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Abstract: Skin cancer remains one of the most prevalent and rapidly rising malignancies worldwide, emphasizing the need for
accurate and early detection through automated diagnostic tools. Deep learning has significantly advanced dermoscopic image
analysis, with Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) emerging as two dominant paradigms.
CNNs excel at capturing fine-grained local texture patterns such as pigment networks, color variations, and border
irregularities, while ViTs leverage self-attention mechanisms to model long-range global dependencies and holistic lesion
structures. This review provides an in-depth examination of CNN-based and ViT-based skin cancer classifiers, discussing their
architectural principles, feature extraction capabilities, performance trends, and suitability for real-world clinical settings. We
analyze key publicly available skin cancer datasets, preprocessing pipelines, training strategies, and evaluation metrics
commonly used with these models. Furthermore, we highlight the complementary strengths of CNNs and ViTs, assess recent
hybrid architectures that integrate local and global feature learning, and discuss challenges related to data imbalance, domain
variability, computation cost, and model interpretability. The review concludes by outlining future research opportunities toward
developing robust, transparent, and clinically reliable Al systems using CNN, ViT, and hybrid approaches for skin cancer
diagnosis.

Keywords: Skin cancer classification, Dermoscopic images, Convolutional Neural Networks (CNNs), Vision Transformers
(ViTs)

L. INTRODUCTION

Skin cancer is one of the fastest-growing malignancies globally, with its incidence rising steadily across diverse age groups and
geographical regions [1]. Millions of new cases are reported every year, making it a major public health concern. Although basal
cell carcinoma (BCC) and squamous cell carcinoma (SCC) constitute the majority of diagnoses, melanoma despite being less
common is responsible for most skin cancer-related deaths due to its high metastatic potential and rapid progression. The global
increase in ultraviolet (UV) exposure, lifestyle changes, genetic predisposition, and inadequate screening practices further contribute
to the growing burden. Early detection remains the single most effective strategy to improve survival outcomes, as melanoma can
often be treated successfully when diagnosed at an early stage. Traditionally, dermatologists rely on dermoscopic visual inspection
to identify suspicious lesions by examining asymmetry, border irregularities, color distribution, and textural patterns. However,
dermoscopy presents several challenges: diagnostic accuracy varies significantly based on clinical expertise, visual interpretation is
subjective, and early melanoma often mimics benign nevus patterns, increasing the likelihood of misdiagnosis. Inter-observer
variability and inconsistent evaluations across practitioners further limit the reliability of conventional screening. Additionally, the
scarcity of dermatology specialists in many regions and the rising patient load highlight the need for scalable and objective
diagnostic solutions that can support timely and accurate decision-making.

Deep learning (DL) has emerged as a transformative approach for dermoscopic image analysis, offering unprecedented capabilities
in automated feature extraction, pattern recognition, and clinical decision support. Convolutional neural networks (CNNs) have
shown remarkable success in learning hierarchical representations of skin lesions [2-5], while Vision Transformers (ViTs) [6] and
hybrid CNN-Transformer architectures demonstrate strong performance in capturing both local texture and global structural
information. Recent advancements such as self-supervised learning, multimodal frameworks integrating metadata or clinical notes,
and large-scale foundation models, have further accelerated progress in achieving dermatologist-level accuracy [7],[8]. With their
potential to enable early disease detection, reduce diagnostic bias, and support large-scale screening programs, DL-based systems
are rapidly shaping the future of dermatological diagnostics. This review provides a comprehensive analysis of existing methods,
key challenges, dataset limitations, evaluation practices, and promising research directions toward building clinically robust,
explainable, and widely deployable Al systems for skin cancer classification [9-11], [12].
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The remainder of this review is structured as follows. Section 2 outlines the fundamental background of skin cancer, its clinical
characteristics, and commonly used dermoscopic datasets. Section 3 discusses key preprocessing, augmentation, and segmentation
techniques essential for improving model reliability. Section 4 provides an in-depth analysis of deep learning approaches, including
CNN-based architectures, Vision Transformers, and hybrid models. Section 5 presents open challenges such as data imbalance,
domain shift, explainability, and clinical deployment barriers. Finally, Section 6 concludes the review with promising future
research directions aimed at developing robust, transparent, and clinically applicable Al systems for skin cancer classification.

