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Abstract: This paper proposes a reinforcement learning (RL) framework for energy-optimal Unmanned Aerial \Vehicle (UAV)
trajectory planning. Unlike classical PID or graph-based planners, the proposed design explicitly incorporates physics-informed
energy models into the reward structure. We formulate the trajectory generation problem as a Markov Decision Process (MDP)
to minimize propulsion power consumption while maintaining flight stability. A theoretical comparative analysis suggests that
this data-driven approach can overcome the limitations of static path planning by adapting to environmental disturbances such
as wind. This framework provides a foundation for future empirical validation of energy-efficient autonomous flight.
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L. INTRODUCTION
Unmanned Aerial Vehicles (UAVS) are increasingly used in applications such as aerial delivery, surveillance, and inspection, where
energy efficiency directly limits mission range and duration. For battery-powered UAVS, inefficient trajectory planning can
significantly reduce operational endurance, even when flight stability and feasibility are maintained.
Traditional UAV trajectory planning and control methods—including PID-based control, graph-based planners such as A*, and
Model Predictive Control (MPC)—typically rely on predefined objectives and deterministic system models. While effective in
structured environments, these approaches often exhibit limited adaptability in the presence of wind disturbances, dynamic
constraints, or nonlinear flight dynamics. In addition, many classical planners optimize surrogate objectives such as distance or time
rather than explicit energy consumption.
Reinforcement learning (RL) has emerged as a promising approach for autonomous control in complex and uncertain environments.
By learning control policies through interaction with the environment, RL-based methods can adapt to disturbances and nonlinear
dynamics without requiring exact analytical solutions. Recent studies have applied RL to UAV navigation and trajectory planning;
however, much of this work focuses on mission completion, path length, or communication-related objectives, while simplifying or
neglecting the physical factors governing energy usage.
From a mechanical and aerospace engineering standpoint, UAV energy consumption is strongly influenced by aerodynamic drag,
velocity profiles, acceleration behavior, and battery discharge characteristics. Trajectory optimization methods that do not account
for these effects may yield dynamically feasible but energetically inefficient solutions. This motivates the integration of
reinforcement learning with physics-informed energy modeling.
In this paper, we present a reinforcement learning—based framework for energy-optimal UAV trajectory planning. A simplified but
physics-informed flight and energy model is incorporated into the learning environment. Continuous-control reinforcement learning
algorithms are used to minimize total energy consumption while maintaining stable and feasible flight. The proposed approach is
evaluated against classical planning and control methods, and is expected to improve energy efficiency and robustness under wind
disturbances, based on trends reported in prior studies.

1. RELATED WORK
UAV trajectory planning has traditionally been addressed using deterministic optimization and control techniques, including graph-
based planners, optimal control formulations, and Model Predictive Control (MPC) [1]. These methods provide strong guarantees
under known dynamics and constraints but typically require accurate models and exhibit limited flexibility in dynamic or uncertain
environments. Energy-aware trajectory optimization has also been studied using analytical propulsion and energy models; however,
such approaches often rely on simplified assumptions and offline computation [2].
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Reinforcement learning has been increasingly applied to UAV navigation and control due to its ability to handle high-dimensional
decision spaces and environmental uncertainty [3]. Early works employed discrete reinforcement learning methods, such as Q-
learning, for UAV path planning in unknown or partially observable environments [3]. More recent studies have applied deep
reinforcement learning to optimize UAV trajectories for objectives such as coverage, data collection, and communication
throughput, particularly in UAV-assisted wireless and sensing systems [4][5].

Despite these advances, explicit energy optimization remains underexplored in RL-based UAV trajectory planning. Many existing
methods optimize distance, time, or throughput as proxies for energy consumption and rely on simplified motion models that do not
adequately capture aerodynamic or propulsion effects [4][5]. Furthermore, comparisons with classical engineering controllers are
often limited, making it difficult to assess practical performance gains relative to established optimization and control techniques
[1].

This work builds upon prior RL-based UAV trajectory planning research by explicitly incorporating energy-related physical
considerations into the learning framework and benchmarking performance against classical control and planning methods. The goal
is not to replace established controllers, but to evaluate whether physics-informed reinforcement learning can offer meaningful
energy efficiency advantages in dynamic flight conditions.

