

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: IV Month of publication: April 2025

DOI: https://doi.org/10.22214/ijraset.2025.69917

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

Regenerative Braking System: Why is Energy Regeneration System Required?

Suyash Tripathi², Avanish Kumar Tiwari³, Samyak Jain⁴, Priyanshu Tomar⁵

I. INTRODUCTION

Our vehicle's Fundamental objective revolves around the incorporation of the Energy RegenerationSystem (ERS)designedtoenhance energy efficiency. The ERSfunctionsby capturing kinetic energy generated during braking and deceleration, effectively storing this energy in a high-capacity battery. Subsequently, the vehicle's powertrain converts this stored energy into electricalpowertorechargethebatterythroughthe ERS.Thisinnovativeapproachnotonlyconverges energy but also exemplifies the efficient transformationofenergyfromonestatetoanother.

Indeed, the ERS system plays a crucial role in preventing energy wastage. The ERS minimizes reliance on external energy by converting braking kinetic energy into electrical energy, enhancing efficiency and sustainability while reducing the need for external energy. This system helps make the vehicle more environmentally friendly.

II. CONCEPT AND TECHNICAL FEATURES

The heart of electric vehicles lies in the Brushless DC (BLDC) motor, which serves as the main control of the inverter. Regenerative braking, a mechanical innovation in electric vehicles, tackles the challenge of energy recovery during braking, excelling in stop-and-go scenarios. Distinguished from traditional braking systems reliant on friction, it captures, converts, and stores a significant portion of kinetic energy in batteries or supercapacitors, marking a significant leap in energy efficiency and sustainability.

In theworking principle BLDCmotors, the rotor, representing the rotating part, is a permanent magnet, while the stator, the fixed part, generates a stationary magnetic field. Controlled by adjusting current direction and magnitude, BLDC motors offer higher efficiency and durability, making them ideal for electric vehicles.

During acceleration, the current from the motor battery is reversed, and directed into the supply battery, enabling regenerative braking. Pulse Width Modulation (PWM) in independent switching is employed for effective brake control, maximizing energy recovery during the regenerative braking phase. The application of a PI controller in the current control mechanism ensures constant torque, and the entire setup facilitates regenerative braking through PWM control.

In conclusion, integrating BLDC motors and regenerative braking enhances the efficiency of electric vehicles and contributes significantly to sustainable transportation. This innovative approach, employing advanced motor control and regenerative braking systems, aligns with the evolving landscape of eco-friendly mobility solutions.

Fig.1 Represents Operational phase working of Electric Vehicle propulsion

A. Operational Phases of Electric Vehicle Propulsion

1) Acceleration

In the initial phase of operation, the electric vehicle undergoes acceleration, gradually reaching a steady speed determined by the applied torque. As the motor initiatesitswork,theremightbebriefcurrentspikesthat subsequentlydecrease. Positive current, conforming to standard conventions, is supplied from the battery to the motor during this phase, facilitating forward motion.

2) Braking

when During forward motion, the accelerator pedal released, the motor generates reverse torque, inducing aslowingeffectonthevehicle. This marks the activation theregenerative braking system, where theenergy producedduringbrakingchargesthebattery. Duetothe reversal in direction, the current flows back to the battery (acting like a generator) but with a negative sign. The motor initially accelerates under external input, and when braking is required, the regenerative system engages. Precise control of the braking operation is managed by a controller, in coordination with hall effect sensors for effective switching of the inverter/motor controller.

Electric vehicle dynamics encompass acceleration, with a positive current from the battery propelling themotor forward. Upon releasing the accelerator, regenerative braking engages, causing the motor togenerate reverse torque.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

This system, managed by acontroller and hall effect sensors, converts brakingenergy into a charge for the battery. The intricateinterplay of acceleration and regenerative braking optimizes efficiency, marking assustainable approach to electric vehicle performance and energy management.

Components Specifications:-

Battery:-It'sforStoringtheenergyrecovered During the regenerative braking.

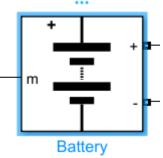


Fig1.1Battery Block

- ➤ NominalVoltage=48V
- ➤ InitialSoC%=100%
- ➤ Ratedcapacity=50Ah

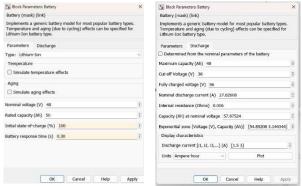


Fig1.2ParametersoverBattery

- Universal Bridge Block:-It is used for the fast switching.
- Basicallythisblocksconsistsoftwobasicvoltage boosting states such as
- Energizing
- Storingphase.

Currenthasbeenturneduptothebatterybybothof the diodes.

