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Abstract: Skin cancer remains one of the most prevalent and rapidly rising malignancies worldwide, emphasizing the need for 
accurate and early detection through automated diagnostic tools. Deep learning has significantly advanced dermoscopic image 
analysis, with Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) emerging as two dominant paradigms. 
CNNs excel at capturing fine-grained local texture patterns such as pigment networks, color variations, and border 
irregularities, while ViTs leverage self-attention mechanisms to model long-range global dependencies and holistic lesion 
structures. This review provides an in-depth examination of CNN-based and ViT-based skin cancer classifiers, discussing their 
architectural principles, feature extraction capabilities, performance trends, and suitability for real-world clinical settings. We 
analyze key publicly available skin cancer datasets, preprocessing pipelines, training strategies, and evaluation metrics 
commonly used with these models. Furthermore, we highlight the complementary strengths of CNNs and ViTs, assess recent 
hybrid architectures that integrate local and global feature learning, and discuss challenges related to data imbalance, domain 
variability, computation cost, and model interpretability. The review concludes by outlining future research opportunities toward 
developing robust, transparent, and clinically reliable AI systems using CNN, ViT, and hybrid approaches for skin cancer 
diagnosis. 
Keywords: Skin cancer classification, Dermoscopic images, Convolutional Neural Networks (CNNs), Vision Transformers 
(ViTs) 
 

I. INTRODUCTION 
Skin cancer is one of the fastest-growing malignancies globally, with its incidence rising steadily across diverse age groups and 
geographical regions [1]. Millions of new cases are reported every year, making it a major public health concern. Although basal 
cell carcinoma (BCC) and squamous cell carcinoma (SCC) constitute the majority of diagnoses, melanoma despite being less 
common is responsible for most skin cancer-related deaths due to its high metastatic potential and rapid progression. The global 
increase in ultraviolet (UV) exposure, lifestyle changes, genetic predisposition, and inadequate screening practices further contribute 
to the growing burden. Early detection remains the single most effective strategy to improve survival outcomes, as melanoma can 
often be treated successfully when diagnosed at an early stage. Traditionally, dermatologists rely on dermoscopic visual inspection 
to identify suspicious lesions by examining asymmetry, border irregularities, color distribution, and textural patterns. However, 
dermoscopy presents several challenges: diagnostic accuracy varies significantly based on clinical expertise, visual interpretation is 
subjective, and early melanoma often mimics benign nevus patterns, increasing the likelihood of misdiagnosis. Inter-observer 
variability and inconsistent evaluations across practitioners further limit the reliability of conventional screening. Additionally, the 
scarcity of dermatology specialists in many regions and the rising patient load highlight the need for scalable and objective 
diagnostic solutions that can support timely and accurate decision-making. 
Deep learning (DL) has emerged as a transformative approach for dermoscopic image analysis, offering unprecedented capabilities 
in automated feature extraction, pattern recognition, and clinical decision support. Convolutional neural networks (CNNs) have 
shown remarkable success in learning hierarchical representations of skin lesions [2–5], while Vision Transformers (ViTs) [6] and 
hybrid CNN-Transformer architectures demonstrate strong performance in capturing both local texture and global structural 
information. Recent advancements such as self-supervised learning, multimodal frameworks integrating metadata or clinical notes, 
and large-scale foundation models, have further accelerated progress in achieving dermatologist-level accuracy [7],[8]. With their 
potential to enable early disease detection, reduce diagnostic bias, and support large-scale screening programs, DL-based systems 
are rapidly shaping the future of dermatological diagnostics. This review provides a comprehensive analysis of existing methods, 
key challenges, dataset limitations, evaluation practices, and promising research directions toward building clinically robust, 
explainable, and widely deployable AI systems for skin cancer classification [9–11], [12]. 
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The remainder of this review is structured as follows. Section 2 outlines the fundamental background of skin cancer, its clinical 
characteristics, and commonly used dermoscopic datasets. Section 3 discusses key preprocessing, augmentation, and segmentation 
techniques essential for improving model reliability. Section 4 provides an in-depth analysis of deep learning approaches, including 
CNN-based architectures, Vision Transformers, and hybrid models. Section 5 presents open challenges such as data imbalance, 
domain shift, explainability, and clinical deployment barriers. Finally, Section 6 concludes the review with promising future 
research directions aimed at developing robust, transparent, and clinically applicable AI systems for skin cancer classification. 
 
