

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77074>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Review on Noise Monitoring System

Abhishek Nagrale¹, Bhumika Chatare², Shiv Pashamwar³, Anisha Kaswate⁴, Niketan Rangari⁵

Department of Electronic & Tele-Communication, Polytechnic, Ballarpur Institute of Technology, India

Abstract: Noise pollution is a growing problem in today's environment. We experience unwanted noise in many places such as roads, markets, schools, and industrial areas. Continuous exposure to high noise levels can cause problems like headache, stress, and disturbance in daily life. Therefore, monitoring noise level has become necessary. In this project, a Noise Monitoring System is developed to observe the surrounding noise level. A sound sensor is used to detect the noise, and the sensor output is given to a microcontroller for processing. The microcontroller continuously checks the noise level and compares it with a predefined limit. When the noise level crosses this limit, the system provides an alert using a visual indicator such as an LED or display. The system is simple in design, low in cost, and easy to operate. It can be used in residential areas, schools, hospitals, and small industries. This project helps in monitoring noise pollution and creates awareness about maintaining a healthy environment.

Keywords: Noise Monitoring System, Noise Pollution, Sound Sensor, Microcontroller, Real-Time Monitoring, Environmental Safety.

I. INTRODUCTION: THE NEED FOR NOISE MONITORING SYSTEM

A. Increasing Noise Pollution in Daily Life

In today's modern life, noise pollution has become a very common problem. Due to rapid urbanization, growing population, increased use of vehicles, industries, and construction activities, the level of noise in our surroundings is rising day by day. Loud sounds from traffic, factories, generators, loudspeakers, and public events are now part of everyday life. Many people consider noise as a normal thing and do not pay attention to its harmful effects.

Noise pollution may not be visible like air or water pollution, but its impact on human health is very serious. Continuous exposure to high noise levels can cause headache, stress, irritation, lack of concentration, sleep disturbance, and even permanent hearing loss. Students find it difficult to concentrate on studies, patients face problems in recovery, and elderly people suffer the most. Because of these reasons, noise pollution is becoming a major concern in society.

B. Limitations of Traditional Noise Monitoring Methods

Traditionally, noise monitoring is done using manual sound level meters by authorities or during special inspections. These measurements are taken only for a short period and do not provide continuous information about noise levels. Once the inspection is completed, noise levels may again increase without any control.

Manual noise monitoring also requires trained personnel and proper equipment, which increases cost and effort. In many areas, especially residential zones, noise is not monitored regularly at all. Due to this, people are often unaware that the noise level has crossed the permissible limit. This shows that traditional methods are not sufficient to control noise pollution effectively.

C. Need for an Automated Noise Monitoring System

To overcome the problems of manual monitoring, there is a strong need for an automated Noise Monitoring System. An automated system can continuously monitor noise levels without human involvement. It can work day and night and provide real-time information. Such a system can immediately alert users when noise exceeds the safe limit. This helps in taking quick action to reduce noise. Automated noise monitoring systems are very useful for schools, hospitals, residential areas, industries, and smart city projects where continuous noise control is required.

II. BASIC CONCEPTS OF NOISE MONITORING SYSTEM

A. Overview of Noise Monitoring System

A Noise Monitoring System is an electronic system designed to measure sound levels present in the environment. It mainly consists of a sound sensor, a microcontroller, and an alert or display unit. The system continuously detects noise and checks whether it is within the permissible range or not.

The main purpose of this system is not only to measure noise but also to create awareness among people about noise pollution and its harmful effects.

B. Role of Sound Sensor

The sound sensor is one of the most important parts of the system. It detects sound waves from the surrounding environment. When sound waves strike the sensor, they are converted into an electrical signal. The strength of this signal depends on the intensity of the sound.

Higher noise produces a higher signal value, while lower noise produces a smaller signal. This electrical signal is then sent to the microcontroller for further processing.

C. Role of Microcontroller

The microcontroller acts as the brain of the Noise Monitoring System. It receives the signal from the sound sensor and processes it according to the program stored in it. The microcontroller continuously checks the noise level and compares it with a predefined threshold value.

