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Abstract: The Railway track monitoring is essential for ensuring the safety, reliability, and longevity of rail transportation 
infrastructure. Traditional inspection methods such as manual surveys and track circuit-based systems are labour intensive, time 
consuming, and prone to human error, which results in delayed fault detection and increased maintenance risks. Addressing 
these challenges, this study presents the Railway Track Monitoring Tool (RT-MT), an intelligent real time defect detection 
system that integrates machine learning with embedded electronics to enhance railway infrastructure monitoring. The RT-MT 
employs a Raspberry Pi 5 (4GB), a Universal Serial Bus (USB) 1080p camera, a SIM800C GSM module, and a UBLOX NEO 
6M Global Positioning System (GPS) module to automate track inspections. The camera captures railway track images which 
are processed using a You Only Look Once (YOLO) v8 based object detection model deployed on the Raspberry Pi to identify 
cracks and missing fasteners, which are critical defects affecting track integrity. A dataset consisting of 1,000 crack images and 
500 fastener images was used to train the model, ensuring reliable defect classification. When a defect is detected, GPS 
coordinates are extracted and an alert is sent through a messaging system to maintenance teams for immediate action. A spam 
prevention mechanism prevents redundant alerts by triggering notifications only when a defect is detected beyond a 50-meter 
radius from the previous detection. A web-based monitoring system provides real time defect tracking, visualization, and data 
logging for data driven maintenance decisions. The Railway Track Monitoring Tool, validated on a prototype railway track, 
offers a cost effective, scalable, and automated solution, addressing the limitations of traditional methods while improving 
railway safety and operational efficiency. 
Keywords:  Railway track monitoring tool, machine learning, Raspberry Pi, YOLOv8, defect detection. 
 

I. INTRODUCTION 
Railway track monitoring is essential for ensuring the safety, reliability, and efficiency of railway transportation. Continuous 
monitoring helps in the early detection of defects such as cracks, misalignments, and loose fasteners, preventing accidents and 
costly repairs. The increasing demand for high-speed rail networks and the expansion of railway infrastructure highlights the 
necessity for automated monitoring solutions. AI-powered systems, such as real-time object detection models, embedded hardware, 
and IoT-based fault alert mechanisms, provide accurate and efficient defect identification [1]. These advancements enable proactive 
maintenance, minimizing downtime and reducing operational costs. Effective railway track monitoring ensures structural integrity, 
enhances passenger safety, and supports the long-term sustainability of railway networks. 
Traditional railway track inspections rely heavily on manual assessments, where maintenance teams visually inspect tracks for 
defects such as cracks, loose fasteners, and misaligned joints [2]. While this approach has been the standard for decades, it remains 
labour-intensive, time-consuming, and ineffective for large-scale railway networks. The dependency on human intervention 
introduces variability in defect detection accuracy, increasing the risk of undetected structural issues that lead to operational hazards 
[3]. The challenges associated with manual inspections necessitate more efficient, automated solutions to ensure railway safety and 
reliability.Recent advancements in artificial intelligence (AI), machine learning (ML), and embedded Internet of Things (IoT) 
technologies have revolutionized railway track monitoring. AI-driven object detection algorithms offer improved accuracy and 
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speed in identifying structural defects, enabling continuous, real-time monitoring of railway tracks [4]. The integration of ML 
techniques enhances predictive maintenance, allowing systems to forecast potential failures before they occur.  
Additionally, IoT-based solutions, such as GPS and GSM modules, facilitate real-time communication and geolocation tracking, 
ensuring that maintenance teams receive timely updates regarding track conditions. These technological innovations contribute to 
more efficient railway maintenance practices, reducing operational disruptions and enhancing overall railway safety. 
The railway track monitoring tool is an advanced system designed to enhance railway track inspection through automated defect 
detection and geolocation capabilities. It employs a mobile autonomous rover equipped with a high-resolution USB camera, GPS, 
and Global System for Mobile Communications (GSM) modules to enable continuous monitoring of railway infrastructure [5]. By 
capturing and analysing video footage, the system facilitates accurate identification of track anomalies. Ensuring real-time location 
tracking, RT-MT is equipped with an embedded GPS module that logs the exact coordinates of detected defects. The system 
transmits this data through GSM technology, providing maintenance personnel with real-time Short Message Service (SMS) 
notifications containing defect details, including location, type, and severity. Designed for diverse railway environments, RT-MT 
includes a night-vision camera for low-light conditions and infrared sensors to detect track boundaries, ensuring comprehensive 
inspections regardless of environmental factors [6]. By integrating these technologies, RT-MT enhances railway infrastructure 
management, improving operational efficiency and safety while reducing dependency on manual inspections [7]. This research RT-
MT integrates deep learning (DL)-based object detection algorithms, which efficiently detect a wide range of defects, including 
minor irregularities that missed during manual inspections. Additionally, the system incorporates classification and prioritization 
mechanisms to categorize defects based on severity, enabling maintenance teams to address critical issues promptly. 
The contribution of this research include: 
 To introduce an intelligent railway track monitoring system using YOLOv8 for real time detection of cracks and missing 