A. Background of Skin Cancer, Clinical Characteristics, and Dermoscopic Datasets 
Skin cancer is one of the most frequently diagnosed cancers globally and primarily arises due to abnormal proliferation of skin cells, 
often triggered by prolonged ultraviolet (UV) radiation exposure [13]. It broadly includes melanoma, basal cell carcinoma (BCC), 
and squamous cell carcinoma (SCC), each differing in severity, growth patterns, and treatment strategies. Among these, melanoma 
is the most lethal due to its high metastatic potential, while BCC and SCC, though more common, typically exhibit slower 
progression. Early detection plays a critical role in preventing disease advancement, making accurate and reliable diagnostic tools 
essential for improving patient survival outcomes. Clinically, skin cancer diagnosis relies heavily on identifying characteristic visual 
patterns such as asymmetry, irregular borders, heterogeneous color distribution, surface texture, and lesion elevation. Dermoscopy 
enhances these observations by revealing subsurface structures that are not visible to the naked eye, making it an indispensable tool 
for dermatologists. The ABCD rule (Asymmetry, Border, Color, and Diameter), the seven-point checklist, and pattern analysis 
provide structured frameworks for interpreting dermoscopic features. These characteristics often serve as the foundation for 
developing machine learning and deep learning models, enabling automated systems to mimic expert visual reasoning and 
distinguish malignant from benign lesions. 
 
B. Skin Cancer datasets 
1) ISIC Archive: The International Skin Imaging Collaboration (ISIC) Archive is the largest publicly available repository for 

dermoscopic images and serves as the primary benchmark for skin cancer classification research. It contains more than 70,000 
dermoscopic images collected from multiple international clinical centers, ensuring diversity in demographic characteristics, 
acquisition devices, and lesion types. The dataset includes detailed annotations such as lesion diagnosis, segmentation masks, 
metadata, and clinical notes, making it suitable for tasks ranging from lesion segmentation to malignancy classification. By 
providing standardized, expert-reviewed ground truth labels, ISIC enables fair comparisons across different machine learning 
models. Its large scale helps deep learning systems generalize better, though challenges such as class imbalance and varying 
image quality persist. 

2) HAM10000 Dataset: The HAM10000 (Human against Machine with 10,000 images) dataset is one of the most widely used 
subsets within the ISIC archive. It contains 10,015 dermoscopic images representing seven clinically relevant classes: 
melanoma, melanocytic nevus, benign keratosis, BCC, dermatofibroma, vascular lesions, and intraepithelial carcinoma. The 
dataset integrates images from different sources and populations, including professional dermoscopic systems and standard 
imaging workflows. This diversity enhances its representativeness of real-world clinical conditions. HAM10000’s high-
resolution images and balanced representation of common lesion types make it especially valuable for training CNNs, Vision 
Transformers, and hybrid architectures. However, the dataset still exhibits underrepresentation of minority classes such as 
melanoma and dermatofibroma, requiring rebalancing techniques or data augmentation. 

3) ISIC 2017 Challenge Dataset: The ISIC 2017 dataset was introduced as part of the ISIC Challenge for the tasks of lesion 
segmentation, dermoscopic feature detection, and lesion classification. It includes 2,750 dermoscopic images, providing a 
balanced platform for evaluating early deep learning methods. The challenge significantly advanced research on segmentation 
networks like U-Net and early CNN-based classifiers for melanoma detection. Although relatively small compared to newer 
datasets, ISIC 2017 remains important historically and methodologically due to its precise annotations and task-specific 
structure. Many early state-of-the-art models were benchmarked here, helping shape the development of automated 
dermatology systems. 