Universal Bridge

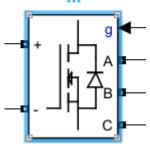
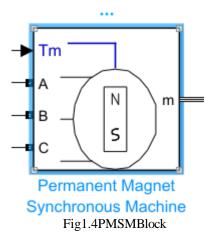



Fig1.3UniversalBridgeBlock

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

Motor:-

- InthisSystemthePMSMblockhasbeen used as a BLDC Motor.
- FortheFunctionthetworequiredinputsas Torque and angular Velocity.
- The Mechanical torque as an input is given in the PMSM Block.
- The Motor will be connected to the bus selectors.

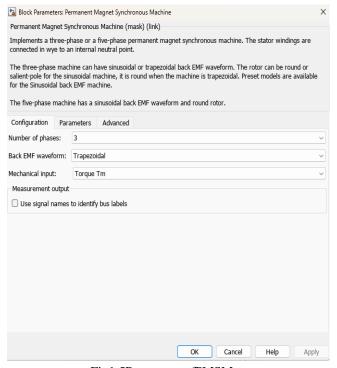


Fig1.5ParametersofPMSM

b) Controller:-

Thisisthecontrollerwhichwillbeusedinthesystem consisting of a hall sensor, rated speed, etc. SpecifiedModelInsideController:- Inputs in the Controller:-

- 3Hallsensorpoints
- ASpeedController

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

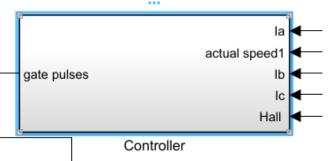


Fig1.6Controller

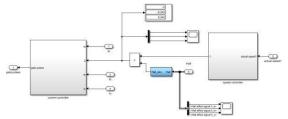
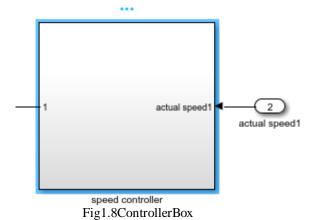
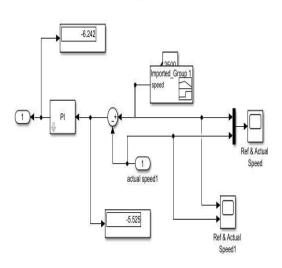




Fig1.7CircuitAnalysis

SpecifiedmodelunderspeedController:-

It uses PI Controller that compares the Command setuppointandtheactualvaluebasedonfeedback.

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

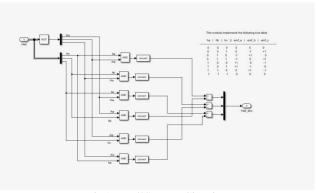


Fig1.9HallSensor Circuit

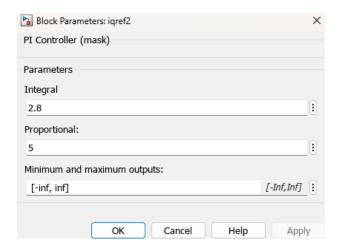


Fig1.10ParametersofPIController

The purpose of the hall sensor is to determine the rotorpositiontodetecttheenergizedwindingafterthe energizing sequence.

c) CurrentController:-

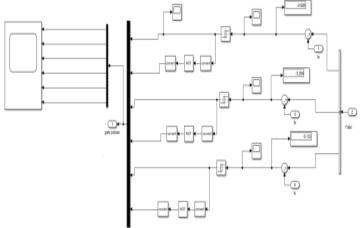
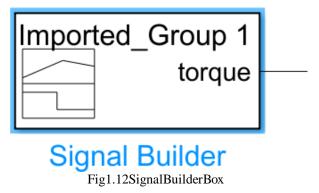


Fig1.11CurrentControllerCircuitDiagram


Theoutput of the whole controller block and it will be connected to the switching element MOSFET: the universal bridge block.

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

Concerning the torque of the brake pedal, a Simulinkfunctioncalledsignalbuilderwasused to generate torque values.

III. CALCULATION AND ANALYSIS TARGET

1) Specifications:-

Parameters	Estimates
Weight	220kg
Initialvelocity	35km/hr.
brakingForce	1100N
stoppingdistance	4m
Regenerationefficiency	56%
Energyconversion efficiency	80%

2) Calculations:-

Efficiency

KineticEnergy:-

Vin=35km/hr.