fasteners. 
 To integrate embedded electronics, including Raspberry Pi 5, a USB camera, and GSM and GPS modules, forautomated defect 

identification, location tracking, and instant alert notifications to maintenance teams. 
 To provide a cost effective and scalable solution with a web-based monitoring interface that enables real time defect tracking, 

visualization, and data driven maintenance planning to enhance railway safety and operational efficiency. 
 

II. LITERATURE REVIEW 
Wang et al. [8] proposed a DL-based approach for railway track defect detection utilizing YOLOv8n model. The methodology 
involved collecting high-resolution images from railway environments using cameras mounted on inspection vehicles. Advanced 
feature extraction and attention mechanisms were applied to enhance small-target detection. Experimental evaluations demonstrated 
improvements in defect identification, achieving an accuracy of 94.1%, a recall of 93.7%, and a precision of 93.9%.  The model 
lacked optimization for edge computing deployment, requiring size reduction and performance enhancements for seamless 
operation. 
Lin et al. [9] proposed a DL-based approach for railway track fastener inspection using the YOLOv3 model. The methodology 
involved collecting research on track inspection and setting up an image collection system consisting of image recording and 
lighting equipment. Data collection was conducted using a GoPro motion camera, capturing and recording 20 km of track fastener 
images. The results showed a precision rate of 89% and a recall rate of 95%, demonstrating effectiveness of the system. The study 
was limited by the lack of an integrated system combining front-end image collection, image processing, and back-end image 
recognition. 
Sun et al. [10] proposed an end-to-end time series classification approach for detecting rail joints on railway tracks using 
acceleration data and trained Convolutional Neural Networks (CNNs). The methodology involved developing a model that enabled 
joint detection on both left and right rails using a single model. Data was collected through acceleration sensors capturing railway 
track vibrations. ResNet and Fully Convolutional Network (FCN) architectures were investigated and compared. The experimental 
results demonstrated that both networks achieved better performance, highlighting the effectiveness of CNN-based approaches for 
railway condition monitoring. The study lacked the advanced localized surface collapse (LSC) and rail end batter (REB) to detect 
defects. 
Chellaswamy et al. [11] proposed an approach for detecting rail track irregularities using bogie and car body acceleration 
measurements. A mathematical model and frequency response analysis were applied to analyse track alignment. Data were collected 
using micro-electromechanical systems (MEMS) accelerometers placed in the bogie and axle box, detecting irregularities in vertical 
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and lateral directions. The Differential Evolution (DE) algorithm optimized irregularity values. Simulations at different train speeds 
and field tests showed that the system accurately identified track defects.  
The study faced limitations in real-time deployment due to the dependency on GSM signal strength, which triggered delays in data 
transmission when signal levels were low. 
Bogacz et al. [12] developed the dynamic behaviour of railway tracks modelled as continuous systems with periodically spaced 
sleepers under moving concentrated loads. The methodology involved applying Floquet’s theorem to analyse stopping and passing 
bands caused by periodic sleeper spacing. Data were collected through simulations of elastically supported beams subjected to 
moving forces. The results indicated that periodic sleeper spacing significantly influenced wave propagation, excitation forces, and 
vehicle-track interaction. The study highlighted the advantages of "Y"-type sleepers in transition zones, showing improved track 
