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Abstract: Rapid response of Emergency Medical Services (EMS) is critically affected by urban traffic congestion, where 
conventional siren-based and manual traffic control mechanisms often fail to ensure timely right-of-way for ambulances. To 
address this limitation, this paper presents a real-time, vision-based ambulance detection system optimized for deployment on 
resource-constrained edge devices. The proposed system employs a fine-tuned YOLOv5s object detection model trained on a 
custom ambulance dataset and optimized using the Open Neural Network Exchange (ONNX) framework for efficient CPU-
based inference. The optimized model is deployed on a Raspberry Pi (64-bit) platform using ONNX Runtime and integrated with 
a live IP camera stream for continuous detection. Experimental results demonstrate a Mean Average Precision (mAP@0.5) of 
91.3% and a real-time inference speed of 2–5 FPS on the edge device. A comparative evaluation shows that ONNX Runtime 
significantly outperforms native PyTorch inference on the same hardware. The results demonstrate the practical feasibility of 
deploying a vision-based ambulance detection system on CPU-only edge devices without hardware accelerators, making the 
solution suitable for cost-sensitive Intelligent Transportation System deployments. The work primarily validates edge-level 
detection feasibility, with traffic control components evaluated via simulation. This work is positioned as an applied feasibility 
and deployment-oriented study rather than a novel algorithmic contribution. The study primarily evaluates deployment feasibility 
and runtime performance on CPU-only edge hardware. 
Keywords: YOLOv5, Edge Computing, Ambulance Detection, ONNX Runtime, Intelligent Transportation Systems.
 

I. INTRODUCTION 
Timely arrival of Emergency Medical Services (EMS) plays a decisive role in patient survival, particularly during the critical 
“golden hour.” However, increasing traffic congestion in urban environments significantly delays ambulance movement, even when 
audible sirens and visual signals are used. These conventional mechanisms are often ineffective in high-noise environments, dense 
traffic conditions, and situations involving distracted drivers, resulting in avoidable response delays. 
  To mitigate these limitations, Intelligent Transportation Systems (ITS) increasingly rely on automated emergency vehicle detection 
and traffic signal preemption. Existing approaches based on GPS, V2X communication, or acoustic siren detection suffer from 
infrastructure dependency, hardware requirements within ambulances, or unreliable detection under noisy conditions. Vision-based 
detection using deep learning has therefore emerged as a more robust and infrastructure-independent alternative. Among existing 
object detection architectures, the YOLO (You Only Look Once) family offers a favorable balance between detection accuracy and 
inference speed, making it suitable for real-time applications. While prior studies have demonstrated the effectiveness of YOLO-
based ambulance detection, limited work has focused on efficient deployment on low-cost, CPU-only edge devices suitable for 
large-scale ITS deployment. This paper addresses this gap by presenting a complete pipeline for training, optimizing, and deploying 
a YOLOv5-based ambulance detection system on a Raspberry Pi using ONNX Runtime. The key contribution of this work lies in a 
comparative performance evaluation between native PyTorch inference and ONNX-optimized inference on resource-constrained 
hardware, demonstrating the feasibility of practical real-time operation without specialized accelerators. 
The contributions of this work are: 
1) Deployment and evaluation of a YOLOv5s-based ambulance detection system on a CPU-only Raspberry Pi platform. 
2) Quantitative comparison between PyTorch CPU inference and ONNX Runtime optimization. 
3) Performance analysis demonstrating feasibility of edge-based ambulance detection without hardware accelerators 
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II. LITERATURE REVIEW 
Emergency Vehicle Detection (EVD) has been extensively studied within the domain of Intelligent Transportation Systems, with 
approaches broadly classified into acoustic-based, communication-based, and vision-based methods. 
Acoustic detection systems utilize siren recognition through microphones and signal processing techniques. While such systems 
demonstrate acceptable detection accuracy in controlled environments, their performance degrades significantly in real-world 
scenarios due to urban noise pollution, sound occlusion, and limited localization capability. Similarly, GPS- and V2X-based 
approaches rely on vehicle-side hardware and communication infrastructure, increasing deployment cost and limiting scalability. 
Vision-based EVD has gained prominence due to its ability to provide direct visual confirmation of emergency vehicles using 
existing traffic surveillance infrastructure. Deep learning-based object detection models, particularly the YOLO family, have shown 
strong performance in detecting ambulances under varying lighting and traffic conditions. YOLOv5, in particular, offers improved 
accuracy and reduced inference latency compared to earlier versions. 
Recent studies have explored deploying such models on embedded platforms; however, achieving real-time performance on CPU-
only devices remains challenging. Model optimization techniques such as ONNX conversion and runtime optimization have been 
proposed to address this limitation. This work builds upon these efforts by experimentally evaluating the effectiveness of ONNX 
Runtime for ambulance detection on a Raspberry Pi, emphasizing practical deployment feasibility. 
Unlike Jetson-based solutions, the proposed work intentionally excludes GPU or hardware accelerators to evaluate feasibility on 
low-cost CPU-only platforms. GPU-based inference results are reported only for reference and are not considered part of the edge 
deployment evaluation. Compared to Chen et al. (2021), who achieved 6 FPS using MobileNet-SSD on embedded GPUs, our work 
demonstrates CPU-only feasibility. While several studies report high detection accuracy using GPU-based or accelerator-assisted 
edge platforms, comparatively fewer works provide empirical performance analysis on CPU-only embedded systems under real-
time constraints, which motivates the focus of this study 
 

