IJRASET

International Journal For Research in
Applied Science and Engineering Technology

" INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 14 Issue: i Month of publication: February 2026

DOIl: https://doi.org/10.22214/ijraset.2026.77447

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Role-based Leave Management System Using
Spring Boot and RESTful Architecture

Raghabendra Kumar Shah®, Aman Verma?, Pabitra Khatri®, Pasupuleti Niranjan’, B. Ganga Bhavani®
123 4Department of Computer Science and Engineering, Bonam Venkata Chalamayya Engineering College, Affiliated to JINTU
Kakinada, Andhra Pradesh-533210, India
*Project Guide, Department of Computer Science and Engineering, Bonam Venkata Chalamayya Engineering College, Affiliated to
JNTU Kakinada, Andhra Pradesh-533210, India

Abstract: Traditional leave management processes in academic and corporate institutions continue to suffer from inefficiencies
caused by paper-based workflows, weak validation, inconsistent leave balance tracking, and limited system integration. Although
several web-based solutions exist, many lack transactional consistency, enforce minimal business rules, or fail to follow modular
architectural principles. This paper presents the design and implementation of a role-based Employee Leave Management System
developed using Spring Boot and RESTful architectural principles. The system follows a layered architecture separating
controller, service, repository, and data transfer con- cerns to improve maintainability and extensibility. Core business rules—
including non-overlapping leave validation, balance sufficiency checks, controlled status transitions, and role restricted
operations—are enforced at the service layer with declarative transaction man- agement ensuring atomicity and data
consistency. A key design decision defers leave balance deduction until managerial approval rather than request submission,
preventing balance inconsistencies for rejected requests. Functional validation confirms correct enforcement of business rules
and transactional behavior across common and edge-case scenarios. The proposed system demonstrates how structured ar-
chitectural design and transaction-aware workflows can address limitations observed in existing leave management solutions and
provides a foundation for further enhancement toward production-ready HR system integration.

Keywords: Spring Boot, REST API, role-based access control, transactional integrity, business rule validation.

I. INTRODUCTION

Human Resource Management (HRM) encompasses essential organizational functions including employee administration,
attendance tracking, and payroll processing [1]. Within this domain, leave management represents a fundamental yet operationally
complex process requiring coordination between employees, managers, and administrative systems [2]. Traditional approaches—
predomi- nantly paper- based or spreadsheet-driven—introduce procedural inefficiencies such as delayed approvals, error-prone
balance calculations, and limited visibility into request status [3]. Conventional workflows require employees to submit handwritten
applications manually routed through departmental hierarchies before HR departments record outcomes. This results in extended
approval timelines, frequent synchronization errors, and absence of centralized real-time visibility [4]. Approved leaves often
require separate manual communication to attendance and payroll departments, increasing reconciliation overhead and the
likelihood of inconsistencies. Academic research has explored digital leave management solutions ranging from basic web-based
systems to integrated HR platforms [5]. However, existing implementations reveal persistent architectural limitations. Many
systems employ procedural designs without clear architectural layering, reducing main- tainability as complexity increases.
Transaction management is frequently inadequate, creating risks of partial updates when multi-step operations are not executed
atomically [6]. Validation frameworks are often insufficient, permitting invalid submissions that require man- ual correction [7].
This paper presents a Leave Management System developed as an academic prototype demonstrating modern software architectural
principles and transactional data handling. The system is implemented as a RESTful web service using Spring Boot 4.0.1 with Java
21, following a three-tier client—server architecture separating presentation, business logic, and data persistence concerns. The pri-
mary focus is leave request lifecycle management—from submission through managerial approval—with supporting modules for
employee profiles, departmental organization, attendance recording, holiday calendars, and payroll data structures. The
implementation contributes to academic understanding of enterprise Java application design through several aspects. First, it
illustrates strict architectural layering using a Controller—Service—Repository pattern, demonstrating how separation of concerns
improves maintainability. Second, comprehensive server-side validation enforces business rules including temporal constraints,
overlapping request detection, and status transition enforcement.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Third, transaction management using Spring’s declarative annotations demonstrates atomic coordination of database opera- tions
during approval workflows. Fourth, the system demonstrates RESTful API design through twenty endpoints organized across eight
functional controllers. The remainder of this paper is organized as follows. Section Il reviews related work and identifies
architectural gaps. Section Ill presents the system architecture and technology stack. Section 1V details the design and
implementation of core modules with emphasis on validation and transaction management. Section V presents functional validation
and qualitative analysis. Section VI discusses limitations and future enhancements. Section VI concludes the paper.

Il. LITERATURE REVIEW
Digital leave management systems have been widely studied as representative workflow automation applications within Human
Resource Management. This section reviews existing academic implementations and identifies recurring architectural and
functional limitations relevant to leave processing systems.

A. Web-Based Implementations

Early academic efforts focused on replacing paper-based workflows with web forms and database-backed storage. Adamu [1]
developed a PHP-based leave management system incorporating authentication and approval workflows, demonstrating improved
processing speed over manual methods. However, the procedural design lacked service-layer abstraction, limiting maintainability
and testability. Alade et al. [3] proposed a similar PHP-MySQL system for public-sector use, successfully eliminating paperwork
but exhibiting weak validation logic and limited transaction coordination for multistep operations.