4) ISIC 2018 Challenge Dataset: The ISIC 2018 dataset expanded the scope and scale of the challenge tasks by offering 10,015 
images for lesion classification and 2,597 images for segmentation tasks. It introduced more comprehensive task definitions 
including multi-class classification and lesion attribute detection. The dataset includes high-quality, expert-validated labels and 
segmentation masks, enabling multimodal research where classification benefits from structural lesion boundaries. ISIC 2018 
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also fueled the development of attention-based models, multi-branch CNNs, and domain adaptation techniques due to its 
diverse lesion types and varying acquisition conditions. 

5) ISIC 2019 Challenge Dataset: The ISIC 2019 dataset is one of the largest lesion classification benchmarks, containing 25,331 
dermoscopic images categorized into eight diagnostic classes. Its increased scale and more heterogeneous data sources simulate 
real-world clinical variability. With a high imbalance across classes especially melanoma and SCC—the dataset challenges 
researchers to design robust class-balancing techniques, cost-sensitive losses, and augmentation strategies. ISIC 2019 is 
frequently used for training large-scale deep learning models, foundation models, and self-supervised learning approaches 
because of its size and diversity. 

6) PH2 Dataset: The PH2 dataset is a smaller but highly curated dataset consisting of **200 dermoscopic images**, focusing on 
melanoma, atypical nevi, and common nevi. Each image is high resolution and accompanied by expert-provided segmentation 
masks, clinical borders, and dermoscopic attributes. PH2 is often used for evaluating fine-grained lesion classification, 
boundary detection, and segmentation-based classification pipelines. Its controlled imaging conditions make it ideal for 
studying models that require clean and artifact-free inputs, although the limited size restricts its usefulness for deep learning 
without transfer learning. 

7) Derm7pt Dataset: The Derm7pt dataset is designed specifically for clinically interpretable machine learning approaches. It 
includes 1,011 images annotated using the seven-point checklist, a standard dermatological diagnostic framework. Alongside 
dermoscopic images, it provides clinical metadata such as diameter, elevation, patient history, and morphological features. This 
makes the dataset valuable for multimodal learning, explainability research, and building models that emulate clinical 
diagnostic reasoning. While its size is modest, its structured annotations enable training models that align more closely with 
dermatological principles. 

8) MED-NODE Dataset: The MED-NODE dataset contains 170 images categorized into melanoma and nevus cases. Although 
small, it is frequently used for classical machine learning, feature-engineering methods, and baseline comparisons for 
lightweight CNNs. The dataset’s manually annotated labels and straightforward binary classification task make it useful for 
quick experimentation, but its limited size and lack of diverse lesion types restrict its suitability for large-scale deep learning 
without external pre training. 

 
Fig. 1 Preprocessing, Augmentation, and Segmentation Techniques 

 
Deep learning performance in skin cancer classification heavily depends on the quality, consistency, and relevance of input 
dermoscopic images. This section presents the essential preprocessing steps, augmentation strategies, and segmentation approaches 
that collectively enhance model reliability, robustness, and generalization across diverse clinical environments. 
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II. PREPROCESSING TECHNIQUES 
Preprocessing is a critical step aimed at standardizing dermoscopic images and reducing noise introduced during acquisition. 
Common practices include color constancy correction (e.g., Shades-of-Gray, Gray-World) to minimize illumination variations, 
contrast enhancement to highlight lesion structures, and artifact removal to eliminate distracting elements such as hair, ruler 
markers, ink spots, and shadows. Methods like DullRazor or morphological filtering are frequently used for hair removal, while 
median or bilateral filtering helps suppress sensor noise [14]. Additionally, image resizing, normalization, and intensity scaling 
ensure consistent input formats for CNNs, Vision Transformers, and hybrid architectures. These preprocessing steps establish a 
clean and uniform image representation, enabling more stable feature extraction and improved downstream classification 
performance. 
 