 
 
 
 
 
 
 
 

Table I 
  

III. METHODOLOGY 
The proposed system follows four primary stages: dataset preparation, model training, model optimization, and edge deployment. 
 
A. Dataset Preparation 
A custom dataset was constructed using publicly available images and video frames containing ambulances under diverse 
environmental conditions. Images were manually annotated using YOLO-format bounding boxes for a single class (“Ambulance”). 
The dataset was split into training (70%), validation (20%), and testing (10%) subsets. 

 
 
 
 
 
 
 
 
 

Table II 
 

Reference Method Platform FPS Limitation 
Srivastava et al. [6] CNN-based GPU >20 FPS (GPU-

based) 
Not edge-feasible 

Perera et al. YOLO-based Jetson Real-time High cost 
Chen et al.[16] Lightweight DL Embedded ~6 FPS 

(embedded GPU) 
Limited accuracy 

Proposed Work YOLOv5s + ONNX Raspberry Pi 
 

2-5 CPU-only 
constraint 

Parameter Value 
Model Architecture YOLOv5s 

Input Resolution 640 × 640 
Batch Size 8 
Optimizer SGD 

Learning Rate 0.01 
Number of Epochs 150 
Pretrained Weights COCO 
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The dataset used in this study consists of approximately 1,200 images, including 430 ambulance instances, collected from publicly 
available traffic surveillance footage and online image repositories. The dataset includes diverse environmental conditions such as 
daylight, nighttime, rain, and varying traffic densities to improve generalization. 
The dataset size is intentionally limited and designed to support proof-of-feasibility evaluation rather than large-scale generalization. 
The primary objective of this dataset is to validate real-time deployment performance on constrained edge hardware, not to establish 
state-of-the-art detection accuracy. Consequently, performance results should be interpreted in the context of deployment feasibility 
rather than dataset-scale benchmarking. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table III 
 
It should be noted that the dataset primarily reflects ambulance designs and traffic conditions commonly observed in India. As a 
result, variations in ambulance appearance across different regions may affect generalization. Dataset expansion incorporating 
global ambulance designs is planned as part of future work. 
To mitigate dataset size limitations, data augmentation techniques including horizontal flipping, brightness variation, contrast 
scaling, and random cropping were applied during training 
 
B. Model Training 
The YOLOv5s architecture was selected due to its balance between detection accuracy and computational efficiency. Transfer 
learning was employed using COCO-pretrained weights.  
Training was conducted on a GPU-enabled environment with an input resolution of 640×640 pixels. Model performance was 
evaluated using Precision, Recall, and Mean Average Precision. 
YOLOv5s was selected due to its favorable trade-off between accuracy and computational cost for CPU-based inference. 
 
C. Model Optimization 
To enable efficient edge deployment, the trained PyTorch model was converted to ONNX format. This conversion enables 
optimized execution using ONNX Runtime, to enable optimized CPU inference using ONNX Runtime. 
 
D. Edge Deployment  
The optimized ONNX model was deployed on a Raspberry Pi (64-bit Lite OS). Real-time inference was performed on frames 
captured from an IP camera stream using OpenCV. Post-processing steps included confidence thresholding and Non-Maximum 
Suppression to obtain final detections. 
 