1. UAV SYSTEM AND ENERGY MODEL
This section describes the UAV motion and energy consumption model used in the trajectory planning framework. The objective is
not to capture all aerodynamic effects in full fidelity, but to incorporate the dominant physical factors influencing energy usage
during flight, as commonly adopted in energy-aware UAV trajectory optimization studies [7][8].

A. UAV Kinematic Model

The UAV is modeled as a point-mass system operating in three-dimensional space. Similar simplified kinematic representations are
widely used in UAV trajectory optimization and control literature due to their computational efficiency and suitability for high-level
planning [7][9]. The state of the UAV at time step tis defined as

St =[xt Yo 2, ve]

where (x,'y, z,)denotes the UAV position and v,represents its translational velocity magnitude. The control input consists of
acceleration and heading adjustments, resulting in continuous motion dynamics.

The UAV state evolves according to discrete-time kinematic equations:

Pre1 = Pr T VAL
Vi =V, +a At

where p;, v;, and a,represent position, velocity, and acceleration vectors, respectively. Velocity and acceleration are constrained
within feasible flight limits to ensure stable and physically realizable UAV motion [10].

B. Aerodynamic Drag and Propulsion Power
The dominant aerodynamic force acting on the UAV during forward flight is modeled as drag:

F,= 1pCdsz
2

where pis air density, Cis the drag coefficient, Ais the reference area, and vis the UAV velocity magnitude. This drag formulation is
commonly used in UAV energy modeling and has been validated in both analytical and experimental studies [7][11].

The propulsion power required to overcome aerodynamic drag and maintain flight is approximated as a function of velocity:
P(v) = Phover + klvz + k2v3
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Fig. 1: Propulsion power consumption versus speed V for rotary-wing UAV.[7]

where B, represents the baseline power required for lift generation, and the coefficients k;and k,capture velocity-dependent
aerodynamic and parasitic losses. Similar propulsion power models have been widely adopted in recent UAV energy-efficiency
studies, demonstrating their effectiveness in capturing the dominant trends in power consumption during forward flight [7][8][12].

C. Energy Consumption Model
Total energy consumption over a mission duration Tis computed as the integral of propulsion power over time:

T
E= f P(v(t)) dt
0
In discrete form, energy usage is accumulated at each time step as:

T
E = Z P(v,)At
t=0

This formulation directly links trajectory shape, velocity profile, and acceleration behavior to total mission energy. Such energy

integration approaches are standard in energy-aware UAV trajectory planning and enable direct optimization of flight efficiency
through control and trajectory design [7][8][11].

V. PROBLEM FORMULATION
The objective of this work is to compute a UAV trajectory that minimizes total energy consumption while satisfying flight feasibility
and mission constraints [7][8]. In practical UAV systems, energy consumption is influenced not only by deterministic propulsion
dynamics but also by stochastic factors such as wind disturbances, transient battery behavior, and nonlinear aerodynamic effects.

Consequently, energy-optimal trajectory planning is naturally posed as a sequential decision-making problem under uncertainty,
where control actions affect both immediate propulsion cost and long-term mission feasibility.

A. Energy-Optimal Trajectory Objective
The energy-optimal trajectory planning problem is formulated as

Subject to:
e UAV kinematic dynamics
e \locity and acceleration limits
e Mission completion constraints
e Environmental disturbances (e.g., wind)
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Here, P(v,)denotes the propulsion power required at velocity v,, and the expectation operator captures uncertainty arising from
environmental disturbances and energy variability during flight. This objective directly minimizes total propulsion energy over the
mission horizon, explicitly linking trajectory shape, velocity profile, and acceleration behavior to energy expenditure [7][11].

While such formulations are common in energy-aware UAV planning, they become difficult to solve using classical deterministic
optimization methods when system dynamics are nonlinear and disturbances are time-varying. As a result, traditional approaches
often rely on simplified models or frequent replanning, which may degrade performance in dynamic environments [10]. Prior work
on battery-constrained UAV systems has shown that stochastic modeling of energy evolution is essential for realistic long-horizon
optimization, motivating the use of decision-theoretic formulations rather than purely deterministic solvers [25].

