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Abstract: It is known that there are several types of metals present in real world in which we are supposed to choose the metal 
according to our need. Also, they possess several types of mechanical properties and according to these properties we can further 
proceed. In this work we use machine learning for calculating the mechanical properties. Also, in this work we use to increase 
the hardness of the steel. We need a metal piece and try to find the mechanical properties using machine learning algorithm. 
This metal piece is required to cut into many pieces of different grades and then find out the microstructures of those different 
grades of metals. For this work we require a microscope by which we find out the images of the microstructures and then apply 
the machine learning algorithm. 
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I. INTRODUCTION 
With the vast development of technologies different techniques are used to get the mechanical properties of the materials. To get the 
hardness of the material or to get another property of material different approach are there. Many researchers in the past does 
various work to get the mechanical properties. In this work we use quenching mediums to get the mechanical properties also use the 
microstructures of different grades of steel and with the use of machine learning algorithm we identify the properties of check the 
relationship between the microstructures and mechanical properties. Some characteristics of steel and Microstructures are given 
below. 

II. STEEL 
Steel is an alloy made up of iron with typically a few tenths of a percent of carbon to improve its strength and    fracture resistance 
compared to other forms of iron. Carbon Steel contain trace amount of beside iron and Carbon. This group is the most popular group 
and mostly used. Most of the industries made carbon steel in large amount Because it is easy to make and demand in the market is 
high. Carbon steel is divided into three categories Low carbon steel/mild steel (0.3%) Medium carbon steel (0.3-0.6%) High carbon 
steel (.6) %. Stainless steel is used for outside construction work because of its good corrosion resistance quality and capability to 
withstand in the rough weather. These are also used in electrical equipment’s. 304 stainless steel is extremely popular and most of 
the industries use this grade for the sanitary properties and used in medical fields and pipes, cutting tool etc. TOOL STEEL is used 
as a tool like for cutting drilling. The main component of this steel is tungsten, molybdenum, cobalt, vanadium which increase its 
heat resistance and its durability. And, tool made of this material do not loss its shape that is why also it is widely used. Alloy Steel 
is made by adding different alloying elements in it. The alloying material which are used in it are nickel, copper, chromium, and 
aluminum. This steel is used for their enhanced strength, ductility, corrosion, resistance, machinability by adding different elements 
in it. 
 

III. MICROSTRUCTURE OF METALS 
The microstructure of a material is composed of distinct phases of variable form, size, and distribution (grains, precipitates, 
dendrites, spherulites, lamellae, pores, etc.). The phases are distinguished from each other by their various crystalline, semi-
crystalline or amorphous structures when observed with an optical or electron microscope. The engineer can obtain a wide range of 
properties by controlled microstructural modifications produced during processing. To have a clear understanding of the material 
behavior, it is needed to establish relationships between the macroscopic properties and phenomena occurring on the microstructural 
scale.  
The microstructures formed in materials depend on the chemical composition and structure and the atomic mobility and on the 
presence of concentration gradients during processing. Microstructure formation is also strongly influenced by the amount of energy 
required to create new interfaces. 
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The microstructure of a material can influences its physical properties including corrosion resistance, strength, toughness, ductility, 
and hardness. These properties help determine how the material will perform in each application. Microstructures are always 
generated when a material undergoes a phase transformation brought about by changing temperature and/or pressure (e.g., a melt 
crystallizing to a solid on cooling). Microstructures can be created through deformation or processing of the material (e.g., rolling, 
pressing, and welding). The microstructure of a material (such as metals, polymers, ceramics, or composites) can strongly influence 
physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behavior or wear 
resistance. 

 
IV. AUSTENITE AND MARTENSITE MICROSTRUCTURE 

Martensitic microstructures that are of various carbon contents and tempered at various temperatures not only compose the 
microstructure of through-hardened steel parts, but also are major components, in some form or another, of other heat-treated steel 
systems. Austenite has a cubic-close packed crystal structure, also referred to as a face-centered cubic structure with an atom at each 
corner and at the center of each face of the unit cell. Ferrite has a body-centered cubic crystal structure and cementite has an 
orthorhombic unit cell containing four formula units of Fe3C. 
 