A. Background of Skin Cancer, Clinical Characteristics, and Dermoscopic Datasets

Skin cancer is one of the most frequently diagnosed cancers globally and primarily arises due to abnormal proliferation of skin cells,
often triggered by prolonged ultraviolet (UV) radiation exposure [13]. It broadly includes melanoma, basal cell carcinoma (BCC),
and squamous cell carcinoma (SCC), each differing in severity, growth patterns, and treatment strategies. Among these, melanoma
is the most lethal due to its high metastatic potential, while BCC and SCC, though more common, typically exhibit slower
progression. Early detection plays a critical role in preventing disease advancement, making accurate and reliable diagnostic tools
essential for improving patient survival outcomes. Clinically, skin cancer diagnosis relies heavily on identifying characteristic visual
patterns such as asymmetry, irregular borders, heterogeneous color distribution, surface texture, and lesion elevation. Dermoscopy
enhances these observations by revealing subsurface structures that are not visible to the naked eye, making it an indispensable tool
for dermatologists. The ABCD rule (Asymmetry, Border, Color, and Diameter), the seven-point checklist, and pattern analysis
provide structured frameworks for interpreting dermoscopic features. These characteristics often serve as the foundation for
developing machine learning and deep learning models, enabling automated systems to mimic expert visual reasoning and
distinguish malignant from benign lesions.

B. Skin Cancer datasets

1) ISIC Archive: The International Skin Imaging Collaboration (ISIC) Archive is the largest publicly available repository for
dermoscopic images and serves as the primary benchmark for skin cancer classification research. It contains more than 70,000
dermoscopic images collected from multiple international clinical centers, ensuring diversity in demographic characteristics,
acquisition devices, and lesion types. The dataset includes detailed annotations such as lesion diagnosis, segmentation masks,
metadata, and clinical notes, making it suitable for tasks ranging from lesion segmentation to malignancy classification. By
providing standardized, expert-reviewed ground truth labels, ISIC enables fair comparisons across different machine learning
models. Its large scale helps deep learning systems generalize better, though challenges such as class imbalance and varying
image quality persist.

2) HAM10000 Dataset: The HAM10000 (Human against Machine with 10,000 images) dataset is one of the most widely used
subsets within the ISIC archive. It contains 10,015 dermoscopic images representing seven clinically relevant classes:
melanoma, melanocytic nevus, benign keratosis, BCC, dermatofibroma, vascular lesions, and intraepithelial carcinoma. The
dataset integrates images from different sources and populations, including professional dermoscopic systems and standard
imaging workflows. This diversity enhances its representativeness of real-world clinical conditions. HAM10000’s high-
resolution images and balanced representation of common lesion types make it especially valuable for training CNNs, Vision
Transformers, and hybrid architectures. However, the dataset still exhibits underrepresentation of minority classes such as
melanoma and dermatofibroma, requiring rebalancing techniques or data augmentation.

3) ISIC 2017 Challenge Dataset: The ISIC 2017 dataset was introduced as part of the ISIC Challenge for the tasks of lesion
segmentation, dermoscopic feature detection, and lesion classification. It includes 2,750 dermoscopic images, providing a
balanced platform for evaluating early deep learning methods. The challenge significantly advanced research on segmentation
networks like U-Net and early CNN-based classifiers for melanoma detection. Although relatively small compared to newer
datasets, ISIC 2017 remains important historically and methodologically due to its precise annotations and task-specific
structure. Many early state-of-the-art models were benchmarked here, helping shape the development of automated
dermatology systems.

4) ISIC 2018 Challenge Dataset: The ISIC 2018 dataset expanded the scope and scale of the challenge tasks by offering 10,015
images for lesion classification and 2,597 images for segmentation tasks. It introduced more comprehensive task definitions
including multi-class classification and lesion attribute detection. The dataset includes high-quality, expert-validated labels and
segmentation masks, enabling multimodal research where classification benefits from structural lesion boundaries. 1SIC 2018
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also fueled the development of attention-based models, multi-branch CNNs, and domain adaptation techniques due to its
diverse lesion types and varying acquisition conditions.

5) ISIC 2019 Challenge Dataset: The ISIC 2019 dataset is one of the largest lesion classification benchmarks, containing 25,331
dermoscopic images categorized into eight diagnostic classes. Its increased scale and more heterogeneous data sources simulate
real-world clinical variability. With a high imbalance across classes especially melanoma and SCC—the dataset challenges
researchers to design robust class-balancing techniques, cost-sensitive losses, and augmentation strategies. 1SIC 2019 is
frequently used for training large-scale deep learning models, foundation models, and self-supervised learning approaches
because of its size and diversity.

