

12 III March 2024

https://doi.org/10.22214/ijraset.2024.58903

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

776 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Reconsidering Python Syntax to Enhance
Programming Productivity

Chengze Ye1, Zhuoyang Shen2, Yue Wu3, Pavel Loskot4

ZJU-UIUC Institute, Zhejiang University

Abstract: Data analytics plays a crucial role in today's society across various domains, driven by technological advancements
and exponential data growth. Handling large-scale data poses a challenge due to increased computational and storage
requirements. The heterogeneity of tasks in data analytics programming languages complicates integration and interaction,
necessitating effective cross-language integration for productivity and extended capabilities. This paper proposes a generalized
interpreter accepting various language syntaxes, primarily based on Python and MATLAB, with comparisons to R and Julia.
Findings reveal Python's beginner-friendly learning curve and rich resources, Julia's high-performance computing, MATLAB’s
numerical prowess and specialized toolbox, and Python and R's focus on flexibility. Both Python and R boast active
communities, while Python offers extensive portability, and Julia emphasizes interoperability. Despite syntactic differences, a
common interpreter offers flexibility and efficiency, benefiting developers by enabling language selection based on project needs.
Challenges can be mitigated through good design and technical solutions. Encouragement for research and innovation in
universal interpreter development fosters collaboration, enhancing opportunities in data analysis and scientific computing.
Active participation from developers and researchers is encouraged for continual improvement and advancement in the field.
Keywords: programming languages, language syntaxes, common interpreter, Python, MATLAB

I. INTRODUCTION
A. Background
The importance and wide range of applications of data analytics in today's society and in various fields has become more and more
evident. With the rapid development of technology and the explosion of data, data analytics has become a key tool for everything
from scientific research to business decision making. In today's world of high data processing demands, the field of data analytics is
faced with the challenge of handling large-scale data [1]. The size and complexity of large data sets may lead to increased
computation and storage requirements, and traditional compilers for data processing programs may become inefficient or infeasible.
The alienation of the tasks undertaken by the major data analytics programming languages is one of the reasons for the above
problems. The field of data analysis often involves the use of multiple programming languages and tools. Integration and interaction
between different languages can be challenging, including data format conversions, differences in syntax and semantics,
compatibility of libraries and functions, and so on. Effective cross-language integration is key to improving productivity and
expanding data analysis capabilities. And learning and adapting to new techniques and tools may require continuous learning and
updating of knowledge, which can be challenging for practitioners.

B. Objective
In this situation, the main goal of this paper is to propose a universal interpreter that accepts syntax of different languages [2]. This
multi-language interpreter is mainly based on the programming environment of Python and powerful algorithmic capabilities of
MATLAB. However, considering that R and Julia languages also have some unique features in their algorithms, we will make a
cross-sectional comparison and explore these four languages. We also explain why we choose to propose an interpreter that accepts
different syntaxes based on several reasons such as learning curve, computational speed, and community support.

C. Previous Literature
In a study, Šipek et al. introduce us to GraalVM, a high-performance multilingual virtual machine that supports the simultaneous
operation and interoperability of multiple programming languages [3]. GraalVM runs Java efficiently, and we can use multiple
languages simultaneously in this virtual machine, such as JavaScript, R, etc. GraalVM's main performance advantage of GraalVM
comes from its use of Graal compiler technology, which is a JIT (Just-In-Time) compiler that converts bytecode to machine code at
runtime and dynamically optimizes code execution to improve program execution efficiency.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

777 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

In summary, the emergence of GraalVM opens up new possibilities for multilingual development and interoperability. It provides
ideas and technical basis for realizing universal interpreters that can accept different grammars. At the same time, we can consider
utilizing high-performance compiler technology similar to GraalVM to improve the execution efficiency and performance of the
interpreter. This project provides a blueprint for our exploration of the feasibility of a multilingual compiler with data analysis as a
requirement.

D. Expected Results
Through the feasibility analysis of this study, we hope to provide people in the field of scientific computing and data analysis with a
comprehensive view of the characteristics of these four languages based and evaluate the feasibility of proposing a universal
interpreter that accepts syntax of different languages. This will provide users with a more flexible and economical choice of tools,
facilitate knowledge exchange and technical cooperation among programming languages, compensating for the shortcomings that
now arise from the independence of each language.