A. Data Augmentation 
Data augmentation is essential for addressing class imbalance, overfitting, and limited dataset diversity common challenges in skin 
cancer classification. Traditional augmentation techniques include geometric operations such as rotation, flipping, zooming, 
cropping, and translation, which expose the model to a wider variety of lesion orientations and shapes. Color-based augmentations, 
including brightness adjustment, hue shifts, and contrast jittering, improve robustness to lighting and device variations. Advanced 
augmentation methods like CutMix, MixUp, and Random Erasing introduce regularization effects that enhance generalization. 
Recently, generative augmentation using GANs [15] or diffusion models has gained attention for synthesizing realistic lesion 
images, especially for underrepresented melanoma classes. These augmentation strategies collectively help models generalize better 
across real-world imaging conditions. 
 
B. Lesion Segmentation 
Segmentation plays a vital role in isolating the lesion from surrounding healthy skin, ensuring that feature extraction focuses on 
medically relevant regions. Classical techniques such as thresholding, region growing, and active contours provide basic lesion 
boundary detection but may struggle with complex textures or low contrast. Deep learning–based approaches, particularly U-Net, 
ResUNet, and transformer-based segmentation models, achieve significantly higher accuracy by learning contextual and structural 
patterns directly from annotated data. Segmentation masks can be used to crop the lesion, generate attention maps, or refine 
classification inputs, thereby reducing background interference and improving interpretability. By accurately delineating lesion 
borders, segmentation enhances both the precision of feature learning and the clinical reliability of the overall diagnostic pipeline. 

 
Fig.2 Preprocessing, Augmentation and Segmentation 

 
III. SKIN CANCER CLASSIFICATION USING CNN AND VISION TRANSFORMERS 

Convolutional Neural Networks (CNNs) have long been the backbone of skin cancer classification due to their strong ability to 
extract fine-grained local features from dermoscopic images. Their hierarchical structure enables the network to learn low-level 
details such as color gradients, lesion edges, and texture patterns in early layers, progressively capturing more complex visual 
attributes like lesion shape, asymmetry, and irregular borders in deeper layers. This localized feature extraction is particularly 
valuable for skin lesion analysis, where subtle texture variations and pigment distributions play a crucial role in distinguishing 
malignant from benign categories. CNN-based models such as ResNet, DenseNet, and MobileNet have demonstrated strong 
performance, especially when combined with augmentation and transfer learning to deal with limited labeled dermatology datasets. 
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Vision Transformers (ViTs) and transformer-based vision models introduce a powerful complementary capability by modeling 
long-range global dependencies across the entire lesion region. Unlike CNNs, which prioritize local receptive fields, ViTs divide the 
dermoscopic image into patches and use self-attention mechanisms to understand spatial relationships between distant regions. This 
allows the model to capture high-level semantic context such as lesion symmetry, border irregularity spread, structural 
heterogeneity, and global color distribution. Such global reasoning is particularly important in skin cancer diagnosis, where the 
malignancy often depends on holistic patterns rather than isolated textures. Recent transformer variants—such as Swin Transformer, 
DeiT, and hybrid CNN-ViT architectures—have shown significant improvements in robustness, generalization, and interpretability, 
making them promising candidates for reliable, scalable skin cancer classification systems. 

 
Table 1. Skin Cancer Classification using CNN and Vision Transformers 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aspect 
CNN (Convolutional Neural 
Networks) 

Vision Transformers (ViT / Vision 
Models) 

Feature 
Extraction 

Learns local textures (edges, 
colors, borders) 

Learns global semantic relationships 
via self-attention 

Receptive Field Grows gradually with depth 
Global receptive field from the first 
layer 

Texture 
Sensitivity 

Very good at detecting 
pigment networks, streaks, 
dots Models overall lesion structure better 

Handling 
Complex Shapes Limited unless deep 

Naturally models complex shapes and 
spatial patterns 

Data 
Requirement 

Works well with small 
datasets (transfer learning) 

Needs more data unless optimized 
(DeiT, Swin) 