B. Markov Decision Process Formulation
To address the stochastic and long-horizon nature of energy consumption, the trajectory planning problem is cast as a Markov
Decision Process (MDP), defined by the tuple

S APR)

where:
e  State space S; = [x;,v;,e;]includes UAV position x,, velocity v,, and an implicit energy state e,
e Action space Aconsists of continuous acceleration and heading commands
e Transition model Pcaptures physics-based kinematic updates and stochastic energy evolution
o Reward function Rencodes energy efficiency and flight smoothness
Although the energy state e,is not explicitly discretized, its evolution is implicitly governed by propulsion power consumption and
control actions. This formulation is consistent with prior work on battery-aware UAV autonomy, where energy or battery levels are
treated as stochastic state variables that influence future decision feasibility and long-term performance. In particular, Markov and
semi-Markov decision process formulations have been shown to effectively model energy-dependent UAV systems by capturing
state-dependent cost accumulation and long-horizon optimization objectives [25].
Under this formulation, the optimal value function satisfies the Bellman optimality condition

V*(se) = maxE[r, +yV*(see1) | 5¢,acl,

at€A

where y € (0,1]is a discount factor that balances immediate propulsion cost against future energy feasibility. This Bellman structure
establishes a direct connection between energy-optimal trajectory planning and stochastic optimal control principles commonly used
in energy-aware UAV decision-making [13][12][25].
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Fig. 2: Implementation of SMDP[25]
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C. Energy-Aware Reward Design
The immediate reward at time step tis defined as
. =—aP(w,) =B Il a, 1=y Il Av, |12,

where:

e P(v,)penalizes instantaneous propulsion energy consumption

e |l a, lI*discourages aggressive control actions

e |l Av, lI*promotes smooth velocity transitions
A terminal reward is added upon successful mission completion to ensure feasibility [9].
This reward structure balances energy efficiency with stable and smooth flight behavior, preventing oscillatory or energetically
inefficient maneuvers. Similar reward-shaping principles have been shown to be critical in battery-aware Markov and semi-Markov
UAV decision processes, where improperly structured rewards can lead to energetically unsafe or myopic behavior. Prior SMDP-
based studies demonstrate that energy-centric reward design is essential for sustaining long-term operational efficiency under energy
constraints [25].
From an optimal control perspective, the cumulative discounted reward

5]

approximates a stochastic long-horizon energy minimization objective with implicit smoothness regularization [7]. Reinforcement
learning is therefore employed as a numerical solver for this nonlinear stochastic control problem, extending classical energy-
optimal trajectory optimization into regimes where uncertainty and long-term energy effects play a dominant role [13][15].

V. REINFORCEMENT LEARNING FRAMEWORK

This section describes the reinforcement learning (RL) framework used to numerically solve the energy-optimal UAV trajectory
planning problem formulated in Section 4. The resulting problem corresponds to a continuous-state, continuous-action stochastic
optimal control problem with nonlinear dynamics and environmental uncertainty. Reinforcement learning is employed as a model-
free numerical control strategy capable of handling such complexity, where classical analytical or deterministic optimization
methods become impractical [13][12].

Recent advances in policy-gradient and actor—critic reinforcement learning have demonstrated that continuous-control RL methods
can learn stable and robust UAV flight policies in physics-based environments, even under significant wind disturbances and
nonlinear dynamics. In particular, Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) have been shown to outperform
classical controllers in disturbance-prone flight scenarios, motivating their use in this work [16][17][26].

A. Continuous-Control Policy Learning

Given the continuous nature of UAV motion and control inputs, continuous-action reinforcement learning algorithms are adopted.
Policy-gradient-based actor—critic methods are particularly suitable for such problems due to their stability, scalability, and ability to
operate directly in high-dimensional continuous state—action spaces [16][17].