6) PH2 Dataset: The PH2 dataset is a smaller but highly curated dataset consisting of **200 dermoscopic images**, focusing on
melanoma, atypical nevi, and common nevi. Each image is high resolution and accompanied by expert-provided segmentation
masks, clinical borders, and dermoscopic attributes. PH2 is often used for evaluating fine-grained lesion classification,
boundary detection, and segmentation-based classification pipelines. Its controlled imaging conditions make it ideal for
studying models that require clean and artifact-free inputs, although the limited size restricts its usefulness for deep learning
without transfer learning.

7) Derm7pt Dataset: The Derm7pt dataset is designed specifically for clinically interpretable machine learning approaches. It
includes 1,011 images annotated using the seven-point checklist, a standard dermatological diagnostic framework. Alongside
dermoscopic images, it provides clinical metadata such as diameter, elevation, patient history, and morphological features. This
makes the dataset valuable for multimodal learning, explainability research, and building models that emulate clinical
diagnostic reasoning. While its size is modest, its structured annotations enable training models that align more closely with
dermatological principles.

8) MED-NODE Dataset: The MED-NODE dataset contains 170 images categorized into melanoma and nevus cases. Although
small, it is frequently used for classical machine learning, feature-engineering methods, and baseline comparisons for
lightweight CNNs. The dataset’s manually annotated labels and straightforward binary classification task make it useful for
quick experimentation, but its limited size and lack of diverse lesion types restrict its suitability for large-scale deep learning
without external pre training.

ISIC

Derm7pt PAD-UFES-20

Fig. 1 Preprocessing, Augmentation, and Segmentation Techniques

Deep learning performance in skin cancer classification heavily depends on the quality, consistency, and relevance of input
dermoscopic images. This section presents the essential preprocessing steps, augmentation strategies, and segmentation approaches
that collectively enhance model reliability, robustness, and generalization across diverse clinical environments.
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1. PREPROCESSING TECHNIQUES

Preprocessing is a critical step aimed at standardizing dermoscopic images and reducing noise introduced during acquisition.
Common practices include color constancy correction (e.g., Shades-of-Gray, Gray-World) to minimize illumination variations,
contrast enhancement to highlight lesion structures, and artifact removal to eliminate distracting elements such as hair, ruler
markers, ink spots, and shadows. Methods like DullRazor or morphological filtering are frequently used for hair removal, while
median or bilateral filtering helps suppress sensor noise [14]. Additionally, image resizing, normalization, and intensity scaling
ensure consistent input formats for CNNSs, Vision Transformers, and hybrid architectures. These preprocessing steps establish a
clean and uniform image representation, enabling more stable feature extraction and improved downstream classification
performance.

A. Data Augmentation

Data augmentation is essential for addressing class imbalance, overfitting, and limited dataset diversity common challenges in skin
cancer classification. Traditional augmentation techniques include geometric operations such as rotation, flipping, zooming,
cropping, and translation, which expose the model to a wider variety of lesion orientations and shapes. Color-based augmentations,
including brightness adjustment, hue shifts, and contrast jittering, improve robustness to lighting and device variations. Advanced
augmentation methods like CutMix, MixUp, and Random Erasing introduce regularization effects that enhance generalization.
Recently, generative augmentation using GANs [15] or diffusion models has gained attention for synthesizing realistic lesion
images, especially for underrepresented melanoma classes. These augmentation strategies collectively help models generalize better
across real-world imaging conditions.

B. Lesion Segmentation

Segmentation plays a vital role in isolating the lesion from surrounding healthy skin, ensuring that feature extraction focuses on
medically relevant regions. Classical techniques such as thresholding, region growing, and active contours provide basic lesion
boundary detection but may struggle with complex textures or low contrast. Deep learning—based approaches, particularly U-Net,
ResUNet, and transformer-based segmentation models, achieve significantly higher accuracy by learning contextual and structural
patterns directly from annotated data. Segmentation masks can be used to crop the lesion, generate attention maps, or refine
classification inputs, thereby reducing background interference and improving interpretability. By accurately delineating lesion
borders, segmentation enhances both the precision of feature learning and the clinical reliability of the overall diagnostic pipeline.