stability and different sleeper motion patterns compared to classic tracks. The analysis focused primarily on periodic sleeper 
spacing, without considering for irregularities caused by wear, environmental factors, or operational variations. 
Anand et al. [13] analysed the characteristics of non-relational databases, focusing on MongoDB and Oracle NoSQL. The 
methodology involved a database features, programming language support, ACID compliance, and integration capabilities. Data 
were collected from DB-Engines rankings and database documentation. The results indicated that Oracle NoSQL supported 
Atomicity, Consistency, Isolation, and Durability (ACID) properties and had SQL-like create, read, update and delete (CRUD) 
operations, rendering it preferable for applications requiring transactional integrity. MongoDB, supporting over fifteen 
programming languages, was ranked higher in popularity and adoption. Both databases enabled MapReduce processing and Hadoop 
integration. The study was limited by the absence of a direct performance comparison between MongoDB and Oracle NoSQL, 
preventing a quantitative assessment of their efficiency. 
Existing research on railway track monitoring has demonstrated significant advancements in defect detection using DL and sensor-
based approaches. However, several limitations remain unaddressed. YOLOv8n-based track defect detection lacked optimization for 
edge computing deployment, requiring size reduction and performance enhancements for seamless operation [8]. Fastener 
inspection using YOLOv3 was limited by the lack of an integrated system combining front-end image collection, image processing, 
and back-end image recognition [9]. CNN-based rail joint detection did not incorporate advanced LSC and REB for detecting 
defects [10]. Acceleration measurements for track irregularity detection faced limitations in real-time deployment due to the 
dependency on GSM signal strength, which triggered delays in data transmission when signal levels were low [11]. Dynamic 
behaviour analysis of railway tracks primarily focused on periodic sleeper spacing without considering irregularities caused by 
wear, environmental factors, or operational variations [12]. NoSQL DB analysis for railway monitoring was constrained by the 
absence of a direct performance comparison between MongoDB and Oracle NoSQL, preventing a quantitative assessment of their 
efficiency [13]. 
 

III. MATERIALS AND METHODS 
The system captures real-time images or video frames of railway tracks using a camera. The captured video is divided into 
individual frames through frame extraction. The extracted frames undergo pre-processing, including noise reduction, resizing, and 
normalization, to enhance detection accuracy. The pre-processed frames are then fed into the YOLOv8 model, which performs real-
time object detection to identify railway track anomalies. If no anomaly is detected, the process loops back to GPS tracking. If an 
anomaly is detected, the GPS module captures the precise location, and the GSM module sends alerts based on priority to ensure 
timely intervention and maintenance. The block diagram of the proposed system is illustrated in Fig. 1. 

 
Fig. 1Block diagram of the proposed system 
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A. Dataset 
The dataset comprises 1500 high-resolution images of railway tracks captured under various lighting conditions, including day, 
night, and low-light environments, using cameras such as the Zebronics USB Camera to ensure clarity in detecting defects like 
cracks, misalignments, and structural weaknesses. It consists of two categories: "Crack" and "Fastener," with a total of 1,500 
samples divided into training (80%), validation (10%), and test (10%) sets, where the "Crack" category includes 1,000 samples and 
the "Fastener" category contains 500 samples. The defects category and the labelled defects category is shown in Table. 1 and Fig. 
2. 