Specifically, Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) are considered. PPO achieves stable learning through
clipped surrogate objectives that prevent overly large policy updates, while SAC incorporates entropy regularization to encourage
exploration and robustness under stochastic dynamics [16][17]. Both algorithms eliminate the need for action discretization and
enable smooth, physically realizable control outputs. The policy network parameterizes a stochastic control policy m(a, | s;)that
maps the UAV state s,to a control action a,, while a value function (or critic) estimates the expected cumulative return associated
with each state or state—action pair. Policy parameters are updated iteratively based on observed state transitions and rewards.
Similar actor—critic architectures have been shown to effectively learn stable UAV flight controllers under nonlinear dynamics and
wind disturbances [26].

B. Physics-Informed Learning Environment

The learning environment explicitly incorporates the UAV kinematic and energy models described in Section 3. State transitions are
governed by physics-based motion equations, while energy consumption is computed using the propulsion power model
P(v)[7][11]. This ensures that the learned policy remains physically consistent and directly optimizes energy-relevant behavior
rather than exploiting unphysical dynamics.
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Wind disturbances are modeled as stochastic external velocity perturbations applied to the UAV dynamics. Training under such
disturbances enables the learned policy to adapt to environmental uncertainty, improving robustness and generalization during
evaluation [12][18]. Prior work has shown that training reinforcement learning controllers in physics-based UAV environments with
realistic wind models significantly improves closed-loop stability and disturbance rejection compared to classical control
approaches [26].

Importantly, no prior knowledge of the optimal trajectory is provided to the agent. The policy is learned solely through interaction
with the environment and energy-aware rewards, allowing the agent to autonomously discover efficient flight behaviors.

C. Training Objective and Energy-Aware Learning
The reinforcement learning objective is to maximize the expected cumulative reward

T
max E;, [Z rtl ,
T
t=0

where the reward function ris defined in Section 4.3. Since the reward explicitly penalizes propulsion power consumption and
aggressive maneuvers, maximizing expected return corresponds to minimizing total mission energy while maintaining feasible and
stable flight behavior [12][14].

Energy-aware reinforcement learning has been shown to be an effective mechanism for inducing energy-efficient behavior in
autonomous UAV systems by embedding battery state and energy expenditure directly into the learning objective. Prior studies on
energy-aware UAV path planning demonstrate that reward functions incorporating power consumption and battery dynamics enable
RL agents to implicitly optimize mission energy efficiency under stochastic wind conditions, even without explicit trajectory
supervision [27].

Training is conducted over multiple episodes, each representing a complete UAV mission from an initial position to a target
destination. Episodes terminate upon successful mission completion or violation of flight constraints, ensuring both energy
efficiency and safety. Similar episodic training frameworks have been successfully applied to learn robust and energy-efficient UAV
control and planning policies using reinforcement learning in disturbance-prone environments [26][27].
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Fig. 3: Working of airspeed and altitude controller. [19]

VI. BASELINE CONTROLLERS
To assess the practical effectiveness of the proposed reinforcement learning approach, its performance is compared against several
classical trajectory planning and control methods commonly used in UAV systems. These baselines serve as engineering reference
points rather than adversarial competitors and provide context for evaluating energy efficiency, trajectory smoothness, and
robustness under identical operating conditions [16][17]. Importantly, none of the baseline controllers explicitly optimize propulsion
energy as a first-class objective, making them suitable reference methods for highlighting the benefits of the proposed energy-aware
learning framework.
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A. PID-Based Trajectory Tracking

A proportional-integral-derivative (PID) controller is implemented for trajectory tracking. A reference path is generated between
the start and target locations, and the PID controller regulates position and velocity errors along this path using fixed gain
parameters. PID control is widely adopted in UAV systems due to its simplicity, reliability, and ease of implementation [19].
However, PID control does not explicitly account for energy consumption and lacks the ability to adapt to environmental
disturbances beyond manual gain tuning. As a result, PID-based control often leads to oscillatory corrections and inefficient energy
usage due to frequent acceleration transients, particularly under wind disturbances or nonlinear dynamics [20].

B. Graph-Based Path Planning (A*)

The A* algorithm is employed to compute a collision-free shortest path in a discretized environment. The resulting path minimizes
geometric distance between the start and goal locations based on a predefined heuristic, and the UAV follows the planned path using
a low-level controller. While A* provides efficient and deterministic path planning in static environments, it optimizes path length
rather than energy consumption and does not adapt online to environmental disturbances such as wind [21]. Consequently, A*-based
planning may yield trajectories that are suboptimal from an energy perspective when executed in dynamic conditions.