If the noise level is within the safe limit, the system continues monitoring. If the noise level crosses the threshold, the microcontroller activates an alert device such as an LED, buzzer, or display.

III. WORKING PRINCIPLE OF NOISEMONITORING SYSTEM

A. Noise Detection Process

When the system is powered ON, the slave unit starts monitoring the surrounding noise continuously. The sound sensor senses the sound present in the environment and converts it into an electrical signal. This signal is read by the microcontroller through its analog input and processed internally. The microcontroller compares the sensed noise value with a predefined threshold level.

If the detected noise remains within the safe limit, the system continues normal monitoring without any alert. When the noise level exceeds the set threshold, the microcontroller identifies it as excessive noise. At this moment, the slave unit activates the LED and buzzer to give a local alert and also sends an alert signal to the master unit through Bluetooth communication. The master unit receives this signal and produces a short alert indication. A cooldown time is used to prevent repeated alerts for continuous noise, after which the system again returns to monitoring mode.

B. Signal Processing and Comparison

In this system, the sound sensor first converts the surrounding noise into an electrical signal. This signal is analog in nature and varies according to the intensity of the sound. The microcontroller reads this analog signal through its analog input pin and processes it internally. The received value represents the current noise level in the environment.

After processing the signal, the microcontroller compares the measured value with a predefined threshold level stored in the program. This comparison helps the system decide whether the noise is within a safe limit or has crossed the permissible level. If the signal value is lower than the threshold, no action is taken and the system continues monitoring. When the signal value becomes higher than the threshold, it is treated as excessive noise and the alert mechanism is activated. This process ensures accurate and real-time detection of high noise levels.

C. Alert and Indication Mechanism

When the noise level exceeds the predefined threshold, the system activates its alert and indication mechanism. In the slave unit, the microcontroller immediately turns ON the LED and buzzer to provide a clear visual and sound indication of excessive noise. At the same time, an alert signal is sent wirelessly to the master unit through Bluetooth communication. This ensures that the noise condition is reported without delay.

After receiving the signal, the master unit briefly activates its LED and buzzer to indicate that high noise has been detected. The alert generated by the master unit is short and soft so that it does not create additional disturbance. A cooldown time is included in the system to avoid repeated alerts for continuous noise. This alert and indication mechanism helps in timely identification of noise pollution and improves overall system reliability.

IV. SYSTEM DESIGN AND COMPONENT DESCRIPTION

A. Hardware Components

The hardware of the Noise Monitoring System is made using simple and easily available electronic components. The main components used in this project are microcontrollers, a sound sensor, Bluetooth modules, LEDs, and buzzers.

The sound sensor is used to detect the noise level present in the surrounding area. It is connected to the analog input of the microcontroller. Two microcontrollers are used in this system; one works as the slave unit and the other works as the master unit. Bluetooth modules are connected to both microcontrollers to enable wireless communication between them.

LEDs and buzzers are used as alert devices. The LED provides a visual indication, while the buzzer gives a sound alert when high noise is detected. All the components are connected properly to ensure stable and reliable operation of the system.

B. Software Design

The software for this project is written using Arduino programming language. Separate programs are developed for the slave unit and the master unit.

In the slave unit program, the microcontroller continuously reads the value from the sound sensor. This value is compared with a predefined threshold level. When the noise level exceeds the threshold, the software activates the LED and buzzer for a fixed time. At the same time, an alert signal is sent to the master unit through Bluetooth. A small delay is added in the program to avoid repeated alerts for continuous noise.

The master unit program waits for the signal sent by the slave unit. When the signal is received, the software turns ON the LED and buzzer for a very short duration. This alert is soft and does not create extra disturbance.

C. System Integration

System integration is the process of combining hardware and software to work together as a complete system. In this project, all hardware components are integrated with the programmed microcontrollers to perform noise monitoring effectively.

When the system is powered ON, the slave unit starts monitoring the noise level in real time. Once high noise is detected, the slave unit sends an alert signal to the master unit through Bluetooth communication. Both units then provide alert indications according to their design. The smooth coordination between the slave and master units shows proper system integration.