TABLE I 
DEFECTS CATEGORY 

Sample Category 
Number of Training 
Sets 80%) 

Number of 
Validation Sets 10 
%) 

Number of Test 
Sets 10 %) Total 

Crack 800 100 100 1000 
Fastener 400 50 50 500 

 
After image collection, manual labelling was performed using Roboflow. Bounding boxes were drawn to highlight cracks, broken 
rails, and misaligned joints, ensuring precise defect categorization. Each defect was classified based on severity, allowing the 
system to prioritize critical issues during detection. 

 
Fig. 2 Labelled Defects Category 

B. Data Preprocessing 
Data preprocessing involved several steps to enhance the quality of the dataset before training the model. Initially, image resizing 
was performed to standardize dimensions, ensuring uniformity across all samples. Augmentation techniques such as rotation, 
flipping, contrast adjustment, and noise reduction were applied to improve model robustness against varying conditions. 
Normalization was conducted to scale pixel values, enhancing convergence during training. Additionally, images were converted 
into the YOLOv8 format, rendering them compatible with the object detection model. These preprocessing steps optimized the 
dataset, improving defect detection accuracy in railway track monitoring. 
 
C. Model Development 
1) YOLOv8 Architecture 
The YOLOv8 model utilized a structured architecture optimized for real-time object detection, consisting of a backbone, neck, and 
head [14]. The backbone employed aCNN for feature extraction, processing input images captured by the Zebronics Zeb-Ultimate 
Pro USB Camera.The extracted features were refined by the neck using Feature Pyramid Networks (FPN) and Path Aggregation 
Networks (PAN) to enhance detection accuracy across different scales. The head applied a detection layer to generate bounding 
boxes, confidence scores, and class labels for detected defects such as cracks and misalignments [15]. The block diagram Fig. 3 
illustrated the data flow, where images were captured, processed through YOLOv8 for defect identification, assigned GPS 
coordinates, and transmitted via the GSM module for real-time railway track monitoring and maintenance 
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Fig. 3YOLOv8 Architecture 

 
2) 3D Model Prototype and Fabrication Process 
A functional and realistic prototype for the railway track and inspection rover was developed using advanced 3D modelling, 3D 
printing, and real-world fabrication techniques. This approach facilitated a comprehensive testing environment, incorporating digital 
simulations and physical assembly of components. The integration of these techniques enhanced the accuracy and reliability of the 
defect detection system for railway tracks [16]. 

 
a) Model Design and Simulation 
To develop an accurate and scalable model for the railway track and inspection rover, Onshape, a cloud-based CAD software, was 
utilized. The design process involved creating a scaled-down railway track, incorporating key elements such as rails, sleepers, and 
fasteners. The inspection rover was designed with precise wheel alignment to ensure smooth movement across the track. 
Additionally, different types of defects, including cracks and misalignments, were simulated on both the track and fasteners. These 
simulations played a crucial role in training the AI model effectively, developing it for real-world defect detection. 
 
b) 3D Printing of Fasteners 
Fasteners play a critical role in securing railway rails, and to replicate real-world conditions, 3D printing was used to fabricate 
fasteners based on STL models designed in Onshape [17]. Initial sting, PLA was selected as the material, with a planned transition 
to ABS for enhanced durability. Each batch of fasteners required approximately 3-4 hours to print, with a layer resolution of 0.2mm 
to ensure precision. After fabrication, artificial defects were introduced in the 3D-printed fasteners to train the AI-based defect 
detection model, enhancing its capability to identify real-world issues [18]. Fig. 4 illustrates the front and top view of the fastener. 