C. Model Predictive Control (MPC)

Model Predictive Control (MPC) is implemented using the UAV kinematic model with finite-horizon optimization. At each time
step, MPC solves a constrained optimization problem to minimize a cost function related to tracking error and control effort while
explicitly enforcing system constraints. MPC provides strong performance when accurate system models are available and
disturbances are well characterized [10]. However, its computational cost increases with model complexity and prediction horizon,
and its performance may degrade under unmodeled disturbances or modeling inaccuracies [22]. In contrast, reinforcement learning
policies amortize computation into offline training, enabling real-time control with implicit adaptation to disturbances without
repeated online optimization.

VII. EVALUATION FRAMEWORK AND EXPERIMENTAL SETUP
This section describes a reference-consistent evaluation framework used to assess the proposed energy-optimal UAV trajectory
planning approach. Rather than reporting new empirical results, the evaluation setup is presented to reflect standard experimental
practices widely adopted in prior reinforcement learning—based UAV control and trajectory planning studies. The framework
provides a consistent basis for qualitative comparison, analysis of expected performance trends, and benchmarking against classical
baseline controllers under identical operating assumptions [16][17].
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A. Simulation Environment

Evaluation is considered within a physics-based simulation framework consistent with environments commonly used in UAV
trajectory planning and control research [23]. The simulated environment models UAV kinematics, velocity-dependent propulsion
power consumption, and external disturbances, as described in Section 3. Such simulation-based environments are widely employed
in the literature to study energy-aware control policies under controlled and repeatable conditions.

The UAV is assumed to operate in a two-dimensional planar workspace with fixed initial and target locations. Obstacles are either
absent or static, ensuring that differences in performance arise primarily from control and planning strategies rather than collision
avoidance complexity. This setup aligns with standard practice in prior studies focused on energy efficiency and control robustness
rather than obstacle-dense navigation.

at 40 ft with speed
40 fs

Orbit Leg: Orbit at
height of 50 ft with

Upward Leg: radius of 120 ft

Ascend to 40

201t

400 : o9 [;escen: teg:
e
a0 2 e Loiter Leg: Loiter
el towards home
h N with transition
g 0“6‘,06“0 circle of 120 ft
0 L)
- oo %
gty
- o
% - g«::“&aﬂ

“Landing
Strip

Fig. 5: Representative simulation trajectory evaluating complex maneuvering and energy optimization.[19]

B. Wind Disturbance Model

Environmental disturbances are modeled following common practice in UAV simulation studies by introducing stochastic wind
velocity components into the UAV dynamics [18]. Wind is treated as an additive velocity perturbation applied to the translational
motion model, with magnitude and direction varying over time within predefined bounds.

Wind magnitudes up to 10 m/s are considered to represent moderate-to-strong gust conditions encountered in outdoor UAV
operations, rather than nominal cruise conditions. This disturbance modeling approach is consistent with prior reinforcement
learning and control-based UAV evaluations and enables assessment of robustness and adaptability under non-ideal environmental
conditions.

C. Training and Evaluation Protocol

Reinforcement learning policies are conceptually trained using episodic interaction with the simulated environment, following
standard training procedures reported in prior work on continuous-control UAV reinforcement learning [16][17][26]. During
training, policies interact with the environment by observing the UAV state, selecting continuous control actions, and receiving
energy-aware rewards as defined in Section 4.3.

Training is assumed to proceed over multiple episodes until policy behavior stabilizes, consistent with commonly reported
convergence criteria in the literature. After convergence, policy evaluation is conducted deterministically, with stochastic
exploration disabled, in order to assess steady-state control behavior and trajectory characteristics. This evaluation protocol mirrors
established practices used to compare reinforcement learning controllers with classical baselines under controlled conditions.
Baseline controllers, including PID-based trajectory tracking, A* path planning with low-level control, and Model Predictive
Control (MPC), are evaluated under identical environmental assumptions to ensure fair qualitative comparison.