Robustness to 
Noise Sensitive to hair/artifacts 

More robust due to long-range global 
reasoning 

Interpretability 
Grad-CAM highlights local 
areas 

Attention maps show lesion-level 
relevance 

Computational 
Cost 

Lower; lightweight models 
available Higher due to multi-head attention 

Parallelization 
Efficient GPU/TPU 
convolution operations Attention is heavier but improving 

Training 
Stability 

Very stable and mature 
ecosystem 

Needs careful optimization (warmup, 
large batch) 

Generalization 
Good but may overfit small 
datasets Strong cross-domain generalization 

Handling 
Long-Range 
Dependencies 

Weak; dominated by local 
bias 

Strong; connects distant regions 
directly 

Scalability 
Performance saturates at 
extreme depth Scales extremely well with model size 

Clinical 
Relevance 

Captures micro-patterns 
crucial for melanoma 

Captures global asymmetry and border 
structure 
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Fig. 2 Vision Transformer architecture 

 
Table 2. Related works to skin cancer transformers  

Author Model Methodology  Datasets 
Performance 
Metrics 

Ding et 
al. [16] 

Deep Attention 
Branch Network 
(DABN)  

Entropy-based Loss Weighting 
addresses class imbalance in skin 
lesion datasets by modifying loss 
weights. 
In DABN, Attention branches 
generate Class Activation Maps 
(CAMs) during training, 
emphasizing discriminative 
regions of lesions. 

ISIC-2016 
dataset 

Average AUC 
(0.836) 

ISIC-2017 
dataset 

Average AUC 
(0.922) 

Wei et al. 
[17] 

Densenet-161 + 
Dual Attention 
Mechanism  

The proposed model integrates 
two auxiliary supervision 
branches and KL regularization to 
enhance the network's 
capabilities.  
 

ISIC 2017 

Accuracy 
(87.5%) 
AUC (0.886) 
Sensitivity 
(70.9%) 
 

ISIC 2018 

Accuracy 
(89.00%) 
AUC (0.976) 
Sensitivity 
(83.53%) 

ISIC 2019 

Accuracy 
(89.6%) 
AUC (0.983) 
Sensitivity 
(81.73%) 
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Qian et 
al. [18] 

CNN + Grouping 
of Multi-Scale 
Attention Blocks 

The Grouping of Multi-Scale 
Attention Blocks (GMAB) is 
designed to extract multi-scale 
fine-grained features  
 
Issan adaptive loss-weighted 
cross-entropy loss functionassigns 
different penalties for 
misclassifications based on a 
cost-sensitive matrix.  

HAM10000 
dataset 

Accuracy 
(91.6%) 
Specificity 
(96.4%) 
Sensitivity 
(73.5%) 
AUC (0.971) 

Hu et al. 
[2] 

Modified 
EfficientNetV2 + 
multi-scale fusion 
structure 

The multi-scale fusion structure 
allows for the extraction of 
features at multiple levels, from 
low-level fine-grained details to 
high-level abstract patterns, 
through a multi-branch 
architecture.  
It can assist network to 
understand and classify image 
features, considering both local 
and global patterns. 

HAM10000 
dataset 

Accuracy 
(94.3%), 
Specificity 
(91.2%), 
Precision 
(91.2%), F1 
Score 
(91.3%), AUC 
(0.993) 

ISIC2019 

Accuracy 
(89.8%), 
Sensitivity 
(82.2%), 
Specificity 
(98.00%), 
Precision 
(88.1%), F1 
Score 
(86.5%), AUC 
(0.953) 

Naveed et 
al. [19] 

DenseNet-121 + 
Progressive class-
wise attention  

A class-wise attention mechanism 
is proposed which processes input 
tensors through convolution, 
batch normalization, and ReLU 
activation to distinguish features 
among classes. Scores for each 
class are computed, and a class-
wise attention map highlights 
important regions for 
classification. Finally, focal loss is 
used to address class imbalance 
during training. 