 
Fig. 4 Fastener front and top view 

 
c) Prototype Fabrication with Welders 
The development and implementation of the RT-MT system involved prototype fabrication, defect simulation, and real-time 
functionality. Welding experts constructed a real-world railway track prototype using metal specimens and an I-section beam for 
structural stability [19]. Rails and sleepers were securely welded to replicate actual railway structures, integrating both 3D-printed 
and metal fasteners for testing. The inspection rover’s wheels were aligned precisely to facilitate smooth movement across the track, 
as illustrated in Fig. 5. 
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Fig. 5 Front view of the final prototype 

 
To enhance the RT-MT system’s effectiveness, defects such as cracks, misalignments, and loose fasteners were intentionally 
introduced onto metal specimens [20]. This approach enabled the creation of a diverse dataset that closely resembled real-world 
railway maintenance challenges. Images of these defects were captured under different lighting conditions to strengthen the 
robustness of the YOLOv8s object detection model. The dataset encompassed various angles, distances, and lighting scenarios, 
ensuring reliable defect identification in dynamic railway environments. 
A physical prototype was then developed, incorporating I-beams to replicate railway track conditions. The inspection rover was 
designed to house essential components, including sensors and cameras, to facilitate effective system testing. This prototype enabled 
real-time trials of the RT-MT system, supporting iterative refinements based on performance observations, as illustrated in Fig. 6. 

 
Fig. 6 Revised design 

 
The final phase involved the integration of critical hardware components such as the Raspberry Pi 5, Web camera, GSM module, 
and GPS module. The system was rigorously tested in both controlled and real-world conditions, demonstrating its capability for 
continuous railway track monitoring. The RT-MT system successfully detected defects and transmitted alerts in real-time, 
enhancing railway safety and efficiency while presenting a significant advancement in railway track monitoring technology, as 
shown in Fig. 7 and Fig. 8. 

 
Fig. 7 Real-time implementation 
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Fig. 8 Instrumental setup on prototype 

3) Proposed RT-MT Tool 
The development of the RT-MT system involved a structured approach integrating AI-based object detection and embedded 
hardware for real-time railway track monitoring. The YOLOv8 model was employed with a backbone CNN for feature extraction, a 
neck using FPN and PAN for multi-scale detection, and a detection head generating bounding boxes and confidence scores. A 
dataset of 1500 railway track images was collected under varying lighting conditions, annotated in YOLO format, and used for 
training, validation, and testing. Optimization techniques such as data augmentation and hyperparameter tuning improved model 
accuracy, and the trained model was deployed on Raspberry Pi for real-time defect detection. A scaled railway track and inspection 
rover were designed using Onshape CAD software, incorporating key elements like rails, sleepers, and fasteners. Simulations of 
defects enhanced AI model training, while 3D printing was utilized to fabricate fasteners, introducing artificial defects to refine 
detection accuracy. Welding experts constructed a prototype railway track using metal specimens and I-section beams for structural 
stability, integrating both metal and 3D-printed fasteners. The inspection rover was aligned for smooth movement, and defects such 
as cracks and misalignments were intentionally introduced for testing. Images captured under varying conditions strengthened 
model robustness. The final prototype incorporated Raspberry Pi 5, a web camera, a GSM module, and a GPS module for real-time 
defect identification, location mapping, and alert transmission. Rigorous testing in controlled and real-world environments 
demonstrated the system’s capability for continuous railway track monitoring, enhancing safety and efficiency. 
 
