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Abstract: Rapid response of Emergency Medical Services (EMS) is critically affected by urban traffic congestion, where
conventional siren-based and manual traffic control mechanisms often fail to ensure timely right-of-way for ambulances. To
address this limitation, this paper presents a real-time, vision-based ambulance detection system optimized for deployment on
resource-constrained edge devices. The proposed system employs a fine-tuned YOLOv5s object detection model trained on a
custom ambulance dataset and optimized using the Open Neural Network Exchange (ONNX) framework for efficient CPU-
based inference. The optimized model is deployed on a Raspberry Pi (64-bit) platform using ONNX Runtime and integrated with
a live IP camera stream for continuous detection. Experimental results demonstrate a Mean Average Precision (mMAP@0.5) of
91.3% and a real-time inference speed of 2-5 FPS on the edge device. A comparative evaluation shows that ONNX Runtime
significantly outperforms native PyTorch inference on the same hardware. The results demonstrate the practical feasibility of
deploying a vision-based ambulance detection system on CPU-only edge devices without hardware accelerators, making the
solution suitable for cost-sensitive Intelligent Transportation System deployments. The work primarily validates edge-level
detection feasibility, with traffic control components evaluated via simulation. This work is positioned as an applied feasibility
and deployment-oriented study rather than a novel algorithmic contribution. The study primarily evaluates deployment feasibility
and runtime performance on CPU-only edge hardware.

Keywords: YOLOv5, Edge Computing, Ambulance Detection, ONNX Runtime, Intelligent Transportation Systems.

L. INTRODUCTION
Timely arrival of Emergency Medical Services (EMS) plays a decisive role in patient survival, particularly during the critical
“golden hour.” However, increasing traffic congestion in urban environments significantly delays ambulance movement, even when
audible sirens and visual signals are used. These conventional mechanisms are often ineffective in high-noise environments, dense
traffic conditions, and situations involving distracted drivers, resulting in avoidable response delays.

To mitigate these limitations, Intelligent Transportation Systems (ITS) increasingly rely on automated emergency vehicle detection
and traffic signal preemption. Existing approaches based on GPS, V2X communication, or acoustic siren detection suffer from
infrastructure dependency, hardware requirements within ambulances, or unreliable detection under noisy conditions. Vision-based
detection using deep learning has therefore emerged as a more robust and infrastructure-independent alternative. Among existing
object detection architectures, the YOLO (You Only Look Once) family offers a favorable balance between detection accuracy and
inference speed, making it suitable for real-time applications. While prior studies have demonstrated the effectiveness of YOLO-
based ambulance detection, limited work has focused on efficient deployment on low-cost, CPU-only edge devices suitable for
large-scale ITS deployment. This paper addresses this gap by presenting a complete pipeline for training, optimizing, and deploying
a YOLOv5-based ambulance detection system on a Raspberry Pi using ONNX Runtime. The key contribution of this work lies in a
comparative performance evaluation between native PyTorch inference and ONNX-optimized inference on resource-constrained
hardware, demonstrating the feasibility of practical real-time operation without specialized accelerators.

The contributions of this work are:

1) Deployment and evaluation of a YOLOv5s-based ambulance detection system on a CPU-only Raspberry Pi platform.
2) Quantitative comparison between PyTorch CPU inference and ONNX Runtime optimization.

