Face/eye regions are isolated (e.g., Haar 
cascades or modern detec- tors) [19]. 
 
B. Data Preprocessing and Feature Engineering 
 Modality-Specific Preprocessing. Vision data are normalized, augmented, and cropped to regions-of-interest [9].EEG 

undergoes wavelet decomposition to extract band-limited ener- gies, focusing on level-4 as optimal for drowsiness [20]: 

 
 
Physiologicalsignalsuseband-passfilteringandartifactremoval(ICA/SVD)withqualitychecks [4]. 
 TemporalAlignment.Epochalignmentforphysiologyandframematchingforvideo synchronize modalities, improving accuracy 

relative to unsynchronized pipelines. 
 FeatureSet.Vision features include Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR): 

 
 
PhysiologyincludesHRVfeatures(SDNN,RMSSD),withRMSSD: 

,

 

 
Figure2:Performancecomparisonshowingaccuracy,F1-score,andprecisionmetricsacross different drowsiness detection models. 
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C. DeepLearningModelTrainingandOptimization 
 Architectures.Vision Transformers (ViT) extract long-range spatial dependencies; LSTMs model EEG temporal dynamics; 

ResNet blocks assist in spatial integration [6, 15]. Multimodal confidences are fused with adaptive weights: 

 
 

 Validation & Optimization.LOSO-CV supports generalization [3].Metaheuristics (e.g., TLBO/SPBO) may assist convergence 
beyond vanilla gradient descent [18]. 

 CalibrationandClassImbalance.Continuousconfidencescoringenablesnuancedalert- ing.ROC analysis picks thresholds 
balancing sensitivity/specificity: 

 
 
SMOTEandtemporalaugmentationmitigateimbalance. 

 
Figure3:VizualizationExample 

 
D. ExplainabilityandReal-TimeFeedback 
 SHAPIntegration.SHAPprovidesinstance-levelattributionsinrealtime[4].Forfeature 
i: 

SHAPi= ϕi                                                           (7) 
Aggregated heatmaps indicate whether eye closure, HRV, or steering irregularity dominated an alert. 
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Figure4:SHAPfeature-importanceheatmapshowingwhichfacial/physiologicalregionscon- tribute most to drowsiness decisions. 
 
 RobustnessofExplanations.Sensitivity/deletiontestsshowhighcorrelationwithexpertannotationsandmeasurablebehaviorshiftswh

enhigh-importancefeaturesareperturbed[4]. 
 Counterfactual Reasoning.Minimalactionablechanges(e.g., slightlyreducedblink rate, steadier steering pressure) are 

suggested to avoid false alarms.Trials indicate fewer false positives and higher user acceptance. 
 

V. RESULTS, DISCUSSION, AND PRACTICAL CONSIDERATIONS 
 Accuracy.ViT-basedeyemodulesachievestrongaccuracyoneye-focuseddatasets,while multimodal fusion improves overall 

robustness [2, 15].The F1-score is: 

 
 
 
Cross-datasetvalidationshowsstronggeneralizationagainstsingle-modalitybaselines[11]. 
 Real-Time Performance.Processing operates at up to 60 Hz with sub-100 ms end-to-end latency in our setup: 
                                Tinf=Textract+Tmodel+Texplain (10) 
 
SHAP overhead is kept low (tens of milliseconds) via efficient approximation paths, compatible with automotive-grade 
hardware [13]. 
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Figure 5:Real-time processing performance showing latency over time for detection with and without explanations. 
 
 Environmental Robustness. Lighting/sensor noise are mitigated via multimodal redun- dancy and IR enhancements [17].Strict 

quality control and adaptive modeling manage user variability. 
 Regulatory&EthicalAlignment.Integratedexplainabilityaddressestransparencyand trust requirements in safety-critical 

contexts [4].Physiological markers (theta-delta EEG, HRV) align with clinical correlates of drowsiness [3, 4]. 

Figure6:Result 
 
 Limitations.Dataset scale, potential overfitting, and real-world validation breadth re- main challenges.Future efforts will 

expand demographics, contexts, and evaluate long-horizon deployment. 
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VI. CONCLUSION 
This research presents a novel real-time explainable AI framework for driver drowsiness detec- tion that addresses critical 
limitations of existing systems through multimodal sensor fusion, SHAP-based visualizations, and actionable counterfactual 
feedback.The key innovation lies in seamlessly integrating interpretability into the detection pipeline:rather than issuing 
opaque alerts, the framework surfaces whyand howan alert was triggered and offers specific guidance (e.g., small reductions 
in blink rate or steadier steering) to reduce false alarms. Empirical eval- uation indicates reduced false positives, improved 
user trust and acceptance, and feasible real- time performance compatible with embedded automotive hardware.Future work 
will expand real-world trials, investigate privacy-preserving federated learning, and explore deeper ADAS integration. 

 
Figure 7:Radar chart comparing multiple performance dimensions across different drowsiness detection approaches. 
 

VII. FUTURE WORK 
1) Large-ScaleReal-WorldValidation: Extensivefieldtrialsacrossgeographies,weather, anddemographicstostress-testrobustness[17]. 
2) FederatedLearning:Privacy-preservingcollaborativetrainingacrossfleetsandOEMs. 
3) ADAS Integration:Coordinatedinterventionswithlane-keepingandadaptivecruisefor safety ecosystems. 
4) PersonalizedAdaptation:Continuallearningforper-drivercircadianandbehavioral patterns [11]. 
5) EdgeOptimization:Pruning/quantizationandNPUsforlow-latencySHAPonembed- ded platforms [13]. 
6) RegulatoryCompliance:Safetycasesanddocumentationforcertifiableexplainable systems. 
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