These studies illustrate a common trend in early implementations: emphasis on user interface and basic CRUD functionality, with
minimal attention to architectural layering or transactional integrity.

B. Platform-Specific Solutions

Some research explored platform-specific solutions. Kaushik et al. [13] developed an Android-based student leave management
application enabling mobile submission and approval notifications. While effective within its scope, the platform-specific design
restricted accessibility and prevented integration with web-based administrative systems. Similar limitations were reported by
Sapona et al. [9], where lack of cross-platform support constrained scalability and system interoperability.

C. Framework-Based Implementations

More recent studies adopted modern web frameworks. Birje et al. [6] implemented a leave management system using the MERN
stack, demonstrating responsive frontend design and REST API integration. However, the study acknowledged limitations in
transaction man- agement, as MongoDB’s eventual consistency model introduced integrity risks during concurrent balance updates.
Explicit transaction boundaries for compound operations were absent.

Other works explored intelligent automation. Harshika et al. [2] proposed an Al-powered leave management ecosystem employing
semantic analysis and probabilistic scheduling. While innovative, the system required extensive training data and introduced
computa- tional complexity unsuitable for smaller organizations. Additionally, transactional integrity during automated balance
operations was not comprehensively addressed.

D. Identified Gaps

Analysis of existing literature reveals several recurring gaps. First, many systems lack clear architectural layering, with business
logic intermingled with controllers or data access code, reducing maintainability. Second, validation logic is often enforced only at
the user interface level, allowing invalid requests to bypass constraints through direct API access. Third, transaction management
remains insuffi- cient—approval workflows frequently update request status and balances through separate non-atomic operations,
creating inconsistency risks during failures [8].

Overlapping leave detection is often absent or simplistic, failing to capture partial or encapsulated date conflicts. Additionally,
inconsis- tent handling of leave balance deduction—whether at submission or approval—creates discrepancies when rejected
requests permanently consume balances [10].

The system presented in this paper addresses these gaps through strict architectural separation using layered MVC design,
comprehen- sive server-side validation including sophisticated overlap detection, explicit transaction boundaries coordinating multi-
table updates, and deferred balance deduction executed atomically during approval.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Presentation Tier
Raact Weab Ul

Application Tier

Controller
RES| Endpowmss

N
Service
Basiness Logic
¥

Repository

Dam Access (JPA)

Data Tier
MySQL Databasa

Figure 1: Three-tier architecture illustrating separation of concerns between presentation, application logic, and persistent storage.

I1l. SYSTEM ARCHITECTURE
The proposed Leave Management System adopts a three-tier client— server architecture separating presentation, application logic, and
data persistence concerns.

A. Three-Tier Architecture

The Presentation Tier consists of a ReactJS-based web application providing interfaces for leave submission, request tracking, and
man- agerial approval. Communication with the backend occurs exclusively through RESTful HTTP APIs, ensuring loose coupling
between components. The Application Tier is implemented using Spring Boot 4.0.1 and encapsulates all business logic, validation
rules, and transaction coordination. Internally, it follows a layered Model-View- Controller pattern comprising Controller, Service,
and Repository sub-layers. Controllers handle HTTP routing and JSON responses, Services implement domain logic and
transactional operations, and Repositories abstract database access using Spring Data JPA interfaces.

The Data Tier employs MySQL relational database managed through Hibernate ORM, providing persistent storage with ACID
trans- action guarantees and referential integrity enforcement through foreign key constraints. The overall architecture is illustrated
in Fig. 1.

B. RESTful API Design

The application exposes twenty REST endpoints across eight doma- in-specific controllers: AuthController (authentication),
Employee- Controller (workforce profiles), DepartmentController (organizational structure), LeaveRequestController (leave
lifecycle), Attendance- Controller (attendance tracking), PayrollController (payroll operations), and HolidayController (holiday
calendars).

REST endpoints follow resource-oriented naming with appropriate HTTP verbs: POST for creation (/api/leaves, /api/employees),
GET for retrieval (/api/leaves/employee/{employeeld}), and PUT for updates (/api/leaves/{leaveld}/approve). JSON serves as the
data interchange format. HTTP status codes communicate outcomes—200 OK for success, 201 Created for new resources, 400 Bad
Request for validation failures, 404 Not Found for missing resources. Data Transfer Objects decouple API contracts from
persistence entities. The REST API endpoint organization is presented in Fig. 2.

C. Data Model and Entity Relationships

The data model comprises seven JPA entities with defined relationships. User stores authentication credentials (email, password)
and role designation (EMPLOYEE, MANAGER). Employee extends user information with organizational profile details (name,
email, designation, department, basic salary, status), maintaining one-to-one relationship with User. Department represents
organizational structure (department name, description) with one-to-many relationship to Employee. LeaveRequest captures leave
applications with foreign key to Employee, enumerated status (PENDING, APPROVED, REJECTED), and type (CASUAL, SICK,
PAID). Attendance records employee presence status by date. Payroll maintains monthly compensation records with leave
deductions. Holiday stores organizational calendar entries.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Entity relationships employ JPA annotations (@OneToOne, @OneToMany, @ManyToOne) with proper cascade configurations.
For- eign key constraints enforce referential integrity. Enumerated types prevent invalid data entry, demonstrating proper relational
modeling supporting data integrity while remaining extensible. The entity relationship diagram is shown in Fig. 3.