3) Performance analysis demonstrating feasibility of edge-based ambulance detection without hardware accelerators
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1. LITERATURE REVIEW
Emergency Vehicle Detection (EVD) has been extensively studied within the domain of Intelligent Transportation Systems, with
approaches broadly classified into acoustic-based, communication-based, and vision-based methods.
Acoustic detection systems utilize siren recognition through microphones and signal processing techniques. While such systems
demonstrate acceptable detection accuracy in controlled environments, their performance degrades significantly in real-world
scenarios due to urban noise pollution, sound occlusion, and limited localization capability. Similarly, GPS- and V2X-based
approaches rely on vehicle-side hardware and communication infrastructure, increasing deployment cost and limiting scalability.
Vision-based EVD has gained prominence due to its ability to provide direct visual confirmation of emergency vehicles using
existing traffic surveillance infrastructure. Deep learning-based object detection models, particularly the YOLO family, have shown
strong performance in detecting ambulances under varying lighting and traffic conditions. YOLOV5, in particular, offers improved
accuracy and reduced inference latency compared to earlier versions.
Recent studies have explored deploying such models on embedded platforms; however, achieving real-time performance on CPU-
only devices remains challenging. Model optimization techniques such as ONNX conversion and runtime optimization have been
proposed to address this limitation. This work builds upon these efforts by experimentally evaluating the effectiveness of ONNX
Runtime for ambulance detection on a Raspberry Pi, emphasizing practical deployment feasibility.
Unlike Jetson-based solutions, the proposed work intentionally excludes GPU or hardware accelerators to evaluate feasibility on
low-cost CPU-only platforms. GPU-based inference results are reported only for reference and are not considered part of the edge
deployment evaluation. Compared to Chen et al. (2021), who achieved 6 FPS using MaobileNet-SSD on embedded GPUs, our work
demonstrates CPU-only feasibility. While several studies report high detection accuracy using GPU-based or accelerator-assisted
edge platforms, comparatively fewer works provide empirical performance analysis on CPU-only embedded systems under real-
time constraints, which motivates the focus of this study

Reference Method Platform FPS Limitation
Srivastava et al. [6] CNN-based GPU >20 FPS (GPU- | Not edge-feasible
based)
Perera et al. YOLO-based Jetson Real-time High cost
Chen et al.[16] Lightweight DL Embedded ~6 FPS | Limited accuracy
(embedded GPU)
Proposed Work YOLOvV5s + ONNX | Raspberry Pi 2-5 CPU-only
constraint
Table |
1. METHODOLOGY

The proposed system follows four primary stages: dataset preparation, model training, model optimization, and edge deployment.

A. Dataset Preparation

A custom dataset was constructed using publicly available images and video frames containing ambulances under diverse
environmental conditions. Images were manually annotated using YOLO-format bounding boxes for a single class (“*Ambulance”).
The dataset was split into training (70%), validation (20%), and testing (10%) subsets.

Parameter Value
Model Architecture YOLOV5s
Input Resolution 640 x 640
Batch Size 8
Optimizer SGD
Learning Rate 0.01
Number of Epochs 150
Pretrained Weights COCO
Table 11
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The dataset used in this study consists of approximately 1,200 images, including 430 ambulance instances, collected from publicly
available traffic surveillance footage and online image repositories. The dataset includes diverse environmental conditions such as
daylight, nighttime, rain, and varying traffic densities to improve generalization.

The dataset size is intentionally limited and designed to support proof-of-feasibility evaluation rather than large-scale generalization.
The primary objective of this dataset is to validate real-time deployment performance on constrained edge hardware, not to establish
state-of-the-art detection accuracy. Consequently, performance results should be interpreted in the context of deployment feasibility
rather than dataset-scale benchmarking.

Dataset Split Percentage
Number of
Images
Training 840 70%
Validation 240 20%
Testing 120 10%
Table 111

It should be noted that the dataset primarily reflects ambulance designs and traffic conditions commonly observed in India. As a
result, variations in ambulance appearance across different regions may affect generalization. Dataset expansion incorporating
global ambulance designs is planned as part of future work.
To mitigate dataset size limitations, data augmentation techniques including horizontal flipping, brightness variation, contrast
scaling, and random cropping were applied during training

B. Model Training

The YOLOV5s architecture was selected due to its balance between detection accuracy and computational efficiency. Transfer
learning was employed using COCO-pretrained weights.

Training was conducted on a GPU-enabled environment with an input resolution of 640x640 pixels. Model performance was
evaluated using Precision, Recall, and Mean Average Precision.