=9.72m/sec

KineticEnergy(initial)=1/2*m*V2(initial)

- =1/2*220*(9.72)2
- =10392.624J
- WorkDoneDuringBraking:-

W=BrakingForce*StoppingDistance

- =1100*4
- =4400J
- EnergyRegenerated:-

 $Energy Regenerated = Work Done During\ Braking*Regeneration\ Efficiency$

- =4400*0.56
- =2464J
- EnergyConvertedtoBattery: -

 $Energy to battery = Energy Regenerated * Energy Conversion \ Efficiency \\$

3696*0.80

1379.8J

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

StateofchargeChange:-

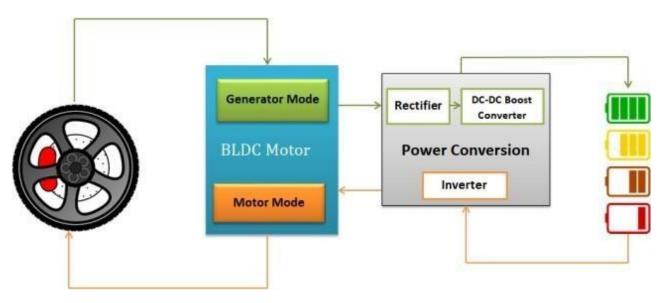
Stateofchargechange=Energyofbattery/Battery Capacity

BatteryCapacity=50Ah

SOCchange=1379.8/50

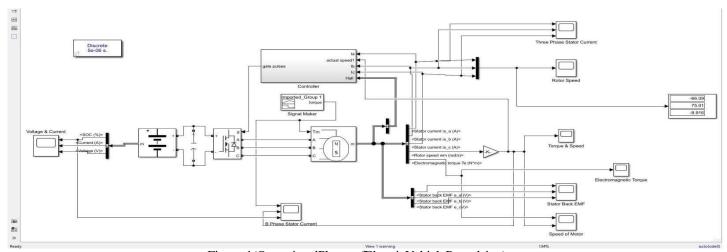
=27.59

Deceleration


 $(d)=[V^2(final)-V^2(initial)]/2(StoppingDistance)$

 $=0-(9.72)^2/2(4)$

=-94.4784/8


=11.8098m/sec²

IV. APPENDIX-1: DESIGN VIEWS AND PHOTOGRAPHS

A. Circuit Analysis:-

ThreePhaseStatorCurrent:-

 $Figure \hbox{-} 1 (Operational Phases of Electric Vehicle Propulsion) \\$

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

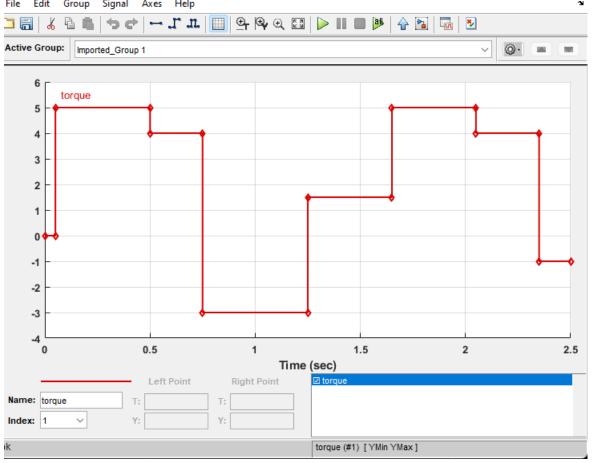


Figure-2(TorqueGenerated)

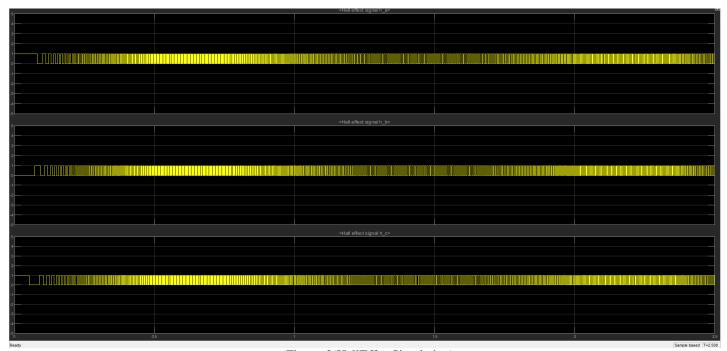


Figure-3(HallEffectSimulation)

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

Figure-4(SwitchScopeSimulation)

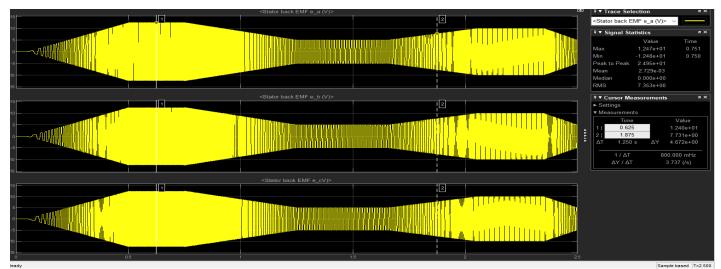


Figure-5(StatorBackemfSimulation)