HAM10000 
dataset 

Accuracy 
(95.8%), AUC 
(0.997), F1 
Score (95.7%) 

ISIC2019 

Accuracy 
(94.9%), AUC 
(0.994), F1 
Score (94.7%) 

Li et al. 
[20] 

CNN + Residual 
Cosine Similarity 
Attention + 
Transformer 
branch 

The BC-FCU module integrates 
local features and global 
representations from two 
branches using bidirectional 
convolution.  
The RCSA module analyzes 
semantic information between 

ISIC 2018 
Accuracy 
(87.39%) 

XJUSL 
(privateclinical 
skin lesion 
dataset) 
 

Accuracy 
(84.27%) 
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convolutional feature maps and 
residual edge feature maps using 
cosine similarity. 

 Wan et 
al. [21] 

 Long Attention 
Networks 

A long attention network is 
developed that utilizes the output 
of the last layer as an attention 
mask for shallower layers to 
improve contextual knowledge of 
the image. 
 

ISIC 2017 AUC (0.937) 

SIIM-ISIC 
2020 

 
AUC (0.926) 

Wang et 
al. [22] 

Pre-Trained 
Model 
+  
Discriminative 
feature attention 
network 

The distinguishing trait Attention 
network generates attention-
enhanced features from original 
features, which are integrated for 
classification.  
 
Misclassification costs vectors 
direct the attention network to 
adjust focus based on class 
relevance, giving minority classes 
greater attention.  
 

Cifar100 

Accuracy 
(76.77%) 
Precision 
(80.42%) 
Sensitivity 
(76.77%) 
F1 Score 
(76.19%) 

Tiny200 

Accuracy 
(70.57%) 
Precision 
(75.47%) 
Sensitivity 
(75.57%) 
  F1 Score 
(70.15%) 

 
IV. DISCUSSION 

The comparative diagram highlights the fundamental differences in how Convolutional Neural Networks (CNNs) and Vision 
Transformers (ViTs) analyze dermoscopic images for skin cancer classification. CNNs primarily learn local texture-level 
information, which makes them highly effective for identifying fine-grained patterns such as pigment networks, edges, streaks, and 
color irregularities that often characterize early malignant changes. This local inductive bias allows CNNs to perform well even with 
limited data, which is common in medical imaging. Their hierarchical structure gradually expands the receptive field, but the feature 
representation still remains largely focused on neighborhood-level interactions. As a result, CNNs excel in capturing micro-level 
lesion details but may struggle to fully understand global structural relationships, such as asymmetry, shape irregularity, and 
distributed color gradients that may span the entire lesion area. 
In contrast, Vision Transformers operate on a fundamentally different principle by dividing the image into patches and modeling 
their relationships using self-attention mechanisms. This architecture enables ViTs to capture long-range global dependencies from 
the very first layer, making them well-suited for analyzing holistic lesion patterns. Features such as border irregularity, global 
asymmetry, multi-region color variation, and structural layout are more effectively represented in transformer-based models. This 
global reasoning ability is particularly important in melanoma detection, where clinical diagnosis often depends on assessing the 
lesion as a whole. However, ViTs generally require larger datasets to learn these representations effectively. When sufficient 
training samples and appropriate regularization strategies are available, they often outperform CNNs in terms of generalization and 
robustness, achieving a more comprehensive understanding of lesion morphology. 
The discussion also emphasizes that both architectures possess complementary strengths. CNNs offer precise local feature 
extraction, while ViTs provide powerful global context understanding. For medical imaging tasks like skin cancer classification—
where both local details (e.g., atypical dots, texture distortion) and global cues (e.g., asymmetry, border distribution) are equally 
significant—hybrid models that integrate CNN and ViT modules can leverage the advantages of both paradigms.  
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Such a fusion strategy has strong potential to enhance sensitivity, reduce misclassification, and improve the model’s reliability 
across diverse lesion types and imaging conditions. Thus, the comparison suggests that future advancements in skin cancer 
classification may rely on multi-scale, hybrid CNN-Transformer frameworks that balance efficiency, interpretability, and clinical 
relevance. 
 
A. Challenges  
1) Class Imbalance: Malignant lesions such as melanoma are significantly underrepresented compared to benign nevi in most 

datasets. This imbalance causes models to be biased toward majority classes, leading to high accuracy but poor sensitivity for 
melanoma detection. 