YOLOV5s was selected due to its favorable trade-off between accuracy and computational cost for CPU-based inference.

C. Model Optimization
To enable efficient edge deployment, the trained PyTorch model was converted to ONNX format. This conversion enables
optimized execution using ONNX Runtime, to enable optimized CPU inference using ONNX Runtime.

D. Edge Deployment

The optimized ONNX model was deployed on a Raspberry Pi (64-bit Lite OS). Real-time inference was performed on frames
captured from an IP camera stream using OpenCV. Post-processing steps included confidence thresholding and Non-Maximum
Suppression to obtain final detections.
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Fig 1: Block diagram of the proposed method

This block diagram F1. illustrates the complete, autonomous pipeline for the Real-Time Ambulance Detection and Traffic
Preemption System you have developed. The system is divided into three main layers:

Sensing (Detection), Communication (Transmission), and Action (Control).

It should be noted that while the proposed architecture includes communication and traffic signal preemption layers, the
experimental evaluation in this work focuses primarily on the real-time ambulance detection module. Communication and control
components were validated through simulated signal transmission.

1) Sensing and Detection Layer (The Raspberry Pi Core)

This section is where the Raspberry Pi and your deployed ML model perform the core intelligence function.

a) Input - Camera Feed (Live CCTV / Webcam):

Function: This is the initial data source. In your deployment, this block is the Mobile Phone Camera streaming video via IP
(RTSP/HTTP), which feeds raw, sequential video frames into the system.

b) ML Object Detection (YOLOV5):
Function: The image data is processed by the YOLOV5 model (running in its ONNX format). This is where the model identifies the
location and classification of all objects in the frame (cars, people, etc.).

c) Emergency Vehicle Filter (Detect Ambulance):

Function: This is a key post-processing step within your Python script. It filters the raw detection outputs from the YOLOv5 model,
retaining only the bounding boxes and confidence scores that correspond to the "Ambulance” class. This creates an unambiguous
detection signal.

2) Signal Transmission Layer
This layer is responsible for securely and reliably sending the "Ambulance Detected" signal to the traffic infrastructure.
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a) Signal Transmission

e Function: Once an ambulance is confirmed (confidence score above a threshold), the system generates a priority alert signal

e Protocol - MQTT: A lightweight messaging protocol, ideal for low-bandwidth 10T devices like the Raspberry Pi, used to send
the signal over the internet or a local network to the controller.

e Hardware - LoRa Transmitter and Receiver: A long-range, low-power wireless solution, suitable for transmitting the signal
directly to a nearby intersection controller without relying on Wi-Fi/Internet availability.

3) Action and Control Layer

This layer represents the traffic light system, which acts immediately upon receiving the signal.

a) Traffic Signal Controller:

e Function: This block represents the dedicated hardware (often a microcontroller or PLC) at the intersection. Its job is to receive
and interpret the priority signal sent from the Raspberry Pi (Sensing Layer).

e Action Logic: Upon receiving the signal, the controller logic overrides its standard timing cycle to immediately initiate the
required action (e.g., switching the ambulance’s lane to a green signal).

b) Alert & Local Actions

e Function: The final physical outputs that provide both local confirmation and real-world results.

e Local Display (LCD Message): Provides visual feedback to traffic personnel or an observer confirming the action (e.g.,
"Ambulance Detected - Preemption Active").

e Sound Alerts (Buzzers, Sirens): Provides an immediate, audible confirmation that the traffic signal preemption sequence has
been triggered. This ensures local awareness for maximum safety.

The entire process ensures that the detection system remains an effective, autonomous, and low-latency solution to clear the path for

emergency vehicles. While the proposed architecture includes communication and traffic signal preemption layers using MQTT and

LoRa, the current implementation focuses primarily on real-time ambulance detection at the edge. Communication and traffic

control components were validated through simulated signal transmission, and full-scale deployment at live intersections is

considered future work.