  
 

Dataset Split 
 

 

Number of 
Images 

 

Percentage 

Training 840 70% 

Validation 240 20% 

Testing 120 10% 
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Fig  1 : Block diagram of the proposed method 
 

This block diagram F1. illustrates the complete, autonomous pipeline for the Real-Time Ambulance Detection and Traffic 
Preemption System you have developed. The system is divided into three main layers:  
Sensing (Detection), Communication (Transmission), and Action (Control). 
It should be noted that while the proposed architecture includes communication and traffic signal preemption layers, the 
experimental evaluation in this work focuses primarily on the real-time ambulance detection module. Communication and control 
components were validated through simulated signal transmission. 
 
1) Sensing and Detection Layer (The Raspberry Pi Core) 
This section is where the Raspberry Pi and your deployed ML model perform the core intelligence function. 
a) Input - Camera Feed (Live CCTV / Webcam): 
Function: This is the initial data source. In your deployment, this block is the Mobile Phone Camera streaming video via IP 
(RTSP/HTTP), which feeds raw, sequential video frames into the system. 
 
b) ML Object Detection (YOLOv5): 
Function: The image data is processed by the YOLOv5 model (running in its ONNX format). This is where the model identifies the 
location and classification of all objects in the frame (cars, people, etc.). 
 
c) Emergency Vehicle Filter (Detect Ambulance): 
Function: This is a key post-processing step within your Python script. It filters the raw detection outputs from the YOLOv5 model, 
retaining only the bounding boxes and confidence scores that correspond to the "Ambulance" class. This creates an unambiguous 
detection signal. 

 
2) Signal Transmission Layer 
This layer is responsible for securely and reliably sending the "Ambulance Detected" signal to the traffic infrastructure. 
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a) Signal Transmission 
 Function: Once an ambulance is confirmed (confidence score above a threshold), the system generates a priority alert signal 
 Protocol - MQTT: A lightweight messaging protocol, ideal for low-bandwidth IoT devices like the Raspberry Pi, used to send 

the signal over the internet or a local network to the controller. 
 Hardware - LoRa Transmitter and Receiver: A long-range, low-power wireless solution, suitable for transmitting the signal 

directly to a nearby intersection controller without relying on Wi-Fi/Internet availability. 
 
3) Action and Control Layer 
This layer represents the traffic light system, which acts immediately upon receiving the signal. 
a)  Traffic Signal Controller: 
 Function: This block represents the dedicated hardware (often a microcontroller or PLC) at the intersection. Its job is to receive 

and interpret the priority signal sent from the Raspberry Pi (Sensing Layer). 
 Action Logic: Upon receiving the signal, the controller logic overrides its standard timing cycle to immediately initiate the 

required action (e.g., switching the ambulance's lane to a green signal). 
 
b) Alert & Local Actions 
 Function: The final physical outputs that provide both local confirmation and real-world results. 
 Local Display (LCD Message): Provides visual feedback to traffic personnel or an observer confirming the action (e.g., 

"Ambulance Detected - Preemption Active"). 
 Sound Alerts (Buzzers, Sirens):  Provides an immediate, audible confirmation that the traffic signal preemption sequence has 

been triggered. This ensures local awareness for maximum safety. 
The entire process ensures that the detection system remains an effective, autonomous, and low-latency solution to clear the path for 
emergency vehicles. While the proposed architecture includes communication and traffic signal preemption layers using MQTT and 
LoRa, the current implementation focuses primarily on real-time ambulance detection at the edge. Communication and traffic 
control components were validated through simulated signal transmission, and full-scale deployment at live intersections is 
considered future work. 

 
A. Software Requirements 
1) Python Programming Environment 

 
Fig  2 

 
Python is used as the primary programming language for model training, inference, and system integration. Its extensive ecosystem 
enables seamless integration of deep learning, computer vision, and IoT communication modules. 
 
2) PyTorch Framework 
 
 
 
 
 
 

Fig. 3 
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PyTorch is utilized for training and fine-tuning the YOLOv5s model using transfer learning. Its dynamic computation graph and 
GPU support enable efficient model experimentation and optimization. 

 
3) YOLOv5 Model Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
 
YOLOv5s is a single-stage object detection model optimized for real-time applications. It provides a balanced trade-off between 
detection accuracy and computational efficiency for edge deployment. 
 
4) ONNX and ONNX Runtime 
 
 
 
 
 
 
 
 

Fig. 4.1.4 
 

 ONNX enables framework-independent model representation, allowing optimized inference across platforms. ONNX Runtime 
significantly improves CPU-based inference performance on resource-constrained devices. 
 