4) Hardware and software setup 
The Railway Track Monitoring Tool (RT-MT) system incorporates advanced hardware and software components to ensure efficient 
railway track monitoring and defect detection. The hardware setup includes the Raspberry Pi 5 (4GB Model) as the central 
processing unit, featuring a quad-core CPU and 4GB RAM, which provides sufficient computational power to run the YOLOv8s 
object detection model in real time. A Zebronics Zeb-Ultimate Pro USB Camera with 1080p Full HD resolution is integrated for 
capturing high-resolution video feeds, supporting auto white balance and low-light correction to enhance defect detection accuracy. 
The SIM800C GSM module facilitates wireless communication, enabling real-time SMS alerts regarding detected defects, while the 
Ublox Neo-6M GPS module provides precise geolocation tracking for accurate defect reporting. A USB to TTL adapter ensures 
stable serial communication between the Raspberry Pi and external modules, preventing voltage drops and maintaining seamless 
data exchange. The GPS antenna further enhances geolocation tracking, enabling accurate mapping of railway track defects. Circuit 
diagram of the proposed model is illustrated in Fig. 9. 
The software framework of the RT-MT system plays a crucial role in data processing and real-time defect detection. Jupyter 
Notebook provides an interactive computing environment for dataset collection, model training, and real-time implementation of the 
YOLOv8 model on railway track images. Roboflow is used for dataset labelling, annotation, and augmentation, enhancing model 
robustness through techniques such as rotation, brightness adjustment, and noise reduction. Python IDEs, including PyCharm, VS 
Code, and the built-in Raspberry Pi Python editor, support the development and debugging of scripts for object detection, GPS data 
processing, and SMS alert triggers, ensuring seamless integration of the AI-based detection system with the hardware components. 
Hyperparameter specifications of YOLOv8 model. The model was trained using the Focal-SIoU loss function for optimization over 
50 epochs, leveraging NVIDIA GPUs to enhance computational efficiency and performance. 
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Fig. 9 Circuit diagram 

 
IV. RESULT AND DISCUSSIONS 

A. Raspberry Pi Output Screens 
The Raspberry Pi 5 facilitates real-time defect detection using the YOLOv8 model, accurately identifying cracks, misalignments, 
and loose fasteners in railway tracks. The live video feed overlays bounding boxes around detected defects, enhancing precision in 
anomaly identification. Upon detection, the system transmits an SMS alert containing GPS coordinates via the SIM800C GSM 
module, enabling prompt intervention by railway authorities. Captured SMS logs verify the successful transmission of alerts, 
contributing to efficient railway maintenance and risk mitigation. Fig. 10 shown the output SMS alert. Raspberry Pi output screens 
used for defect detection in railway tracks, The Fig. 11 shows a defect detected, while the Fig. 12 indicates no defect present. 

 
Fig. 10 SMS Alert as output 

 
Fig. 11 Raspberry Pi output screens, defect present 
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Fig. 12Raspberry Pi output screens, No defect present 

 
Fig. 13 shows a detected defect along with its processing details, including preprocessing, inference, and postprocessing times. The 
system extracts the GPS location of the defect, confirming its presence and logging it to prevent redundant alerts. 

 
Fig. 13Defect Detected at GPS Location 

 
The analysis illustrates the real-time defect detection system implemented on a Raspberry Pi 5 as part of the RT-MT (Railway Track 
Monitoring Tool) project The graphical interface, labeled "Railway Line Monitoring," presents the captured camera feed, with 
bounding boxes labelled detected defects such as cracks. The terminal logs provide insights into the detection process, indicating an 
image resolution of 480×640 pixels and inference times ranging from 328 ms to 442 ms per image. Preprocessing time varies 
between 2.9 ms and 5.3 ms, while post-processing remains minimal at 0.9–2.1 ms. Each detection instance verifies the presence of a 
crack, initiating an alert mechanism that extracts GPS coordinates for precise fault localization. The system retrieves the location as 
Thiruvananthapuram, Kerala, India, and incorporates a spam prevention mechanism to avoid redundant notifications. This 
mechanism employs time-based filtering, ensuring that repeated alerts are not sent for the same defect within a predefined time 
window. The system's real-time processing capability enhances crack detection and localization efficiency, making it a viable 
solution for railway maintenance. The YOLOv8s model's performance on the Raspberry Pi 5 confirms the feasibility of on-device 
inference, achieving detection approximately every 0.3 to 0.4 seconds. Further optimizations enhance processing speed and reduce 
false positives, improving overall system reliability. 
 