V. MACHINE LEARNING 
Machine learning is a branch of artificial intelligence and computer science. It focuses on the use of data and algorithms to imitate 
the way that humans learn, gradually improving its accuracy. Machine learning is an important part of data science which is an ever-
growing field. It uses statistical methods, algorithm to make classifications or prediction, and to uncover key insights in data mining 
projects. This subsequently drive decision making within applications and businesses and impacting key growth metrics. The market 
demand for data scientist is constantly growing as big data continues to expand and grow. Based on the way of learning machine 
learning is divided into four main parts which are as follows- 
1) Supervised Machine Learning 
2) Unsupervised Machine Learning 
3) Semi supervised Machine Learning 
4) Reinforcement Learning 
 
The task of imparting intelligence to machine is a challenging task, so it is divided into 7 parts, which include- Collecting data, 
preparing the data, choosing a model, training the model, evaluating the model, parameter tuning and making predictions. These 
steps are briefly explained under: - 
 
A. Collecting Data 
The only way for machines to initially learn something is through the data that we input through them. It is an important part of 
machine learning to collect reliable data so that the machine learning model can find the correct patterns. The accuracy of the model 
depends upon the quality of data fed to it. 
 
B. Preparing the Data 
To prepare the data, we must first put together the data we have. This makes sure that the data is evenly distributed and the ordering 
does not affect the learning process so we can randomize data without any problems. Then we need to clean the data by removing 
unwanted data and empty columns, rows, and duplicate values. The last step of preparation separates the data into 2 sets, one called 
the training set and one testing set. 
 
C. Choosing a Model 
The machine learning model determines the output we get from running a machine learning algorithm on the collected data. It is 
important to choose a model which is relevant to the worker’s certain project. It is also made sure which model is suited for 
numerical or categorical data and chosen accordingly. 
 
D. Training the Model 
Training is the most crucial step in machine learning as it passes the prepared data to your machine learning model to find patterns 
and make predictions. This is the step that ensures that model keeps learning over time to find patterns and make predictions. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue XII Dec 2022- Available at www.ijraset.com 
     

 
2038 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

E. Evaluating the Model 
After training, it is checked how the model is performing. This is done with the help of testing the performance on previously 
unseen data. It is the same data that we split earlier and we already know falls under which category, so it is easy to trouble shoot if 
we get the desired results from our model or not. 
 
F. Parameter Tuning 
Once the model is created and evaluated, it is seen if its accuracy can be improved in any way. This is done by tuning the parameters 
present in the model as they are the variables in the model that the programmer decides. 
 