5) OpenCV Library 
 
 
 
 
 
 
 
 
    
 

Fig. 6 
OpenCV is used for real-time video capture, frame preprocessing, and visualization of detection results. It provides efficient image 
processing operations required for live camera inference. 
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6) Dataset Annotation Tool (LabelImg)  
 
 
 
 
 
 
 
 
 
 

Fig. 7 
 

LabelImg is used to manually annotate ambulance images with bounding boxes in YOLO format. Accurate annotation is critical for 
effective supervised training and detection performance. 
 
7) MQTT Communication Protocol (Simulated) 
 
 
 
 
 
 
 
 

Fig. 8 
 
MQTT is a lightweight publish–subscribe messaging protocol suitable for IoT-based systems. In this work, it is used to simulate 
low-latency transmission of ambulance detection alerts. 
 
B. Hardware Requirements 
1) Raspberry Pi 3 Model B+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  9 
 

The Raspberry Pi 3 Model B+ is used as the edge computing platform for real-time ambulance detection. Its low power 
consumption and affordability make it suitable for cost-sensitive Intelligent Transportation System deployments. 
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2) ARM Cortex-A53 Processor 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 
 
The ARM Cortex-A53 quad-core processor executes the ONNX-optimized YOLOv5s model using CPU-only inference. Although 
computationally limited, it demonstrates the feasibility of edge-based detection without hardware accelerators. 
 
3) Camera Input Source (Mobile Phone IP Camera) 

Fig. 11 
 

A mobile phone camera is used as the video source by streaming live footage to the Raspberry Pi. This setup enables low-cost real-
time testing without dedicated surveillance hardware. 
 
4) Storage Device (MicroSD Card) 

 
 
 
 
 
 
 

Fig. 12 
A microSD card is used to store the operating system, trained ONNX model, and required software libraries. Reliable storage 
ensures stable runtime execution on the Raspberry Pi. 
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5) Power Supply Unit 
 

 
 
 
 
 
 
 
 
 
 

Fig. 13 
 
A regulated 5V, 2.5A power supply is used to ensure uninterrupted operation of the Raspberry Pi. Stable power delivery is essential 
for continuous real-time inference. 
 
6) LoRa Communication Module (Future Work) 
 
 
 
 
 
 
 
 
 
 
  

Fig. 14 
 
LoRa-based communication is considered for future deployment to enable long-range, low-power transmission of ambulance 
detection alerts. This module is not part of the current experimental setup. 
 
7) Traffic Signal Controller (Simulated) 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 
The traffic signal controller represents the intersection control unit responsible for signal preemption. In this study, its behavior is 
evaluated through simulated control logic. 
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IV. RESULT AND DISCUSSION 
A. Result 
The trained YOLOv5s model achieved an mAP@0.5 of 91.3% on the test dataset, demonstrating reliable ambulance detection 
across diverse scenarios. Precision and recall values exceeded 92%, minimizing false alarms and missed detections—both critical 
for traffic signal preemption systems. 
On the Raspberry Pi platform, ONNX Runtime achieved a sustained inference speed of 2–5 FPS, significantly outperforming native 
PyTorch CPU inference, which remained below 1 FPS. Although slower than GPU-based execution, this frame rate is sufficient for 
ITS applications, where early detection at a distance provides adequate response time for traffic signal control. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 16 
 
Fig. 16 demonstrates the real-time execution of the proposed system on a Raspberry Pi platform. The continuous detection logs 
confirm that the optimized YOLOv5s model successfully processes live camera frames using ONNX Runtime without GPU 
acceleration. This qualitative result supports the quantitative inference speed and accuracy metrics reported in this section. 
These results confirm that ONNX-based optimization enables practical real-time performance on low-cost edge devices without 
requiring specialized accelerators. The GPU-based inference results are reported only for reference to illustrate the performance gap 
between workstation-class hardware and edge devices and are not indicative of deployable edge performance. 
 