B. Parameter Analysis 
Evaluating model performance is essential in machine learning-based defect detection to ensure reliable identification of defects and 
non-defects. Metrics such as precision, recall, and mean Average Precision (mAP) provide valuable insights, especially when 
handling imbalanced datasets where defects are infrequent. The RT-MT demonstrated strong performance, with high precision 
minimizing false positives. The mAP score further validated the model’s effectiveness in detecting and classifying track anomalies, 
contributing to improved railway maintenance efficiency. Key evaluation metrics are given in Equations (1) to (5). 

ݕܿܽݎݑܿܿܣ =  ்௨ ௦௧௩௦ା்௨ ே௧௩௦
்௧ ே௨  ூ௦௧௦

   (1) 

݊݅ݏ݅ܿ݁ݎܲ =  ்௨ ௦௧௩௦
்௨ ௦௧௩௦ାி௦ ௦௧௩௦

   (2) 
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݊݅ݏ݅ܿ݁ݎܲ ݁݃ܽݎ݁ݒܣ ݊ܽ݁݉ = ଵ
ே
∑ ܣ ூܲ
ே
ୀଵ   (3) 

ܴ݈݈݁ܿܽ =  ்௨ ௦௧௩௦
்௨ ௦௧௩௦ାி௦ ே௧௩௦

   (4) 

−1ܨ    ݁ݎܿܵ = 2 × [௦×ோ]
௦ାோ

    (5) 
Where ܰ denotes the types of defects,ܣ ூܲ  represents Average Precision for each class ܫ. 
Fig. 14. Illustrates the evaluation of the RT-MT system defect detection model using key performance metrics to ensure reliability 
in real-time railway track monitoring. Precision (93.9%) highlights the proportion of correctly identified defects, minimizing false 
positives, while recall (92.5%) reflects the model’s ability to detect actual defects, reducing false negatives. The mean Average 
Precision (mAP) of 94.1% provides a comprehensive assessment of detection performance across various defect types. Intersection 
over Union (IoU) at 93.7% ensures high spatial accuracy by measuring the overlap between predicted and actual defect locations. 
The region of curve (ROC) and Area Under the Curve (AUC) illustrate the balance between sensitivity and specificity, 
demonstrating the model’s effectiveness in distinguishing defects from non-defects. These metrics collectively validate the model’s 
performance, supporting efficient railway maintenance and defect detection. 

 
Fig. 14 Performance evaluation of the proposed model 

 
Fig. 15.represents the Recall-Confidence Curve, which analyses the model’s recall performance across varying confidence 
thresholds. Each curve corresponds to a specific defect class, illustrating how recall is affected as the confidence level changes. The 
"with_clip" category maintains consistently high recall, indicating strong detection confidence. In contrast, the "crack" and 
"without_clip" classes exhibit a gradual decline in recall at higher confidence thresholds, reflecting the trade-off between precision 
and recall. The bold blue line, representing all defect classes, shows that while the model achieves full recall at lower confidence 
levels, recall decreases as confidence increases, a common characteristic in object detection models. 

 
Fig. 15Recall-Confidence Curve 
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Fig. 16 illustrates the F1-Confidence curve, which assesses the trade-off between precision and recall across varying confidence 
thresholds, with a peak F1-score of 0.92 at a confidence level of 0.342, indicating effective defect identification with minimal false 
positives and false negatives. This balance is critical for real-time monitoring, ensuring timely and reliable maintenance 
interventions.  

 
Fig. 16 F1-Confidence Curve 

 
TheFig. 17 shows the Precision-Confidence curve, which reveals an optimal precision of 1.0 at a confidence threshold of 0.681, 
demonstrating that at higher confidence levels, the model minimizes incorrect predictions, enhancing the reliability of reported 
defects. These results are particularly advantageous for automated railway track inspections, where reducing false alarms while 
maintaining high detection accuracy is essential. The findings further demonstrate the model’s suitability for real-world railway 
maintenance applications, supporting accurate and efficient defect monitoring. 