D. Evaluation Metrics

Performance evaluation is structured around metrics commonly used in energy-aware UAV trajectory planning studies. These
include total mission energy consumption, trajectory smoothness, and robustness to environmental disturbances. Total energy
consumption is computed as the time integral of propulsion power along the executed trajectory, directly reflecting the optimization
objective defined in Section 4.1.

Trajectory smoothness is assessed qualitatively based on velocity and acceleration profiles, with smoother trajectories corresponding
to reduced control oscillations and lower transient power demand. Robustness is evaluated by examining the ability of control
strategies to maintain stable flight behavior and mission completion under increasing wind disturbance levels.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Together, these metrics provide a comprehensive basis for analyzing expected performance trends and trade-offs among different
control and planning approaches within an energy-aware UAV trajectory optimization context.

VIIl. THEORETICAL PERFORMANCE ANALYSIS
This section presents a qualitative and reference-consistent analysis of expected performance trends for the proposed energy-aware
reinforcement learning framework in comparison with classical baseline controllers. Rather than reporting new experimental
measurements, the discussion synthesizes results and observations commonly reported in prior UAV control and trajectory planning
studies and interprets them in the context of the proposed formulation and evaluation framework.

A. Energy Consumption Trends

Prior studies on energy-aware reinforcement learning for UAV trajectory planning consistently report that policies trained with
propulsion power—based rewards achieve lower total mission energy consumption compared to classical controllers that optimize
geometric distance or tracking error alone [12][14][26][38]. These reductions are primarily attributed to the ability of reinforcement
learning policies to jointly optimize velocity profiles and trajectory shape, rather than strictly following predefined paths.

In contrast, PID-based trajectory tracking typically prioritizes error minimization without explicit consideration of energy usage,
leading to frequent acceleration corrections and higher transient power demand. Similarly, graph-based planners such as A*
minimize path length but may produce trajectories with sharp turns or abrupt heading changes, which can increase propulsion
energy when executed by a physical UAV.

Model Predictive Control (MPC) can incorporate control effort penalties and enforce system constraints; however, its performance
is sensitive to model accuracy and horizon selection. As reported in the literature, reinforcement learning approaches often
demonstrate comparable or improved energy efficiency relative to MPC when operating under unmodeled disturbances, due to their
ability to adapt control behavior through interaction rather than relying solely on explicit model predictions.

B. Trajectory Smoothness and Control Behavior

Trajectory smoothness is closely linked to energy efficiency and flight stability in UAV systems. Energy-aware reinforcement
learning formulations that penalize aggressive maneuvers tend to produce smoother velocity and acceleration profiles, as observed
in multiple prior studies [12][26][38]. By explicitly discouraging abrupt control inputs, such policies reduce oscillatory behavior and
mitigate excessive power spikes.

In comparison, PID controllers frequently exhibit oscillatory corrections when responding to disturbances or tracking errors,
particularly under wind conditions. A*-based planning produces piecewise-linear paths that, when executed by a low-level
controller, may result in abrupt velocity changes at waypoints. MPC generally achieves smoother trajectories than PID and A*, but
its smoothness is dependent on cost function design and prediction horizon length.

Overall, the literature suggests that reinforcement learning approaches with smoothness-regularized reward functions provide a
favorable balance between responsiveness and energy-efficient control behavior.

C. Robustness to Wind Disturbances

Robustness to environmental disturbances is a critical requirement for practical UAV deployment. Prior reinforcement learning
studies demonstrate that policies trained in the presence of stochastic wind disturbances exhibit improved disturbance rejection and
stability compared to classical controllers tuned for nominal conditions [18][26]. Exposure to wind variability during training
enables RL policies to learn adaptive responses that generalize across a range of disturbance magnitudes.

PID controllers, in contrast, require manual re-tuning to accommodate changing wind conditions and may suffer from degraded
performance under strong or rapidly varying disturbances. A* planners lack online adaptability once a path is generated, while MPC
performance may deteriorate under unmodeled or rapidly changing disturbances due to reliance on predictive models.

The reported trends in the literature indicate that reinforcement learning—based controllers maintain stable flight behavior and
mission feasibility under moderate-to-strong wind conditions more consistently than classical baselines, particularly when trained
with stochastic disturbance models.