II. METHODOLOGY
A. Objective Setting
Based on the goal of this research: to reconsider the current dilemma of Python syntax in the field of data analytics and to enhance
programming productivity, we had a thorough discussion and finally decided to propose a multilingual integrated compiler in the
context of data analytics and to explore its feasibility in the context of current applications.

B. Literature Review
Based on our knowledge of the topic, we searched for relevant literature in the following directions: the background of the
application of data analytics and its current dilemmas; information on the syntactic environment, learning curve, and community
support of the languages (Python, MATLAB, R, Julia) that serve as the main tasks of data analytics; and information on previous
multilingual compilers.

C. Programming Language Comparisons
After the Literature review, we compare and analyse four commonly used languages for data analysis. The comparison dimensions
are Learning Curve, Speed of Computations, Community Support, Debugging Levels, Portability and Syntax.

D. Programmatic Statement
After comparing the languages, we propose some feasible programs and screen them. In this process, we emphasize the strengths
and weaknesses of different programming languages and aim to develop the design in a way that maximizes the strengths and
avoids the weaknesses. The selection of programs is based on the potential benefits, beneficiary groups, social impacts, etc. of
different programs.

III. DISCUSSION AND ANALYSIS
A. Learning Curve
The learning curve is the curve in which the time and effort required for the learning process changes as experience is gained. A flat
learning curve indicates relatively easy learning, and a steep one indicates relatively difficult learning.

Fig. 1 Python learning curve [4]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

778 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Python's learning curve is relatively gentle, making it suitable for beginners to get started quickly. The simple syntax and abundant
resources make the learning process relatively easy and enjoyable. Matlab has a steep learning curve and requires some time and
effort to master its unique syntax and tools. Julia has a steeper learning curve, but it has an intuitive and consistent syntax design, as
well as a wealth of learning resources and support. The R language is mainly used for statistical computation and graphing, and it
has a relatively gentle learning curve for data analysis tasks. However, for routine programming tasks, R may not be as intuitive as
other languages.

B. Speed of Computations
Different Python interpreters can have an impact on the speed of operation, e.g., CPython, PyPy, etc. Some data types (e.g., NumPy
arrays) operate faster than others. Choosing efficient algorithms and data structures can increase the speed of operations. In addition,
integration with GPUs can also speed up operations by utilizing their parallel computing power, especially in scientific computing
and machine learning [5].
MATLAB uses a Just-In-Time Compiler to convert MATLAB code to machine code to improve performance. Different versions of
MATLAB may have different compiler optimization strategies, which may affect computing speed. MATLAB provides many built-
in functions and toolboxes, some of which are highly optimized to provide fast numerical calculations and matrix operations. Use of
these built-in functions and toolboxes can result in high computational speed [6].
Julia uses Just-In-Time Compilation (JIT) technology to compile Julia code into native machine code in real-time for improved
performance. This compilation allows Julia to dynamically optimize code at runtime and is often comparable to statically compiled
languages. Julia supports multi-threading and parallel computing, allowing computational tasks to be parallelized to make better use
of multi-core processors and cluster resources [7].
R has packages dedicated to high-performance computing, such as data, table and dplyr, which provide faster data manipulation. It
also provides some parallel computing features, such as the parallel package and foreach package, which can be used to accelerate
computation using multi-core processors or clusters. The R language also supports accelerating task-specific computation by
compiling extension packages. For example, using the Rcpp package you can embed C++ code into R code to take advantage of the
performance benefits of C++ [8].
In summary, Python has an advantage in its extensive third-party library and tool support, such as NumPy and Pandas, as well as its
ability to integrate with other languages. Matlab has an advantage in its powerful numerical computation capabilities and toolkit for
specialized domains. Julia has an advantage in performance optimization and was designed initially to provide high-performance
computing. R has an advantage in statistical analysis and data processing with a rich set of statistical functions and extension
packages.
However, Python is limited by Global Interpreter Lock (GIL) for multi-threaded parallel computation, Matlab has a high cost of
commercial licensing, Julia has a relatively small ecosystem, and R may be weak in handling large-scale data and performance
optimization. Thus, when choosing a language to fit a particular need, one needs to weigh their strengths and weaknesses and make
decisions on a case-by-case basis.

C. Community Support
The data comparison of the most popular programming languages in 2022 had 71,547 people responding, with python at 48.07%,
Matlab at 4.1%, Julia at 1.53%, and R at 4.66% [9].