A. Software Requirements
1) Python Programming Environment

python

Python is used as the primary programming language for model training, inference, and system integration. Its extensive ecosystem
enables seamless integration of deep learning, computer vision, and 10T communication modules.

O
PyTorch

Fig. 3

2) PyTorch Framework
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PyTorch is utilized for training and fine-tuning the YOLOV5s model using transfer learning. Its dynamic computation graph and
GPU support enable efficient model experimentation and optimization.

3) YOLOvV5 Model Architecture

Fig. 4

YOLOV5s is a single-stage object detection model optimized for real-time applications. It provides a balanced trade-off between
detection accuracy and computational efficiency for edge deployment.

4) ONNX and ONNX Runtime

=P, ONNX
n ?&V RUNTIME

&> =
A
O PyTorch —==== £ ONNX

Train cummy model

&;

“> % TensorFlow

<

_6_” Caffe2

Fig. 4.1.4

ONNX enables framework-independent model representation, allowing optimized inference across platforms. ONNX Runtime
significantly improves CPU-based inference performance on resource-constrained devices.

O

OpenCV]

Fig. 6
OpenCV is used for real-time video capture, frame preprocessing, and visualization of detection results. It provides efficient image
processing operations required for live camera inference.

5) OpenCV Library
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Fig. 7

Labellmg is used to manually annotate ambulance images with bounding boxes in YOLO format. Accurate annotation is critical for
effective supervised training and detection performance.

7) MQTT Communication Protocol (Simulated)

5

Industrial
sensor/ machine
—

m

Environmental Smart meter

sensor MQTT broker

Fig. 8

MQTT is a lightweight publish—subscribe messaging protocol suitable for loT-based systems. In this work, it is used to simulate
low-latency transmission of ambulance detection alerts.

B. Hardware Requirements
1) Raspberry Pi 3 Model B+

Fig. 9

The Raspberry Pi 3 Model B+ is used as the edge computing platform for real-time ambulance detection. Its low power
consumption and affordability make it suitable for cost-sensitive Intelligent Transportation System deployments.
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2) ARM Cortex-A53 Processor

ARM Cortex A53
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L1 Instruction Cache
32 KB 2-Way MooTLE:

10 entry 10-Way

8Bptes/Cycle

Front End X X

Branch Queue Instruction Control
3enty sentry

:
T oo | ok |

e | e | A || e
256 KB 16-Way/|

asu | | FP Queue

I AL
INTMUL

Execution Engine

Load/Store Unit

Wicro TLB 16 Bytes/Cycle Load
L1 Data Cache 10 entry 10-Way 32 Bytes/Cycle Store
32 KB 2-Way. WSHRS

The ARM Cortex-A53 quad-core processor executes the ONNX-optimized YOLOv5s model using CPU-only inference. Although
computationally limited, it demonstrates the feasibility of edge-based detection without hardware accelerators.

3) Camera Input Source (Mobile Phone IP Camera)

CameraFTP.com
° S
>
—

Fig. 11

A mobile phone camera is used as the video source by streaming live footage to the Raspberry Pi. This setup enables low-cost real-
time testing without dedicated surveillance hardware.

4) Storage Device (MicroSD Card)

Sandisk
Extreme

ms2 V3o
> 1

1w
@ 42

Fig. 12
A microSD card is used to store the operating system, trained ONNX model, and required software libraries. Reliable storage
ensures stable runtime execution on the Raspberry Pi.
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5) Power Supply Unit

Fig. 13

A regulated 5V, 2.5A power supply is used to ensure uninterrupted operation of the Raspberry Pi. Stable power delivery is essential
for continuous real-time inference.

6) LoRa Communication Module (Future Work)

Fig. 14

LoRa-based communication is considered for future deployment to enable long-range, low-power transmission of ambulance
detection alerts. This module is not part of the current experimental setup.