' a e N

»| Preprocessing > Lesion
_ Segmentaation

Data Augmentation Geometric,
color, generative

Geometric, color
generative

Fig.2 Preprocessing, Augmentation and Segmentation

I1l.  SKIN CANCER CLASSIFICATION USING CNN AND VISION TRANSFORMERS

Convolutional Neural Networks (CNNs) have long been the backbone of skin cancer classification due to their strong ability to
extract fine-grained local features from dermoscopic images. Their hierarchical structure enables the network to learn low-level
details such as color gradients, lesion edges, and texture patterns in early layers, progressively capturing more complex visual
attributes like lesion shape, asymmetry, and irregular borders in deeper layers. This localized feature extraction is particularly
valuable for skin lesion analysis, where subtle texture variations and pigment distributions play a crucial role in distinguishing
malignant from benign categories. CNN-based models such as ResNet, DenseNet, and MobileNet have demonstrated strong
performance, especially when combined with augmentation and transfer learning to deal with limited labeled dermatology datasets.
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Vision Transformers (ViTs) and transformer-based vision models introduce a powerful complementary capability by modeling
long-range global dependencies across the entire lesion region. Unlike CNNs, which prioritize local receptive fields, ViTs divide the
dermoscopic image into patches and use self-attention mechanisms to understand spatial relationships between distant regions. This
allows the model to capture high-level semantic context such as lesion symmetry, border irregularity spread, structural
heterogeneity, and global color distribution. Such global reasoning is particularly important in skin cancer diagnosis, where the
malignancy often depends on holistic patterns rather than isolated textures. Recent transformer variants—such as Swin Transformer,
DeiT, and hybrid CNN-ViT architectures—have shown significant improvements in robustness, generalization, and interpretability,
making them promising candidates for reliable, scalable skin cancer classification systems.

Table 1. Skin Cancer Classification using CNN and Vision Transformers

CNN (Convolutional Neural

Vision Transformers (ViT / Vision

Aspect Networks) Models)
Feature Learns local textures (edges, | Learns global semantic relationships
Extraction colors, borders) via self-attention

Receptive Field

Grows gradually with depth

Global receptive field from the first
layer

Very good at detecting

Texture pigment networks, streaks,
Sensitivity dots Models overall lesion structure better
Handling Naturally models complex shapes and

Complex Shapes

Limited unless deep

spatial patterns

Data
Requirement

Works well with small
datasets (transfer learning)

Needs more data unless optimized
(DeiT, Swin)

Robustness  to
Noise

Sensitive to hair/artifacts

More robust due to long-range global
reasoning

Interpretability

Grad-CAM highlights local
areas

Attention maps show lesion-level
relevance

Computational
Cost

Lower; lightweight models
available

Higher due to multi-head attention

Parallelization

Efficient GPU/TPU
convolution operations

Attention is heavier but improving

Training
Stability

Very stable and mature
ecosystem

Needs careful optimization (warmup,
large batch)