Fig. 2 The most popular programming language by 2022

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

779 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig. 3 different languages’ popularity by year [10]

By 2021, about 10 million developers worldwide will be using Python [11]. Python has a large ecosystem of third-party libraries
and tools, communities include various developer communities, and the python official website also provides detailed
documentation and tutorials. But as Python continues to evolve, new releases may introduce some incompatible changes, and the
quality and maintenance status of third-party libraries and tools may vary.
By 2020, MATLAB has more than 4 million users globally [12]. Matlab officially provides comprehensive and detailed
documentation and tutorials, and Matlab is supported by MathWorks, which provides commercial support and training services. But
compared to Python, Matlab is commercial software and requires the purchase of a license (cost about 6400 CNY per year) [13]. At
the same time Matlab may be less efficient when dealing with large scale data. Also, Matlab is closed source software which limits
its scalability.
As of 2020, Julia will be used by approximately 1.7million users worldwide [14]. Julia officially provides comprehensive and
detailed documentation and tutorials and has a rich open-source library and package manager. Julia's ecosystem and user community
is relatively small compared to Python and Matlab, and because Julia is relatively new, and some of the libraries and tools may not
be as well documented or as well-resourced as other languages.
There are now about 2 million R users worldwide who utilize thousands of open sources packages within the R ecosystem in 2016
[15]. CRAN (Comprehensive R Archive Network) is the official package repository for the R language, with a rich set of third-party
packages. R has a strong ecosystem in data science, and is a language focused on statistical analysis and graphical. But compared to
Python and Matlab, R has a steeper learning curve. Since R is an interpreted language, it may have performance issues when
working with large-scale data.
With a common interpreter, developers can take full advantage of Python's rich libraries and community, MATLAB’s powerful
numerical computation capabilities, R's focus on statistical analysis and graphing, and Julia's high-performance computing and ease
of use. In summary, creating a common interpreter that accepts different syntaxes can provide developers with a unified
development environment that integrates the strengths of various languages.

D. Debugging Levels
Python's debugging tools and levels are simple and easy to use, and provide detailed error information, which can help developers
quickly locate and fix problems. python provides a variety of debugging tools, such as PDB, PyCharm. Python is difficult to debug
complex problems, and developers may need a lot of time and workload to re-run the program to validate the fixes, and there is a
risk of leakage of debugging information [5].
Matlab provides an interactive debugging environment with a rich set of built-in debugging tools and functions that help to quickly
locate and solve problems. MATLAB’s debugging tools rely heavily on the graphical interface, and Matlab's debugging capabilities
are more limited compared to python. For beginners, Matlab debugging tools have a steeper learning curve [6].
The Julia debugger utilizes its dynamically typed and on-the-fly compilation features to provide efficient debugging functionality,
and also provides an interactive debugging environment based on the REPL (Read-Eval-Print Loop). Since Julia is a relatively new
programming language, its debugging tools and ecosystem may be relatively immature and unstable, while the learning curve is
steep and community support may be limited [7].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

780 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

R provides a rich set of debugging tools and functions, powerful data analysis and visualization capabilities, and a large user
community. R may face some challenges when dealing with complex problems, especially for large-scale data processing, and may
execute slower and have a steeper learning curve than python or Julia [8].
In summary, innovating a new interpreter that accepts different grammars can help to solve syntax transformation problems,
improve development efficiency, and facilitate code sharing and collaboration. However, achieving a unified interpreter requires
overcoming technical challenges and the complexity of unifying grammars, which requires a combination of factors to assess its
feasibility and value.