The integrated system works reliably and demonstrates the practical use of sensors, microcontrollers, and wireless communication in a real-time application.

V. APPLICATIONS OF NOISE MONITORING SYSTEM

- 1) Used in schools and colleges to control unnecessary noise.
- 2) Applied in hospitals to maintain a quiet environment.
- 3) Used in residential areas to monitor noise pollution.
- 4) Helpful in industrial areas to check machinery noise levels.
- 5) Used in traffic and roadside areas to monitor vehicle noise.
- 6) Applied in offices and libraries to maintain silence.
- 7) Useful in smart city projects for environmental monitoring.
- 8) Can be used during public events to control noise limits.

VI. ADVANTAGES AND LIMITATIONS

A. Advantages

- 1) The system helps in detecting excessive noise levels in real time.
- 2) It is simple in design and easy to understand.
- 3) The system is low-cost and uses easily available components.
- 4) Wireless communication using Bluetooth makes the system flexible.
- 5) It provides both visual and sound alerts through LED and buzzer.
- 6) The master-slave architecture improves reliability of the system.
- 7) It helps in creating awareness about noise pollution.
- 8) Suitable for use in schools, hospitals, residential, and industrial areas.

B. Limitations

- 1) The system measures relative noise level and not exact decibel values.
- 2) Bluetooth communication works only within a limited range.
- 3) Accuracy of the system depends on the sound sensor used.
- 4) Continuous high noise may still cause repeated alerts after cooldown time.
- 5) The system does not store noise data for future reference.
- 6) External factors like wind or vibration may affect sensor readings.

C. Possible Improvement

- 1) The system can be upgraded with a decibel-based sound sensor for accurate measurement.
- 2) IoT technology can be added for long-distance monitoring and control.
- 3) Data logging can be implemented to store noise levels for analysis.
- 4) Advanced alert methods like SMS or mobile notifications can be added.
- 5) Noise filtering techniques can be used to reduce false triggering.
- 6) Multiple sensors can be used to cover a larger monitoring area.

VII. FUTURE SCOPE

- 1) The system can be upgraded by using IoT technology for remote monitoring through mobile or web applications.
- 2) Noise data can be stored and analyzed for long-term study and reporting.
- 3) More accurate sound level sensors can be used to measure noise in decibel (dB) values.
- 4) Automatic alert systems like SMS, email, or mobile notifications can be added.
- 5) The system can be integrated with smart city projects for large-scale noise monitoring.
- 6) Multiple slave units can be connected to a single master unit for wider area coverage.
- 7) Power-saving techniques can be applied to improve energy efficiency.

VIII. CONCLUSION

The Noise Monitoring System developed in this project successfully detects and monitors environmental noise levels. The system uses a sound sensor, microcontroller, and Bluetooth communication to identify excessive noise and provide alerts. The master-slave arrangement makes the system reliable and easy to understand.

This project helped in understanding the practical use of sensors, microcontrollers, and wireless communication. The system is simple, low-cost, and works in real time. It can be effectively used in places where noise control is important. Overall, the project meets its objectives and demonstrates an efficient solution for noise monitoring.

IX. ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my project guide Prof. Niketan Rangarifor their valuable guidance, continuous support, and encouragement throughout the completion of this project. Their suggestions and feedback helped me to understand the project work in a better way.I am also thankful to the Head of the Department Prof. Balvir Chand and all the faculty members of the Electronic& Tele-communication Department for providing the necessary facilities and support. I would like to thank my Team members for their cooperation and help during the project work. Finally, I am grateful to my parents for their motivation and support.

REFERENCES

- [1] Douglas V. Hall, Microprocessors and Interfacing, McGraw-Hill Education, New York.
- [2] Muhammad Ali Mazidi, Janice Gillispie Mazidi, and Rolin D. McKinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education.
- [3] Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, Pearson Education.
- [4] Sound Sensor Module (LM393) Datasheet and Technical Specifications.
- [5] Microphone and Sound Level Measurement Basics, Electronics reference notes.
- [6] Arduino Uno Technical Reference and Hardware Documentation.
- [7] Embedded Systems fundamentals and real-time monitoring concepts, course material.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)