Generalization

Good but may overfit small
datasets

Strong cross-domain generalization

Handling
Long-Range
Dependencies

Weak; dominated by local
bias

Strong; connects distant  regions
directly

Performance saturates at

Scalability extreme depth Scales extremely well with model size
Clinical Captures micro-patterns | Captures global asymmetry and border
Relevance crucial for melanoma structure
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Fig. 2 Vision Transformer architecture
Table 2. Related works to skin cancer transformers
Author Model Methodology Datasets Perfo_rmance
Metrics
Entropy-based - Loss Weighting | o\~ 1 Average AUC
addresses class imbalance in skin dataset (0.836)
lesion datasets by modifying loss '
Ding et Deep  Attention | weights. _
al. [16] Branch Network | In DABN, Attentl_on _ branches
(DABN) generate Class Activation Maps | 1SIC-2017 Average AUC
(CAMs) during training, | dataset (0.922)
emphasizing discriminative
regions of lesions.
Accuracy
(87.5%)
ISIC 2017 AUC_ (.01886)
Sensitivity
(70.9%)
The proposed model integrates
two auxiliary supervision Accuracy
Wei et al. BEZISenEt:t?intio:\ branches and KL regularization to (89.00%)
[17] . enhance the network's | 1SIC 2018 AUC (0.976)
Mechanism . L
capabilities. Sensitivity
(83.53%)
Accuracy
(89.6%)
ISIC 2019 AUC (0.983)
Sensitivity
(81.73%)
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The Grouping of Multi-Scale
Attention Blocks (GMAB) is
. . Accuracy
designed to extract multi-scale (91.6%)
. fine-grained features g
. CNN + Grouping Specificity
Qian et . HAMZ10000
of Multi-Scale . ) (96.4%)
al. [18] . Issan  adaptive  loss-weighted | dataset L
Attention Blocks . . Sensitivity
cross-entropy loss functionassigns (73.5%)
different penalties for 7
. A AUC (0.971)
misclassifications based on a
cost-sensitive matrix.
Accuracy
(94.3%),
Specificity
HAMZ10000 (91.2%),
. . Precision
The multi-scale fusion structure | dataset 0
. (91.2%), F1
allows for the extraction of
features at multiple levels, from Score
. low-level fine-grained det;ils to (91.3%), AUC
Modified high-level  abstract atterns (0.993)
Hu et al. | EfficientNetv2 + | O P ’ Accuracy
. . through a multi-branch
[2] multi-scale fusion . (89.8%),
architecture. L
structure . Sensitivity
It can assist network to 0
e (82.2%),
understand and classify image
features, considering both local Specificity
' ISIC2019 (98.00%),
and global patterns. Precision
(88.1%), F1
Score
(86.5%), AUC
(0.953)
A class-wise attention mechanism Accuracy
is proposed which processes input | HAM10000 (95.8%), AUC
tensors  through  convolution, | dataset (0.997), F1
batch normalization, and ReLU Score (95.7%)
DenseNet-121  + activation to distinguish features
Naveed et . among classes. Scores for each
Progressive class-
al. [19] wise attention class are computed, and a class- Accuracy
wise attention map highlights 1SIC2019 (94.9%), AUC
important regions for (0.994), F1
classification. Finally, focal loss is Score (94.7%)
used to address class imbalance
during training.
The BC-FCU module integrates ISIC 2018 Accuracy
CNN + Residual | local  features and  global (87.39%)
. Cosine Similarity | representations from two | XJUSL
Li et al . . L . L
[20] Attention + | branches  using  bidirectional | (privateclinical Accurac
Transformer convolution. skin lesion (84 27<V))/
branch The RCSA module analyzes | dataset) e
semantic information between
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convolutional feature maps and
residual edge feature maps using
cosine similarity.

A long attention network is
developed that utilizes the output ISIC 2017 AUC (0.937)
of the last layer as an attention
mask for shallower layers to
improve contextual knowledge of | SIIM-ISIC

Wan et | Long Attention
al. [21] Networks

the image. 2020 AUC (0.926)

Accuracy
(76.77%)
The distinguishing trait Attention Precision
network  generates atter_ltl_on- Cifar100 (80.4_2_%_)
enhanced features from original Sensitivity
Pre-Trained features, which are integrated for (76.77%)

Model classification. F1 Score
Wang et | + (76.19%)
al. [22] Discriminative Misclassification costs vectors Accuracy
feature attention | direct the attention network to (70.57%)
network adjust focus based on class Precision
relevance, gn_nng minority classes Tiny200 (75.4_7_%_)
greater attention. Sensitivity
(75.57%)

F1 Score
(70.15%)

V. DISCUSSION
The comparative diagram highlights the fundamental differences in how Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs) analyze dermoscopic images for skin cancer classification. CNNs primarily learn local texture-level
information, which makes them highly effective for identifying fine-grained patterns such as pigment networks, edges, streaks, and
color irregularities that often characterize early malignant changes. This local inductive bias allows CNNs to perform well even with
limited data, which is common in medical imaging. Their hierarchical structure gradually expands the receptive field, but the feature
representation still remains largely focused on neighborhood-level interactions. As a result, CNNs excel in capturing micro-level
lesion details but may struggle to fully understand global structural relationships, such as asymmetry, shape irregularity, and
distributed color gradients that may span the entire lesion area.
In contrast, Vision Transformers operate on a fundamentally different principle by dividing the image into patches and modeling
their relationships using self-attention mechanisms. This architecture enables ViTs to capture long-range global dependencies from
the very first layer, making them well-suited for analyzing holistic lesion patterns. Features such as border irregularity, global
asymmetry, multi-region color variation, and structural layout are more effectively represented in transformer-based models. This
global reasoning ability is particularly important in melanoma detection, where clinical diagnosis often depends on assessing the
lesion as a whole. However, ViTs generally require larger datasets to learn these representations effectively. When sufficient
training samples and appropriate regularization strategies are available, they often outperform CNNs in terms of generalization and
robustness, achieving a more comprehensive understanding of lesion morphology.
The discussion also emphasizes that both architectures possess complementary strengths. CNNs offer precise local feature
extraction, while ViTs provide powerful global context understanding. For medical imaging tasks like skin cancer classification—
where both local details (e.g., atypical dots, texture distortion) and global cues (e.g., asymmetry, border distribution) are equally
significant—hybrid models that integrate CNN and ViT modules can leverage the advantages of both paradigms.
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Such a fusion strategy has strong potential to enhance sensitivity, reduce misclassification, and improve the model’s reliability
across diverse lesion types and imaging conditions. Thus, the comparison suggests that future advancements in skin cancer
classification may rely on multi-scale, hybrid CNN-Transformer frameworks that balance efficiency, interpretability, and clinical
relevance.