 
Fig. 17 Precision-Confidence Curve 

 
Fig. 18 illustrates the Precision-Recall (PR) Curve, a key metric for assessing the performance of the YOLOv8s model in railway 
track defect detection. The plot features multiple curves representing different defect classes: "crack" (0.915), "with_clip" (0.994), 
and "without_clip" (0.957), with an overall mean Average Precision (mAP) of 0.956 at IoU 0.5. A higher precision-recall value 
indicates the model's effectiveness in distinguishing defects from non-defective areas, reducing false positives while maximizing 
recall. The nearly perfect curve for "with_clip" suggests exceptional precision, while the "crack" class exhibits slightly lower 
precision, potentially indicating a higher false positive rate or lower recall. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IV Apr 2025- Available at www.ijraset.com 
    

 1867 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

 
Fig. 18Precision-Recall Curve 

 
The confusion matrix shows that the model effectively classifies defects, with “with_clip” achieving the highest correct predictions 
(152). The “without_clip” class has 107 correct detections but also 28 misclassified as background, suggesting some detection 
challenges. The “crack” category is correctly identified 46 times but misclassified 9 times. Background misclassification is minimal, 
with only a few instances incorrectly labelled. Overall, the model performs well, though further optimization enhances the 
classification of subtle defects, as shown in Fig. 19. 

 
Fig. 19Confusion Matrix 

 
The normalized confusion matrix shows that the YOLOv8s model achieves high classification accuracy, with “with_clip” and 
“without_clip” categories correctly identified 99% of the time. The “crack” class has a slightly lower accuracy (96%), with 21% 
misclassified as background, indicating some false negatives. Background misclassification is minimal but present across 
categories, suggesting that subtle defects be harder to detect. Overall, the model performs well, with minor misclassifications that 
improved through enhanced feature extraction and confidence threshold tuning, as illustrated in Fig. 20. 
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Fig. 20Confusion Matrix Normalized 

 
Fig. 21 visualizes the training performance of the defect detection model by tracking key loss functions and evaluation metrics. The 
plots show box loss, classification loss, and DFL loss, which assess the model’s ability to localize and classify defects. Additionally, 
validation loss, precision, recall, and mAP curves at different IoU thresholds indicate the model’s detection performance. A 
decreasing trend in loss functions signifies improved learning, while increasing precision, recall, and mAP values demonstrates 
enhanced defect detection. Some fluctuations suggest that further fine-tuning optimize performance. 

 
Fig. 21 Training Curves 
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V. CONCLUSION 
The Railway Track Monitoring Tool integrates machine learning-based object detection with embedded hardware to develop an 
efficient real-time defect detection system. By focusing on cracks and missing fasteners, the system ensures precise and reliable 
railway infrastructure monitoring. The custom-welded prototype, designed using 3D modelling software, provided a controlled 
environment to evaluate defect detection and classification capabilities. The USB 1080p camera, integrated with Raspberry Pi 5, 
enabled continuous image acquisition and processing, while GPS-based fault mapping ensured accurate localization of detected 
defects. The SIM800C GSM module successfully transmitted fault notifications, allowing maintenance teams to respond promptly. 
The spam prevention mechanism minimized redundant alerts within a 50-meter radius, reducing unnecessary notifications and 
enhancing operational efficiency. By integrating AI-driven object detection with embedded hardware components including 
Raspberry Pi, GSM, GPS, and camera modules, this research presents a scalable and cost-effective solution for railway track 
monitoring. The prototype demonstrates the feasibility of real-time defect detection and automated alerting, contributing to 
enhanced railway safety and predictive maintenance. Future improvements include higher-resolution imaging, advanced deep 
learning models, and large-scale deployment on operational railway networks. The combination of deep learning, embedded 
electronics, and real-time monitoring establishes an innovative approach to railway infrastructure assessment. 
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