2) Lack of Diversity in Skin Tones: Most dermoscopic datasets are dominated by lighter Fitzpatrick skin types, resulting in lower 
generalizability for darker skin tones. This lack of representation can cause diagnostic disparities and reduce fairness in AI-
driven clinical systems. 

3) Domain Shift across Imaging Devices: Variations in camera types, dermoscopic equipment, illumination, magnification, and 
clinical workflows introduce distribution shifts. Models trained on one dataset often perform poorly when evaluated on images 
from different hospitals or devices. 

4) Explainability and Clinical Trust: Clinical adoption requires transparent and interpretable predictions. Dermatologists must 
understand why a model assigns a certain label. Existing explainability methods (e.g., Grad-CAM, LIME) are not always 
consistent or clinically meaningful. 

5) Need for Lightweight, Mobile-Compatible Models: Deploying AI systems in real-world settings requires efficient models that 
run on smartphones or low-power devices. Many state-of-the-art networks are computationally heavy and unsuitable for point-
of-care or remote clinical environments. 

6) Ethical, Fairness, and Bias-Related Issues: AI systems must ensure equitable performance across demographic groups. Bias in 
training data, privacy concerns, and lack of transparency can lead to ethical risks, misdiagnosis, and reduced trust among 
clinicians and patients. 

 
B. Future Research Directions 
1) Development of Lightweight Mobile AI Systems: Designing efficient CNN, transformer, and hybrid architectures optimized for 

mobile and edge devices will support real-time screening in clinics and underserved regions without requiring high 
computational resources. 

2) Federated Learning for Privacy-Preserving Diagnosis: Federated learning allows hospitals to collaboratively train models 
without sharing raw patient data. This protects patient privacy and enables large-scale learning from diverse global datasets, 
improving model robustness. 

3) Multimodal Fusion (Image + Clinical Text + Metadata): Combining dermoscopic images with metadata such as age, lesion 
location, patient history, and textual clinical descriptions can improve predictive performance and align the model more closely 
with dermatologist decision-making. 

4) Diffusion Models for Data Augmentation: Generative diffusion models can synthesize realistic rare-class images (e.g., 
melanoma or uncommon lesions), helping combat class imbalance, enrich training data, and improve model generalization 
under limited annotated samples. 

5) Improved Explainability Techniques: Advanced explainability tools such as Grad-CAM++, SHAP, integrated gradients, and 
counterfactual explanations can provide clearer, more trustworthy visual and textual rationales for predictions, increasing 
clinician acceptance. 

6) Dermatology Foundation Models: Large-scale foundation models trained on millions of dermoscopic and clinical images can 
serve as universal backbones for segmentation, classification, detection, and report generation. These models promise stronger 
generalization, reduced annotation effort, and broader clinical utility. 

 
V. CONCLUSION 

Skin cancer remains a major global health challenge, and early detection is crucial for improving survival outcomes, particularly for 
aggressive forms such as melanoma. Deep learning has transformed the landscape of dermoscopic image analysis by enabling 
automated, accurate, and scalable diagnostic systems that increasingly approach dermatologist-level performance.  
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Through this review, we summarized key skin cancer types, widely used datasets, preprocessing pipelines, and state-of-the-art DL 
architectures ranging from CNNs and Vision Transformers to hybrid, multimodal, and self-supervised frameworks. While 
significant progress has been made, real-world deployment is still hindered by issues such as class imbalance, limited skin tone 
diversity, domain shift, explainability gaps, and ethical concerns. Future advancements such as lightweight mobile AI, federated 
learning, multimodal fusion, diffusion-based augmentation, improved interpretability, and large dermatology foundation models 
hold considerable promise for bridging the gap between research and clinical practice. Ultimately, the development of robust, 
transparent, and equitable AI systems will be essential to support dermatologists, enhance early diagnosis, and enable widespread, 
accessible skin cancer screening across diverse populations. 
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