A.
1

2)

3)

4)

5)

6)

1)

2)

3)

4)

5)

6)

Challenges

Class Imbalance: Malignant lesions such as melanoma are significantly underrepresented compared to benign nevi in most
datasets. This imbalance causes models to be biased toward majority classes, leading to high accuracy but poor sensitivity for
melanoma detection.

Lack of Diversity in Skin Tones: Most dermoscopic datasets are dominated by lighter Fitzpatrick skin types, resulting in lower
generalizability for darker skin tones. This lack of representation can cause diagnostic disparities and reduce fairness in Al-
driven clinical systems.

Domain Shift across Imaging Devices: Variations in camera types, dermoscopic equipment, illumination, magnification, and
clinical workflows introduce distribution shifts. Models trained on one dataset often perform poorly when evaluated on images
from different hospitals or devices.

Explainability and Clinical Trust: Clinical adoption requires transparent and interpretable predictions. Dermatologists must
understand why a model assigns a certain label. Existing explainability methods (e.g., Grad-CAM, LIME) are not always
consistent or clinically meaningful.

Need for Lightweight, Mobile-Compatible Models: Deploying Al systems in real-world settings requires efficient models that
run on smartphones or low-power devices. Many state-of-the-art networks are computationally heavy and unsuitable for point-
of-care or remote clinical environments.

Ethical, Fairness, and Bias-Related Issues: Al systems must ensure equitable performance across demographic groups. Bias in
training data, privacy concerns, and lack of transparency can lead to ethical risks, misdiagnosis, and reduced trust among
clinicians and patients.

Future Research Directions

Development of Lightweight Mobile Al Systems: Designing efficient CNN, transformer, and hybrid architectures optimized for
mobile and edge devices will support real-time screening in clinics and underserved regions without requiring high
computational resources.

Federated Learning for Privacy-Preserving Diagnosis: Federated learning allows hospitals to collaboratively train models
without sharing raw patient data. This protects patient privacy and enables large-scale learning from diverse global datasets,
improving model robustness.

Multimodal Fusion (Image + Clinical Text + Metadata): Combining dermoscopic images with metadata such as age, lesion
location, patient history, and textual clinical descriptions can improve predictive performance and align the model more closely
with dermatologist decision-making.

Diffusion Models for Data Augmentation: Generative diffusion models can synthesize realistic rare-class images (e.g.,
melanoma or uncommon lesions), helping combat class imbalance, enrich training data, and improve model generalization
under limited annotated samples.

Improved Explainability Techniques: Advanced explainability tools such as Grad-CAM++, SHAP, integrated gradients, and
counterfactual explanations can provide clearer, more trustworthy visual and textual rationales for predictions, increasing
clinician acceptance.

Dermatology Foundation Models: Large-scale foundation models trained on millions of dermoscopic and clinical images can
serve as universal backbones for segmentation, classification, detection, and report generation. These models promise stronger
generalization, reduced annotation effort, and broader clinical utility.

V. CONCLUSION

Skin cancer remains a major global health challenge, and early detection is crucial for improving survival outcomes, particularly for
aggressive forms such as melanoma. Deep learning has transformed the landscape of dermoscopic image analysis by enabling
automated, accurate, and scalable diagnostic systems that increasingly approach dermatologist-level performance.
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Through this review, we summarized key skin cancer types, widely used datasets, preprocessing pipelines, and state-of-the-art DL
architectures ranging from CNNs and Vision Transformers to hybrid, multimodal, and self-supervised frameworks. While
significant progress has been made, real-world deployment is still hindered by issues such as class imbalance, limited skin tone
diversity, domain shift, explainability gaps, and ethical concerns. Future advancements such as lightweight mobile Al, federated
learning, multimodal fusion, diffusion-based augmentation, improved interpretability, and large dermatology foundation models
hold considerable promise for bridging the gap between research and clinical practice. Ultimately, the development of robust,
transparent, and equitable Al systems will be essential to support dermatologists, enhance early diagnosis, and enable widespread,
accessible skin cancer screening across diverse populations.
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