E. Portability
Python is a cross-platform programming language that is widely used in a variety of domains, and also provides virtual environment
management tools such as venv and conda. Python provides an integrated interface with the C/C++ language, which can be
extended with modules to improve performance and functionality. Although Python itself has good portability, there may be some
problems with compatibility of dependent libraries and modules [5].
Matlab also supports cross-platform, is widely used in a variety of fields, and provides a rich set of functions and toolboxes, but
some domain-specific applications may require additional third-party libraries and tool support. Matlab is commercial software, and
users are required to purchase a license to use it [6].
Julia is a cross-platform programming language with good interoperability with other programming languages such as Python,
Matlab, and R. Julia has an active open-source community that provides a wealth of third-party libraries and tools covering a wide
variety of domains and applications. Julia is relatively new, lacks some mature tools and libraries [7].
R is a cross-platform programming language with a wide range of applications in data analysis and statistical modelling. For
beginners, R may have a steeper learning curve. R's packages and libraries may sometimes have dependencies and version updates
may lead to incompatibility issues. This may require additional time and effort on the part of the user to manage and resolve
dependencies [8].
Despite the portability of each of these languages, there are still some challenges and limitations. These include license restrictions,
platform-specific dependencies, version compatibility, and performance issues. Based on these limitations, there are potential
advantages of innovating an interpreter that accepts different syntaxes, which can provide greater portability and cross-platform
compatibility, enabling developers to work more easily in different language environments. Such an interpreter may reduce the
learning curve for developers between switching and adapting to different languages and toolsets and increase development
efficiency, but it also faces a number of challenges and limitations.

F. Syntax Comparing

Table 1 shows the syntax analysis and comparison, we take four popular languages, Python, Matlab, Julia, and R, as examples.

 Python MATLAB Julia R
Module Modules or

libraries
#NumPy, Scipy,
Pandas…

Built-in functions and
toolboxes
User-defined
functions and scripts

Ecosystem of packages
User Expandable
Features

Ecosystem of packages
#Developed and
maintained by the R
community.

Assignmen
t operator

a = 3
a, b =3, 5

a = 3;
[a, b] = deal(3, 5)’

a = 3 a <- 3
a = 3

Integer/Flo
ating Point
Selection

Type: int, float Type: int, double Type: int, Float64 Type：integer, numeric
Automatically determined based on the value

Dynamic
type

Dynamic Dynamic Static Dynamic

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

781 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

String first_name =
"John"
last_name = "Doe"
full_name =
first_name + " " +
last_name
or use join()
full_name = '
'.join([first_name,
last_name])

first_name = 'John';
last_name = 'Doe';
full_name =
[first_name ' '
last_name];

first_name = "John"
last_name = "Doe"
full_name =
"$first_name
$last_name"
full_name = first_name
* " " * last_name

first_name <- 'John'
last_name <- 'Doe'
full_name <-
paste(first_name,
last_name, sep = " ")
full_name <-
paste0(first_name,
last_name)

Built-in
Boolean

types

Boolean type:
‘bool’
Value: ‘True’ and
‘False’
‘0’ for ‘False’ and
‘1’ for ‘True’

Boolean type: ‘logical’
Value: ‘true’ and
‘false’
‘0’ for ‘false’ and ‘1’
for ‘true’

Boolean type: ‘Bool’
Value: ‘ture’ and
‘false’
No direct correlation
with numbers

Boolean type: ‘logical’
Value: ‘TRUE’ and
‘FALSE’
‘0’ for ‘False’ and ‘1’ for
‘True’

Defining
Multidime

nsional
Arrays

Nested ‘lists’:
matrix = [[1, 2, 3],
[4, 5, 6], [7, 8, 9]]
The NumPy library
provides the
ndarray type to
create and
manipulate
multidimensional
arrays.

Direct use of square
brackets []:
matrix = [1, 2, 3; 4, 5,
6; 7, 8, 9]

Direct use of square
brackets []:
matrix = [1 2 3; 4 5 6;
7 8 9]

Using the ‘array’
function:
matrix <- array(c(1, 2, 3,
4, 5, 6, 7, 8, 9), dim =
c(3, 3))

String
(Slicing)

Substring =
string[start:end]

Strsplit(string,
delimiter)

Split(string,delimiter) Strsplit(string,delimiter)

String
(Indexing)

Char =
string[index]

Char = string (index) Char = string[index] Char = string[index]

Array
(Slicing)

Subarray =
array[strat:end]

Subarray =
array(start:end)

Subarray =
array[start:end]

Subarray =
array[start:end]

Array
(Indexing)

Element =
array[index]

Element = array(index) Element = array[index] Element = array[index]

Special
Operator

**: Power operator .*: Perform element-
by-element
multiplication of
matrices or arrays

^: Power operator ^: Power operator

//: Exact division
operator

./: Performs element-
by-element division of
a matrix or array.