G. Making Predictions 
In the end, the model is used on unseen data to make predictions accordingly and accurately. 
 

VI. QUENCHING AND MECHANICAL PROPERTIES 
Khorrami and Mostafaei [1] examine the microstructure and mechanical properties of plain carbon steel and AISI (American Iron 
and Steel Institute) 430 ferritic stainless steel dissimilar welds are carried out and welding is conducted using ER309. Weld metal in 
the specimen welded with filler metal consists of duplex ferritic–martensitic microstructure while the microstructure of autogenous 
weld metal is fully ferritic. Volume fraction of martensite and precipitates in HAZ of AISI. Harriott and D. Spea in 2020 [2] 
investigate the performance of data-driven modeling for mechanical property prediction of a simulated microstructural dataset. This 
work also investigates the ability of machine-learning (ML) and deep-learning (DL) models to predict microstructure-sensitive 
mechanical properties in metal additive manufacturing (MAM) using results from high-fidelity, multi-physics simulations as 
training data. H. Assadi and Ghani in 2009 [3] found that pure aluminum was subjected to friction stir processing (FSP) to study the 
microstructures developed and its effects on the mechanical properties. In this technique, a specially designed non consumable 
cylindrical tool, rotating at high speed is traversed into the material along a particular length at a desired traverse speed. Purohi in 
2015 [4] work on the mechanical properties and were improved by addition of ceramic particle like SiC etc. In this study, AA 5083 
alloy-SiC composites have been fabricated by ultrasonic assisted Stir casting. Different weight % of Sic (3, 5, 8 and 10 wt %) were 
used for synthesis of composites. Saeid and Zadeh in 25 November 2008 was determine that the effect of the welding speed on the 
microstructure properties of friction stir-welded SAF 2205 duplex stainless steel was investigated. Sound joints were produced at 
welding speeds of 50, 100, 150, and 200 mm (about 7.87 in)/min and a groove-like defect caused by insufficient heat input obtained 
at the speed of 250 mm (about 9.84 in)/min. The microstructures of the stir zones consisted of fine equiaxed grains of α and γ phases 
and their grain sizes decreased with increasing welding speed. I this work, the effect of arc welding on microstructures and 
mechanical properties of industrial low carbon steel (0.19 wt. % C) was studied. This work represents a contribution to the study of 
the effect of shielded metal arc welding on industrial low carbon steel (0.19 wt. % C).   
Ilham et al. [2] Aluminum-based composites, also known as aluminum matrix composites (AMC), can be heat treated to improve 
their mechanical properties. Quenching process parameters such as cooling rate, coolant, and cooling temperature are predicted to 
affect the mechanical properties of AMC. In this work, we present the results of a series of laboratory experiments to observe the 
hardening ability of his Al6061-Al2O3 composites subjected to quenching and particle surface treatments. There are 3 types of 
quenching agents and 2 types of strengthening particle treatments. Water, oil, brine, and 0% and 10% of his Al2O3 reinforcement 
are used for quenching. Hardness testing is performed on the Rockwell B scale according to ASTM (American Society for Testing 
Materials) E-18 specifications. The results obtained showed that the largest distortion was because of brine extinguishing agents on 
each variation. 10E (electroless plating) is harder than 10N (electroless plating). Based on this result, it can be concluded that the 
quenching and electroless plating treatments clearly affected the hardness of Al6061-Al2O3 composites. 
Strobel et al. [3] High-strength 6000 series alloys use dispersoids formed during heating to homogenization temperatures to improve 
fracture toughness and suppress grain growth during the extrusion process. However, these dispersoids may serve as heterogeneous 
nucleation sites for unhardened Mg-Si precipitates upon delayed post-extrusion quenching. This reduces the content of Mg and Si in 
solid solution, lowering the achievable strength and hardness. This phenomenon is called extinction sensitivity. In this study, the 
hardening response of several 6000 series aluminum alloys is related to microstructural features, particularly dispersoid density. 
Therefore, after extrusion, the alloys were quenched at various rates and age hardened to peak strength. Quench sensitivity is related 
to the enthalpy associated with precipitation of the Mg-Si phase measured by DSC and to the dispersoid density. The results suggest 
that in alloys containing dispersoids, the quenching sensitivity is determined by the number density of the dispersoids. However, the 
influence of solute elements cannot be ruled out.  
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TEM (Transmission Electron Microscopy) investigations show that not only the general depletion of Mg and Si is responsible for 
the deterioration of mechanical properties, but the heterogeneous distribution of precipitates may be another determinant. 
Nishibata and Kojima [4] studied the effect of cooling rate on hardness and microstructure of hot-worked boron steel containing 
0.2% carbon by mass was investigated. Sheets with thicknesses of 1.6 mm (about 0.06 in) and 1.2 mm (about 0.05 in) were heated at 
900 °C for 4 min. They were then pressed and simultaneously quenched in a mold or water. A simulated hot stamping test was also 
performed with different cooling rates. We measured the Vickers hardness of the quenched samples and observed their cross-
sections with an optical microscope and a transmission electron microscope. The hot stamped samples have a self-tempered 
martensite microstructure and are softer than the water quenched samples which are lath martensite. Tempered martensite was 
distinguished from bainite by observing the precipitation of cementite. Below the Ms temperature, decreasing the cooling rate leads 
to a significant decrease in hardness, even if the cooling rate is higher than the upper critical cooling rate. 
Hafeez and Farooq [5] investigated the effect of the quench bath on the microstructure and hardness of AISI 1035 steel. Two 
categories of quench baths were selected, including water-based and oil-based baths. Water-based baths include tap water, distilled 
water, brine solution, salt water, sodium hydroxide solution, and oil-based quench baths include fish oil, coconut oil, olive oil, used 
motor oil, and 310 Quench. Contains oil. Microstructure and Vicker hardness were characterized by optical microscope and micro-
Vicker hardness tester. The results show that water-based quenching baths produced higher hardness values due to the formation of 
a greater proportion of martensite with low levels of retained austenite, whereas oil-based baths produced moderate hardness values 
due to the formation of bainite, pearlite, and it retains an austenitic structure which has shown to produce hardness values of about. 
Zhu et al. [6] studied the microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were studied using thermal 
expansion spectroscopy, Thermo-Calc, scanning electron microscopy, X-ray diffraction, and ultra-high temperature confocal 
microscopy. The results show that the test steel should be austenitized in the temperature range of 1025-1075 °C. This results in a 
maximum hardness of 62 HRc with a microstructure consisting of martensite, retained austenite and some undissolved carbides. As 
the austenitizing temperature increases, the amount of retained austenite increases, while the carbide volume fraction first increases 
and then decreases. The onset and end temperatures of martensite formation decrease as the cooling rate increases. The air-quenched 
samples have less retained austenite, a more compact microstructure and higher hardness compared to the oil-quenched samples. In 
HMSS, martensitic transformation occurs in a few isolated regions with slow nucleation rates. 
 