7) Traffic Signal Controller (Simulated)

Fig. 15
The traffic signal controller represents the intersection control unit responsible for signal preemption. In this study, its behavior is
evaluated through simulated control logic.
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V. RESULT AND DISCUSSION

A. Result

The trained YOLOv5s model achieved an mAP@0.5 of 91.3% on the test dataset, demonstrating reliable ambulance detection
across diverse scenarios. Precision and recall values exceeded 92%, minimizing false alarms and missed detections—both critical
for traffic signal preemption systems.

On the Raspberry Pi platform, ONNX Runtime achieved a sustained inference speed of 2-5 FPS, significantly outperforming native
PyTorch CPU inference, which remained below 1 FPS. Although slower than GPU-based execution, this frame rate is sufficient for
ITS applications, where early detection at a distance provides adequate response time for traffic signal control.

& admin@ambulance: ~/yolovs X & Windows PowerShell

Detected class © with confidence 0.51 at [np.fl 88.7984), np.float32(21
f10at32(133.94616), np.float3
s © with confidence 0.44 at [np .1188), np.float32(21
y 0 0at32(136.59991), np.float32(284.4612)]
Detected class © with confidence 0.41 at [np.floa 8), np.float32(2
14.22803), np 5.14162), np.float32
s nce .42 at [ 2(89.3979 , np.float32(

, np.float32(

Detected class © 0. 5¢ n a S 36), np.float32(
271.4102), np.fl

Detected class c 0.42 a p 5 93), np.float32(
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ACExiting...

(yolov5_env) python detect_ambulance2.py
2025-09-27 19:18:13.648868752 [W:onnxruntime:Default, device_discovery.cc:16
4 DiscoverDevicesForPlatform] GPU device discovery failed: device_discovery.
cc:89 ReadFileContents Failed to open file: "/sys/class/drm/card®/device/ven
dor"

Starting ambulance detection

RG

Exiting...

(yolov5_env) : python detect_ambulance2.py
2025-09-27 19:18:45.529396796 [W:onnxruntime:Default, device_discovery.cc:16
4 DiscoverDevicesForPlatform] GPU device discovery failed: device_discovery.
cc:89 ReadFileContents Failed to open file: "/sys/class/drm/card®/device/ven

2(301.1055), np.float32(1

4.5478), np.float32(1
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0 v confidence 0.44 at [ at32 715), np.float32(1
float32(u11 ), np.float32 ]

Fig. 16

Fig. 16 demonstrates the real-time execution of the proposed system on a Raspberry Pi platform. The continuous detection logs
confirm that the optimized YOLOv5s model successfully processes live camera frames using ONNX Runtime without GPU
acceleration. This qualitative result supports the quantitative inference speed and accuracy metrics reported in this section.

These results confirm that ONNX-based optimization enables practical real-time performance on low-cost edge devices without
requiring specialized accelerators. The GPU-based inference results are reported only for reference to illustrate the performance gap
between workstation-class hardware and edge devices and are not indicative of deployable edge performance.

Table IV
|Confidence Threshold|[mAP@0.5 (%)| FPS|
0.4 92.0 2.1 |
0.5 lo1.3 3.0 ]
0.6 189.7 48 |

The results indicate a clear trade-off between detection accuracy and inference speed. Lower confidence thresholds improve
detection accuracy at the cost of reduced FPS, while higher thresholds increase throughput with a marginal decrease in mAP. This
behavior allows system designers to tune the model based on application-specific latency and reliability requirements.
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B. Discussion

The comparative evaluation demonstrates that ONNX Runtime significantly improves inference speed on CPU-only hardware.
Native PyTorch inference on the Raspberry Pi achieved less than 1 FPS, rendering it unsuitable for real-time applications. In
contrast, ONNX Runtime achieved a stable throughput of 2-5 FPS while preserving detection accuracy. This performance
improvement highlights the importance of model serialization and optimized runtimes for edge-based Intelligent Transportation
Systems. Although the achieved inference speed of 2-5 FPS is lower than GPU-based real-time systems, it is sufficient for
Intelligent Transportation System applications focused on early detection. Ambulances are typically detected several seconds before
reaching an intersection, providing adequate time for signal transmission and traffic phase preemption.