÷: Exact division
operator

%%: Modal operator

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

782 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

@: Matrix
multiplication
operator

.^: The dot-power
operator

∘：Combining two
functions into a new
function

%*%：Performs
multiplication of
matrices

- @: Function handle
operator

@：Calling Macros %in%：Checks if an
element is in a vector or
list

Logical
Operator

and && && &&
or || || ||
not ~ ! !

{} Creating
dictionaries and
sets

Creating cell arrays Creating Dictionaries Creating functions or
control structures (e.g.,
code blocks)

[] Creates a list or
accesses elements
of a list.

Creates matrices,
vectors or accesses
elements in a
matrix/vector.

Create arrays, vectors
or accessing elements
of an array/vector

Used to access elements
in a vector, list or matrix.

() Function call,
operator priority,
creating tuple

Indicates a function
call, control operator
priority, or element in
an indexed
matrix/vector.

Indicates a function
call, controls operator
priority, or creates a list
of function arguments.

Indicates a function call,
controls operator
priority, or creates a list
of function arguments.

< > Indicates a generic
type or is used for
comparison
operators (e.g., less
than, greater than).

Indicates inequality or
is used to create
anonymous functions.

Indicates a generic type
or is used for
comparison operators
(e.g., less than, greater
than).

Indicates unequal
relationships or is used in
control structures (e.g.,
for loops, while loops).

Syntax
differences
in matrix

operations

import numpy as
np

Creating matrices
A = np.array([[1,
2], [3, 4]])
B = np.array([[5,
6], [7, 8]])

Matrix
multiplication
C = np.dot(A, B) #
or A @ B

Element-wise
operations
D = A + B
E = A - B
F = A * B #
element-wise
multiplication

% Creating matrices
A = [1, 2; 3, 4];
B = [5, 6; 7, 8];

% Matrix
multiplication
C = A * B;

% Element-wise
operations
D = A + B;
E = A - B;
F = A .* B; %
element-wise
multiplication

Creating matrices
A = [1 2; 3 4]
B = [5 6; 7 8]

Matrix multiplication
C = A * B

Element-wise
operations
D = A + B
E = A - B
F = A .* B # element-
wise multiplication

Creating matrices
A <- matrix(c(1, 2, 3, 4),
nrow=2, ncol=2)
B <- matrix(c(5, 6, 7, 8),
nrow=2, ncol=2)

Matrix multiplication
C <- A %*% B

Element-wise
operations
D <- A + B
E <- A - B
F <- A * B # element-
wise multiplication

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

783 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Process
control

Conditional
statements: if-elif-
else

Loops: for, while

Exception
handling: try-
except

Conditional statements:
if-else

Loops: for, while

Conditional statements:
If-else

Loops: for, while

Exception handling:
try-catch

Conditional statements:
If-else, switch

Loops: for, while

Exception handling: try-
catch

Ternary
operator

Ternary Operators:
Python has ternary
conditional
operators (also
known as ternary
expressions) with
the syntax
expression1 if
condition else
expression2, which
are used to select
two different
expressions to
execute based on a
condition.

:= (walrus
operator): You can
assign the value of
an expression to a
variable and use it
in a conditional
expression

- ? :: A ternary operator
used to select two
different expressions to
execute based on a
condition, with the
syntax condition ?
expression1 :
expression2.

->: Define an
anonymous function.

Special operators:
%in%: membership
operator, used to check if
an element is in a vector
or list.

%>%: pipeline operator
for conveniently
combining multiple
functions in a functional
programming style.

Circulate for:
for item in iterable:
 …

for:
for variable = range

…
end

for:
for variable in
collection

…
end

for:
for(variable in
sequence){

…
}

while:
while condition:

…

while:
while condition

…
end

while:
while condition

…
end

while:
while(condition){

…
}

parfor:
parfor variable =
range

…
end

- @simd:
@simd for variable in
collection

…
end

foreach:
library(foreach)
foreach(variable =
sequence) %do%
{

…
}

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

784 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Formatted
output

name = “John”
age = 25
print(“My name is
{} and I am {}
years
old.”.format(name,
age))

name = ‘John’;
age = 25;
fprintf(‘My name is %s
and I am %d years
old .\n, name, age);
%: My name is John
and I am 25 years old.

name = “John”
age = 25
println(“My name is
$name and I am $age
years old.”)

name <- “John”
age <- 25
sprint(“My name is %s
and I am %d years old.”,
name, age)

print(f “My name is
{name} and I am
{age} years old.”)