VII. MICROSTRUCTURE OF METALS 
The International Welding Institute (IIW) microstructural classification scheme for ferrous weld metals was studied as a basis for 
quantifying the complex microstructure of steels. The aim was to cover the full range of microstructures observed in heat-affected 
zones of mild and low-alloy steel products, as well as ferritic weld metals and base plates. We briefly described the formation 
mechanism of the main structures and characteristic ferrite morphologies generated in the reconstruction and dislocation 
transformation regions of iron-based materials. The classifications and terminology used for intragranular and austenitic grain 
boundary microstructural components are considered, as are the ways in which transformation products are oriented in space. Issues 
arising in the relationship between microstructural components and main structures are discussed in detail and solutions are 
proposed. The microstructural classifications and terminology used in the IIW scheme were created, and new terminology was 
incorporated into tables containing descriptions of major structural and subcategory components. A new classification scheme was 
defined as a flow chart with guidelines for identifying the main structures. Evaluation exercises were performed using the new 
scheme. They demonstrate that they can achieve a reasonable degree of agreement between operators in identifying transformation 
products that form primary ferrite, pearlite, martensite, and ferrite cladding and acicular ferrite structures, particularly 
Widmannstatten ferrite and bainite. is showing. Thus, means are provided for obtaining database information for developing 
microstructure-property relationships or for generating data for calibrating physical models with dominant structures as an output. 
Fernandez et al. [7] studied the microstructure and high-temperature mechanical properties of siliconized silicon carbide ceramics 
(reaction-bonded, reaction-formed, and biomorphic SiC) have been studied. We analyzed the microstructural differences between 
these materials. Reaction-formed biomorphic SiC exhibits superior creep resistance and high-temperature strength to reaction-
bonded SiC. Moreover, both materials show a continuous decrease in creep rate. This is more pronounced at higher temperatures 
and higher silicon content. This behavior is explained in detail using a model of creep driven by a viscous grain boundary phase. 
Biomorphic SiC exhibited the greatest strength when axially compressed. The strength of the reaction-formed SiC is about the 
average of the axially and radially compressed biomorphic SiC. The dependence of hot compressive strength on microstructure and 
SiC volume fraction is discussed in relation to the minimum solid area approach. 
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Peel et al. [8] studied the friction welding processes, friction stir welding (FSW) involves precise control of many welding 
parameters (e.g., tool design, rotational speed, travel speed), thus allowing control of the energy input to the system. However, the 
effect of different welding speeds on welding properties remains an area of uncertainty. In this article, the microstructures, 
mechanical properties, and residual welds of four AA5083 aluminum friction stir welds produced under different conditions are 
investigated. We report the results of a stress study, showing that weld properties are governed by heat input rather than mechanical 
deformation by the tool. 
Bhadeshia and Svensson [9] studied the physical models for developing microstructures have the potential to reveal new phenomena 
and properties. It also helps identify the driving variables. The ability to model the microstructure of weld metal derives from a deep 
understanding of the phase transformation theory that governs the changes that occur as the weld solidifies and cools to ambient 
temperature. Significant advances have been made using thermodynamics and dynamics theory, considering various alloying 
additions, non-equilibrium cooling conditions, and many other variables necessary to fully characterize the weld components. 
increase. 
These aspects are reviewed to provide a detailed description of the methods involved and some important unresolved issues. It is 
now well known that trace concentrations of certain elements can have a significant effect on the transformation behavior of weld 
metals. Some of these elements are the same as those used in the production of micro alloyed forged steel, while others enter the 
fusion zone as an inevitable consequence of the welding process. The theory available for dealing with such effects is still 
insufficient. Learn how to include the effects of trace elements, such as oxygen, aluminum, boron, nitrogen, titanium, and rare earth 
elements, into your microstructure prediction scheme. The extremely high sensitivity of advanced micro alloy steel to carbon 
concentration is also evaluated. We discuss some basic ideas on how to incorporate the approximate relationship between weld 
microstructure and mechanical properties into a computer model. 
Monzen and Watanabe [10] studied the correlation between microstructure and mechanical properties of 0.1 weight% Magnesium-
added and Magnesium-free Copper-2.0 wt% Ni-0.5 wt% Si alloys were tested at 400°C aging. The addition of Mg promotes the 
formation of disc-shaped Ni2Si precipitates. Cu-Ni-Si-Mg alloys have higher strength and stress relaxation resistance than Cu-Ni-Si 
alloys. The improvement in strength and stress relaxation resistance is considered due to the reduction of the distance between 
precipitates due to the addition of Mg and the drag effect of Mg atoms on dislocation movement. The Cu-Ni-Si alloy with large 
grain size of 150 µm exhibits higher stress relaxation resistance than the alloy with small grain size of 10 µm due to the lower 
density of mobile dislocations in the former alloy. 
Lutjering [11] studied that when we attempt to summarize the relationships between processing, microstructure, and mechanical 
properties of two-phase (α+β) titanium alloys. Most structural applications of titanium alloys require optimization or balancing of a 
variety of key mechanical properties (yield strength, ductility, HCF, LCF, da/dN for micro- and macro-cracks, KIC and creep). 
There are many variables in fine structure, but of the many possible correlations, only a few basic principles can be shown to be 
really important. One of these is the relationship between cooling rate, colony size, and hatch length. This translates directly to the 
advantages of bimodal (duplex) microstructures, including reproducible and robust processing pathways that can be used for most 
applications. 
Zaefferer et al. [12] studied that SEM (Scanning Electron Microscopy) and TEM electron diffraction techniques were used to 
examine different heat treated samples of low-alloy TRIP steel. The aim was firstly to identify the structural components of 
austenite, ferrite, bainite and martensite, secondly to obtain information on the γ-α phase transformation mechanism, and thirdly to 
relate the mechanical properties and structure of the samples. did. Bainite always occurs in relation to the orientation gradient of the 
surrounding ferrite matrix. It consists of fine flakes of ferrite and austenite in sharp Kurdyumov-Sachs orientations with each other. 
This has been interpreted in terms of the substitutional bainite formation mechanism. The microstructure is formed by the growth of 
γ-grains during intercritical annealing and the subsequent shrinkage of these grains during cooling without the nucleation of new α-
grains. The transformation occurs first reconstitutionally to ferrite and then transiently to bainite at low temperatures. The 
mechanical properties of samples with different heat treatments are most affected by the amount and distribution of carbon in 
retained austenite and the degree of recovery of bainite and austenite. 
Wood et al. [13] studied the effects of austenitizing temperature on both the plane strain fracture toughness, KIC, and microstructure 
of AISI 4340 were investigated. Austenitizing temperatures of 870°C and 1200°C were used. All 1200 °C austenitized samples were 
furnace cooled from a higher austenitizing temperature and then oil quenched from 870 °C. Transmission electron microscopy 
showed a clear significant increase in the amount of retained austenite present in the samples austenitized at higher temperatures. 
Automatization at 870°C produced virtually no retained austenite. Only small amounts were found sparsely scattered over the 
examined area.  
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Significantly altered microstructures were observed for the samples austenitized at 1200 °C. A fairly continuous 100-200 Å thick 
film of retained austenite was observed between the martensitic ridges over most of the examined area. Furthermore, the sample 
austenitized at 870 °C contained twinned martensitic plates, whereas the sample austenitized at 1200 °C showed no twinning. Plane 
strain fracture toughness measurements showed an approximately 80% increase in toughness for specimens austenitized at 1200°C 
compared to those austenitized at 870°C. Yield strength was not affected by austenitizing temperature. The possible role of the 
removal of retained austenite and twinned martensite in improving the fracture toughness of samples austenitized at higher 
temperatures is discussed. 
Youngblood and Raghavan [14] shows that 300M steel undergoes various quenching and tempering heat treatments. The areal 
elongation fracture toughness, tensile strength and yield strength were evaluated. Results show that for hardened and tempered 
steels, austenitizing above 1255 K (1800°F) can significantly improve toughness without loss of strength. The low fracture 
toughness of conventionally austenitized 300M steel (1144 K (1600°F)) is attributed to undissolved precipitates present on both the 
sub microstructure and fracture surface that promote quasi-cleavage fracture. It seems to be. These precipitates appeared to 
disappear in the range 1200-1255 K (1700-1800°F). 
 