Table IV 
Confidence Threshold mAP@0.5 (%) FPS 

0.4 92.0 2.1 

0.5 91.3 3.0 

0.6 89.7 4.8 
 
The results indicate a clear trade-off between detection accuracy and inference speed. Lower confidence thresholds improve 
detection accuracy at the cost of reduced FPS, while higher thresholds increase throughput with a marginal decrease in mAP. This 
behavior allows system designers to tune the model based on application-specific latency and reliability requirements. 
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B. Discussion 
The comparative evaluation demonstrates that ONNX Runtime significantly improves inference speed on CPU-only hardware. 
Native PyTorch inference on the Raspberry Pi achieved less than 1 FPS, rendering it unsuitable for real-time applications. In 
contrast, ONNX Runtime achieved a stable throughput of 2–5 FPS while preserving detection accuracy. This performance 
improvement highlights the importance of model serialization and optimized runtimes for edge-based Intelligent Transportation 
Systems. Although the achieved inference speed of 2–5 FPS is lower than GPU-based real-time systems, it is sufficient for 
Intelligent Transportation System applications focused on early detection. Ambulances are typically detected several seconds before 
reaching an intersection, providing adequate time for signal transmission and traffic phase preemption. 
Crucially, the 2-5 FPS rate is sufficient for an Intelligent Transportation System (ITS) application focused on traffic signal 
preemption. Since the goal is to detect an approaching vehicle at a distance (often several seconds away), this latency provides 
ample time for the Signal Transmission Layer (MQTT/LoRa) to send the priority signal and for the traffic controller to execute the 
necessary phase change. 

Table V 
 
 
 
 
 
 
 
 
 

 
 

Table VI 
 
 
 
 
 
 
 
 

 
1) Hardware Efficiency and Future Optimization 
The choice of the lightweight YOLOv5s model combined with the 64-bit Lite OS was essential to ensure stable operation and 
prevent memory overflow, which is common on Raspberry Pi devices. significantly increase the FPS to 10+without compromising 
the proven accuracy of the model. This would enable faster. 
 Thermal Stability: The CPU-based ONNX Runtime inference, while slower, ensured the system remained thermally stable, 

preventing the need for complex active cooling that would increase deployment costs. 
 Path to Improvement: Future work will focus on further performance optimization through INT8 quantization and the 

integration of low-cost hardware accelerators such as the Coral Edge TPU to improve inference speed while maintaining 
reliable detection accuracy. In addition, dataset expansion covering diverse geographic regions and ambulance designs will be 
explored, along with multi-class emergency vehicle detection to enhance real-world applicability. Future extensions will also 
investigate multi-camera synchronization and temporal tracking techniques to improve detection robustness under occlusion 
and dense traffic conditions. 
 

C. Explanation of Metrics 
1) Precision: Measures the quality of positive prediction. A high precision (95.1%) means that when the model says it has detected 

an ambulance, it is almost certainly correct (minimizes false alarms). Crucial for traffic preemption. 

Model 
 

Inference 
Engine 

Hardware mAP@0.5 
(%) 

 
FPS 

 

YOLOv5s PyTorch GPU 
Workstation 

91.3 45 

YOLOv5s PyTorch Raspberry 
Pi 

89.1 0.8 

YOLOv5s  
ONNX 
Runtime 

 

Raspberry 
Pi 

91.3 2-5 

Parameters Training 
(%) 

Testing 
(%) 

Precision 93.2 95.1 
Recall 
(Sensitivity) 

90.5 92.4 

mAP0.5 
(Object 
Detection) 

88.5 91.3 
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2)  Recall (Sensitivity): Measures the model's ability to find all relevant cases. A high recall (92.4%) means the model successfully 
detects most of the actual ambulances present in the video frames (minimizes missed emergencies). 

3)  Mean Average Precision: The standard metric for object detection. It measures the model's ability to correctly classify and 
localize the ambulance object with at least 50% Intersection over Union (IoU). The Testing score is generally the final reported 
result for the deployed system. 

Standard object detection metrics including Precision, Recall, Mean Average Precision (mAP@0.5), and inference speed (FPS) are 
reported in this study. Frame-level classification accuracy metrics are excluded, as they are less representative for bounding-box-
based detection tasks. 
 

V. CONCLUSION  
This paper presented a real-time ambulance detection system optimized for deployment on resource-constrained edge devices. By 
leveraging YOLOv5 and ONNX Runtime, the proposed approach achieves reliable detection performance under deployment 
constraints while maintaining feasible real-time performance on a Raspberry Pi. The comparative evaluation demonstrates that 
ONNX-based optimization significantly improves inference speed over native PyTorch execution, validating its suitability for 
intelligent traffic management systems. Future work will explore quantization and hardware accelerators to further enhance 
performance.NAlthough the proposed system demonstrates reliable detection performance, its inference speed is limited by CPU-
only execution on the Raspberry Pi. Additionally, the dataset size, while sufficient for proof-of-feasibility, may not fully represent all 
ambulance designs and regional variations. Future work will address these limitations through dataset expansion and hardware 
acceleration. 
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