 # Formatting Strings
with the @printf Macro

@printf("My name
is %s and I am %d
years old.", name, age)

paste(“My name is”,
name, “and I am”, age,
“years old.”)

IV. CONCLUSIONS

By comparing the key points of four languages - Python, Matlab, Julia, and R - we came up with some important findings. First of
all, Python has an advantage in terms of learning curve, its concise syntax and rich resources make it possible for beginners to get
started quickly. Secondly, in terms of computational speed, Julia stands out with its high-performance computational capabilities,
Matlab has powerful numerical calculations and a toolbox for specialized domains, while Python and R focus on flexibility and
scalability. For community support, both Python and R have large and active communities that provide a wealth of resources and
developer exchanges. Regarding debugging levels, both Python and Matlab provide powerful debugging tools and levels. As for
portability, Python has extensive portability and third-party library support, while Julia focuses more on interoperability with other
languages. Finally, in terms of syntax, each language has its own unique features and advantages for different application scenarios.
Based on the analysis of these findings, we believe there is value in creating a common interpreter that accepts different syntaxes. It
would allow developers to choose different languages based on project needs, thus increasing development efficiency and flexibility.
Despite some challenges, such as syntactic differences, they can be overcome through sound design and technical solutions. We
look forward to more research and innovation to further advance the development of universal interpreters. This will promote
communication and cooperation among different languages and bring more opportunities and development potential to the field of
data analysis and scientific computing. Meanwhile, we also encourage developers and researchers to actively participate in the
development and improvement of the Universal Interpreter and contribute to the progress of this field.

V. ACKNOWLEDGMENT
This paper was completed under the guidance of Professor Loskot, and we would like to thank our tutor Professor Loskot.
Throughout our writing process, Professor Loskot gave us a lot of valuable advice. Professor Loskot has given us many valuable
suggestions throughout the whole writing process. From the first idea to the revision of the thesis, Professor Loskot has been
responsible for helping us to revise the thesis. We would like to take this opportunity to express our heartfelt thanks and respect for
the completion of the paper.

REFERENCES
[1] Tsai, CW., Lai, CF., Chao, HC. et al, “Big data analytics: a survey,” Journal of Big Data., vol.1, Oct. 2015.
[2] (2022) Interpreter (computing). [Online]. Available: https://en.wikipedia.org/wiki/Interpreter_(computing)
[3] M. Šipek, B. Mihaljević and A. Radovan, “Exploring Aspects of Polyglot High-Performance Virtual Machine GraalVM,” 42nd International Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, pp. 1671-1676, 2019.
[4] Dobiasd. (2014) Learning Curves (for different programming languages). [Online]. Available:

https://github.com/Dobiasd/articles/blob/master/programming_language_learning_curves.md#learning-curves-for-different-programming-languages
[5] (2023) The MathWorks website. [Online]. https://ww2.mathworks.cn/products/matlab.html
[6] (2023) Python 3.12.2 documentation. [Online]. https://docs.python.org/3/
[7] (2023) Julia 1.10 Documentation. [Online]. https://docs.julialang.org/en/v1/
[8] (2023) The R Project for Statistical Computing. [Online]. https://www.r-project.org/
[9] (2022) 2022 Developer Survey. [Online]. Available: https://survey.stackoverflow.co/2022#most-popular-technologies-language

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue III Mar 2024- Available at www.ijraset.com

785 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

[10] N. Gallinelli. (2021) What Programming Language Should I Learn? [Online]. Available: https://flatironschool.com/blog/what-programming-language-should-
i-learn/

[11] R. Daws. (2021) SlashData: JavaScript and Python boast largest developer communities. [Online]. Available: https://www.developer-
tech.com/news/2021/apr/27/slashdata-javascript-python-boast-largest-developer-communities/

[12] (2022) MATLAB. [Online]. Available: https://en.wikipedia.org/wiki/MATLAB
[13] (2023) MATLAB pricing-licensing. [Online]. https://ww2.mathworks.cn/pricing-licensing.html
[14] (2023) Does anyone know an estimated number of Julia users? [Online]. https://discourse.julialang.org/t/does-anyone-know-an-estimated-number-of-julia-

users/51711/4
[15] (2017) Is there a way to estimate the number of R users? [Online]. https://stackoverflow.com/questions/36529595/is-there-a-way-to-estimate-the-number-of-r-

users