Crucially, the 2-5 FPS rate is sufficient for an Intelligent Transportation System (ITS) application focused on traffic signal
preemption. Since the goal is to detect an approaching vehicle at a distance (often several seconds away), this latency provides
ample time for the Signal Transmission Layer (MQTT/LoRa) to send the priority signal and for the traffic controller to execute the
necessary phase change.

Table V
Model Inference Hardware mAP@0.5
1 0,

Engine (%) EPS

YOLOV5s PyTorch GPU 91.3 45
Workstation
YOLOV5s PyTorch Raspberry 89.1 0.8
Pi
YOLOV5s Raspberry 91.3 2-5
ONNX P
Runtime
Table VI
Parameters Training Testing
(%) (%)

Precision 93.2 95.1

Recall 90.5 924

(Sensitivity)

mAPQ.5 88.5 91.3

(Object

Detection)

1) Hardware Efficiency and Future Optimization

The choice of the lightweight YOLOvV5s model combined with the 64-bit Lite OS was essential to ensure stable operation and

prevent memory overflow, which is common on Raspberry Pi devices. significantly increase the FPS to 10+without compromising

the proven accuracy of the model. This would enable faster.

e Thermal Stability: The CPU-based ONNX Runtime inference, while slower, ensured the system remained thermally stable,
preventing the need for complex active cooling that would increase deployment costs.

e Path to Improvement: Future work will focus on further performance optimization through INT8 quantization and the
integration of low-cost hardware accelerators such as the Coral Edge TPU to improve inference speed while maintaining
reliable detection accuracy. In addition, dataset expansion covering diverse geographic regions and ambulance designs will be
explored, along with multi-class emergency vehicle detection to enhance real-world applicability. Future extensions will also
investigate multi-camera synchronization and temporal tracking techniques to improve detection robustness under occlusion
and dense traffic conditions.

C. Explanation of Metrics
1) Precision: Measures the quality of positive prediction. A high precision (95.1%) means that when the model says it has detected
an ambulance, it is almost certainly correct (minimizes false alarms). Crucial for traffic preemption.
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2) Recall (Sensitivity): Measures the model's ability to find all relevant cases. A high recall (92.4%) means the model successfully
detects most of the actual ambulances present in the video frames (minimizes missed emergencies).

3) Mean Average Precision: The standard metric for object detection. It measures the model's ability to correctly classify and
localize the ambulance object with at least 50% Intersection over Union (loU). The Testing score is generally the final reported
result for the deployed system.

Standard object detection metrics including Precision, Recall, Mean Average Precision (mMAP@0.5), and inference speed (FPS) are

reported in this study. Frame-level classification accuracy metrics are excluded, as they are less representative for bounding-box-

based detection tasks.

V. CONCLUSION

This paper presented a real-time ambulance detection system optimized for deployment on resource-constrained edge devices. By
leveraging YOLOvV5 and ONNX Runtime, the proposed approach achieves reliable detection performance under deployment
constraints while maintaining feasible real-time performance on a Raspberry Pi. The comparative evaluation demonstrates that
ONNX-based optimization significantly improves inference speed over native PyTorch execution, validating its suitability for
intelligent traffic management systems. Future work will explore quantization and hardware accelerators to further enhance
performance.NAlthough the proposed system demonstrates reliable detection performance, its inference speed is limited by CPU-
only execution on the Raspberry Pi. Additionally, the dataset size, while sufficient for proof-of-feasibility, may not fully represent all
ambulance designs and regional variations. Future work will address these limitations through dataset expansion and hardware
acceleration.
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