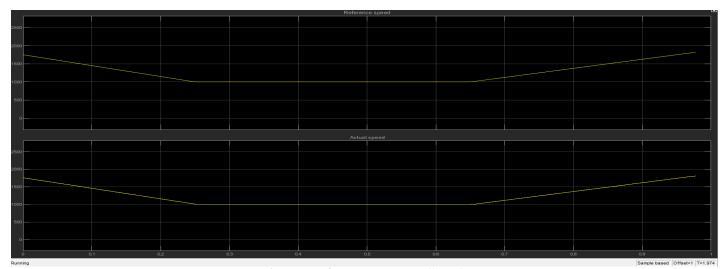


Figure-6(ReferenceVsMeasuredSpeed)

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

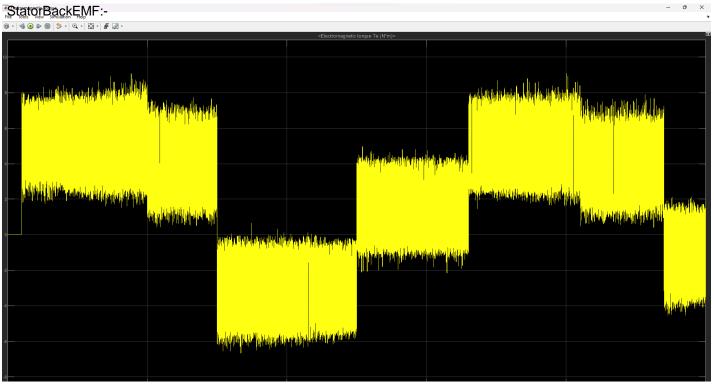


Figure-7(ElectromagneticTorque)

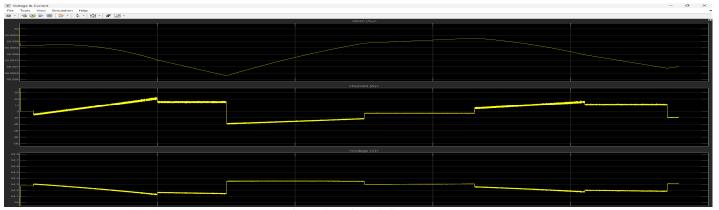


Figure-8(Voltage&Current)

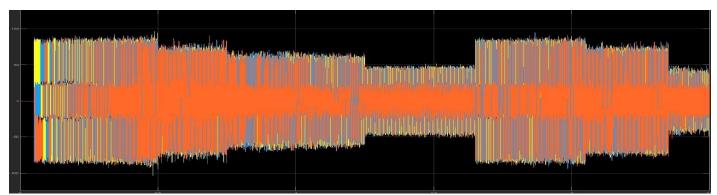


Figure-9(SpeedofMotor)

Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

V. SOLAR PANEL REGENERATION SYSTEM

The system operates by converting solar energy into electrical power, regulating it through a solar charge controller. This controlled power is the nutilized to charge as econdary battery while also supplying power to a connected load. The solar charge controller plays a pivotal role in adjusting voltage and current to meet the specific requirements of the battery and load.

B. Circuit Diagram

- 1) System Overview and Features:
- The solar charge controller is designed to handle a maximum power of 395 W.
- Amonocrystallinesolarpanelisemployed, capable of generating power invarying weather conditions.
- Notably, the controller features a digital display for monitoring the status of all subsystems.
- Additionally, the controller is programmed to cease power supply to the battery when it reaches full charge.
- 2) CalculationsandSolarPanelSizeSelection:
- SecondaryBattery:12V15Ahlead-acidtype
- SolarPanel:100W
- SolarChargeControllerMaxPower:390W
- PowerUsed:93W

3) Calculations:

- MaximumPowerDrawnfromBattery(Md):92.76W(7.73A)
- MaximumPowerfromSolarPanel(Ms):100W(8.3A)
- MaximumPower/CapacityoftheBattery(Mb):180Wh(15A)
- BatteryAhRating:15Ah
- RuntimewithoutCharging:1.9hours(1hour45minutes)
- TimeRequiredtoChargetheBattery:1.8hours(1hour40minutes)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue IV Apr 2025- Available at www.ijraset.com

4) AdditionalComments:

- Itisessentialtoensurethattheselected solar panelsizemeetsthepower requirementsadequatelyfor effective battery charging.
- $\bullet \quad The calculations of fer valuable in sight sint osystem per formance under specified conditions.\\$
- Environmentalfactorsandpotentialvariationsinsolar radiationshouldbeconsideredduringthesystem's design and installation.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)