VIII. APPLICATION OF MACHINE LEARNING IN PREDICTING MECHANICAL PROPERTIES 
Bulgarevich et al. [15] shows a novel and highly effective approach to pattern recognition in optical microscope images of steel is 
demonstrated for advanced material characterization. It is based on a fast random forest statistical machine learning algorithm for 
reliable automatic segmentation of typical steel microstructures. Their proportions and location ranges showed excellent agreement 
between machine learning and manual findings. Combining accurate microstructural pattern recognition/segmentation techniques 
with other appropriate image processing and analysis mathematical methods, large amounts of image data can be processed quickly 
for quality control and new steels with desirable properties. can find.  
LeiWang and YoshitakaAdachi [16] studied that the designing the new materials with useful properties is becoming increasingly 
important. The Materials Genome Integration System Phase and Property Analysis (MIPHA) and rMIPHA (based on the R 
programming environment) machine learning tools were independently developed to accelerate the materials discovery process 
through a data-driven materials discovery approach. In current work, MIPHA and rMIPHA are applied to steels to perform machine 
learning-based 2D/3D microstructural analysis, direct property prediction analysis, and inverse property versus microstructural 
analysis. The results show that the predictive model works well. Microstructural inverse investigations related to desired target 
properties (stress-strain curves, tensile strength, total strain, etc.) were achieved. MIPHA and rMIPHA are still being improved. 
Inverse analysis from microstructure to processing will be realized in the future. 
 