D. Summary of Comparative Insights
Taken together, the comparative analysis suggests that reinforcement learning—based trajectory planning frameworks are well suited
for energy-aware UAV operation in dynamic environments.
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By directly incorporating propulsion energy and smoothness considerations into the learning objective, RL approaches address
limitations inherent to classical controllers that optimize surrogate objectives such as distance or tracking error.

While classical methods such as PID, A*, and MPC remain valuable engineering tools with well-understood properties, the
literature indicates that energy-aware reinforcement learning offers a flexible and scalable alternative for complex operating
conditions where energy efficiency and robustness are critical.

IX. DISCUSSION AND LIMITATIONS
This work presents an energy-aware reinforcement learning framework for UAV trajectory planning, synthesizing concepts from
optimal control, physics-based modeling, and reinforcement learning. The discussion below interprets the proposed formulation and
the comparative trends reported in the literature, while also outlining key limitations and directions for future research.
A primary strength of the proposed framework lies in its explicit treatment of propulsion energy as a first-class optimization
objective. By directly linking control actions and velocity profiles to energy consumption, the formulation addresses a fundamental
limitation of classical trajectory planning and control methods, which typically optimize surrogate objectives such as path length or
tracking error. Prior studies indicate that such energy-aware formulations enable reinforcement learning policies to discover
smoother and more efficient flight behaviors in dynamic environments.
The use of continuous-control reinforcement learning further distinguishes the proposed approach from earlier discrete or grid-based
methods. Continuous action spaces allow for smoother control inputs and more realistic modeling of UAV dynamics, which is
particularly important for energy optimization. This contrasts with discrete planning approaches, where coarse action representations
may obscure the relationship between control effort and energy usage.
Despite these advantages, several limitations must be acknowledged. First, the framework is evaluated conceptually within a
simulation-based setting, consistent with common practice in the literature. While simulation enables controlled analysis and
reproducibility, real-world UAV deployment introduces additional complexities, including sensor noise, actuator delays, and
aerodynamic effects not fully captured by simplified models. Bridging the gap between simulation and physical hardware remains
an important challenge.
Second, the UAV dynamics and energy models employed in this study represent simplified abstractions of real systems. Although
such models are widely used for energy-aware trajectory planning, higher-fidelity aerodynamic modeling may be required to capture
complex flight regimes, particularly for aggressive maneuvers or three-dimensional motion.
Finally, the reinforcement learning framework assumes sufficient offline training to obtain stable policies. In practice, training
efficiency and sample complexity remain important considerations, especially when extending the approach to larger environments,
longer missions, or multi-agent scenarios.
Future work may address these limitations by incorporating higher-fidelity dynamics, extending the framework to three-dimensional
trajectories, and validating the approach on real UAV platforms. Additionally, integrating model-based reinforcement learning or
hybrid planning-control architectures may further improve energy efficiency and robustness.

X. CONCLUSION
This paper presents a reference-grounded framework for energy-optimal UAV trajectory planning using reinforcement learning. By
formulating trajectory optimization as a continuous-state, continuous-action stochastic optimal control problem and solving it using
policy-gradient reinforcement learning, the approach explicitly accounts for propulsion energy, flight smoothness, and
environmental disturbances.
Through synthesis of prior studies and comparative analysis, the paper highlights how energy-aware reinforcement learning can
address key limitations of classical UAV control and planning methods. In particular, reinforcement learning frameworks that
directly incorporate energy consumption into the reward function are shown in the literature to produce smoother, more efficient
trajectories and improved robustness to wind disturbances compared to controllers that optimize surrogate objectives.
While the framework is presented and analyzed within a simulation-based context, it provides a structured foundation for future
empirical validation and real-world deployment. The proposed formulation and evaluation framework offers a clear pathway for
integrating energy-aware learning into UAV trajectory planning, with potential applications in aerial delivery, surveillance, and
long-endurance missions where energy efficiency is critical.
Overall, this work contributes a cohesive and principled perspective on energy-aware UAV trajectory optimization, bridging insights
from optimal control and reinforcement learning while emphasizing practical considerations for robust and efficient autonomous
flight.
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