IX. CONCLUSION 
Through this paper, we have studied the effects of quenching on mechanical properties of metal, and the difference in those 
mechanical properties from different quenching mediums and the speed at which workpiece is cooled. We also studied about 
microstructures and correlated them to the mechanical properties of metals, so that we can develop a machine learning algorithm, to 
find the mechanical properties of metal based on the microstructures. Different people have taken different approach towards 
microstructures and mechanical properties, such as the formation of martensite and austenite and how it affects the hardness of 
metal workpiece. At last, it is shown as how to apply machine learning after taking a large sample data for training and testing sets. 

 
REFERENCES 

[1] M. Khorrami, M. Mostafaei Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless-steel joints 
[2] Hammar Ilham, Akbar EkoSurojo ,  DodyAriawan,  Aditya Rio Prabowo   Effects of quenching treatment to microstructure and hardness characteristics. 
[3] Katharina Strobel, Mark A. Easton, Lisa Sweet, Malcolm J. Couper, Jian-Feng Nie Relating Quench Sensitivity to Microstructure in 6000 Series Aluminum 

Alloys 
[4] Toshinobu Nishibata Nobusato Kojima Effect of quenching rate on hardness and microstructure of hot-stamped steel 
[5] Muhammad Arslan Hafeez   Ameeq Farooq    Effect of quenching baths on microstructure and hardness of AISI1035 steel 
[6] Qin-tian Zhu, Jing Li, Cheng-bin Shi & Wen-tao Yu   Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless 

Steel 
[7] J. Martínez Fernández, aA.Muñoz, aA.R.de Arellano López, aF.M.Valera Feria, aA.Domínguez-Rodríguez,  aM.Singh   Microstructure–mechanical properties 

correlation in siliconized silicon carbide ceramics 
[8] M.Peel, A.Steuwer, M.Preuss, P.J.Withers   Microstructure, mechanical properties, and residual stresses as a function of welding speed in aluminum AA5083 

friction stir welds 
[9] H. K. D. H. Bhadeshia and ∗L.–E. Svensson   Modelling the Evolution of Microstructure in Steel Weld Metal 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue XII Dec 2022- Available at www.ijraset.com 
     

 
2042 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

[10] Ryoichi Monzen, Chihiro Watanabe   Microstructure, and mechanical properties of Cu–Ni–Si alloys 
[11] G. LÜTJERING Influence of sharp microstructural gradients on the fatigue crack growth resistance of α+β and near‐α titanium alloys 
[12] S. Zaefferer, J.Ohlert, W.Bleck   A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a 

low alloyed TRIP steel 
[13] G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, E. R. Parker The effect of austenitizing temperature on the microstructure and mechanical properties of as-

quenched 4340 steel 
[14] J. L. Youngblood & M. Raghavan   Correlation of microstructure with mechanical properties of 300m steel 
[15] Dmitry S. Bulgarevich, Susumu Tsukamoto, Tadashi Kasuya, Masahiko Demura & Makoto Watanabe    Pattern recognition with machine learning on optical 

microscopy images of typical metallurgical microstructure 
[16] Zhi-LeiWang, YoshitakaAdachi   Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approac 
 



 