Controller Endpoint Method | Purpose
Auth [apifauth/register POST User registration
Auth /apifauth/login POST User login
Employee /api/femployees POST | Create employee
Employee [api/femployees/{id} GET Get employee
Department [api/departments POST | Create dept
Department [api/departments GET List depts
Leave [api/leaves POST | Submit
leave
Leave [api/leaves/employee/{id} GET Get leaves
Leave [api/leaves/{id}/approve PUT Approve
leave
Leave [api/leaves/{id}/reject PUT Reject
leave
Attendance [api/attendance POST Record at-
tendance
Payroll [api/payrolls/generate POST | Generate
payroll
Holiday /api/holidays POST | Add holi-
day
Holiday /api/holidays GET List holi-
days

Figure 2: RESTful endpoint organization across backend controllers.

Employee
_ User id (PK) Attendance
id (EK) name id (PK)
email L1 | emal 1N employee_id (FK)
name designation date
password department (FK) status
role basic_salary
status
A
LN
LN ||1N
LeaveRequest
id (PK) Payroll Holiday
employee_id (FK) id (PK) id (PK)
start_date employee_id (FK) holiday_date
end_date month holiday_name
leave_type net_salary
reason leave_deduction
status

Figure 3:

Entity-relationship diagram representing the normalized database schema and inter-entity dependencies.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

D. Technology Stack Selection

Spring Boot 4.0.1 provides rapid development with embedded Tomcat, dependency injection, and auto-configuration. Spring Data
JPA with Hibernate ORM simplifies object-relational mapping, eliminating manual SQL for standard CRUD operations. MySQL
provides relational storage with ACID transaction support. Maven coordinates dependency management and build automation. The
ReactJS frontend demonstrates API consumption patterns but is not treated as a research contribution—emphasis remains on

backend architecture and transactional behavior.

| Date Validation |

v

| Overlap Detection |

v

| Status = PENDING |

v

Manager

Reject

Status = REJECTED | | Status = APPROVED |

v

Update Attendance
and Payroll

Figure 4: Lifecycle of leave request processing including validation and approval stages.

IV. SYSTEM DESIGN AND IMPLEMENTATION
This section describes the design and implementation of core functional modules with emphasis on validation logic, transaction
manage- ment, and integration patterns.

A. Authentication and Role Management

The authentication module implements basic user registration and login maintaining simplicity appropriate for academic projects.
User registration via /api/auth/register validates email uniqueness before creating User entity. Login authentication via /api/auth/login
validates credentials and returns AuthResponse containing user identifier, email, and role designation. The frontend maintains this
information in browser localStorage, providing identifiers with subsequent requests. This stateless approach avoids server-side session
complexity, though Spring Security integration represents identified future work.

B. Leave Request Lifecycle and Validation

Leave request management demonstrates comprehensive validation logic and transaction coordination. Leave application

submission through /api/leaves POST endpoint initiates multistage validation at service layer boundaries. The complete lifecycle is

illustrated in Fig. 4.

1) Comprehensive Validation Framework: The service method implements layered validation: (1) Temporal validation verifies
start date does not precede current date using Lo- calDate.now() comparison, preventing retroactive requests. (2)
Chronological validation ensures end date equals or exceeds start date. 3) Leave type validation confirms type matches
enumeration values (CASUAL, SICK, PAID). (4) Employee existence validation queries Employee repository confirming valid
identifier.

2) Overlapping Leave Detection: Overlapping leave detection executes database query identifying conflicts with existing requests.
The repository employs JPQL query:

SELECT Ir FROM LeaveRequest Ir WHERE Ir.employee.id = :employeeld AND Ir.status IN PENDING’, ’APPROVED’) AND

(Ir.startDate <= :endDate AND Ir.endDate >= :startDate)

This query retrieves leave requests matching three conditions: same employee, non-terminal status (excluding REJECTED), and

date range intersection computed through boolean predicate. This predicate captures all overlap scenarios: partial overlap, complete

encapsulation, and inverse encapsulation. Non-empty result triggers validation failure with descriptive error message. The overlap

detection logic is visualized in Fig. 5.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Partial ——]
Ovedsp Now Rojucd I
Exll. [Frodmy]
S s » Time
.
Bxms = ,

NARRE I inED B bme WA
AND Gt ol T GoNAAS s

Figure 5: Visualization of date range intersection scenarios detected during leave validation.

Transaction Boundary

Create Attendance
Record
Update
Payroll Leave
Deduction

>
T
T
3
< g
~Y
O

Rollback | | Commit
Figure 6: Atomic approval workflow ensuring consistency across leave, attendance, and payroll records.

1) Deferred Balance Deduction Design

A critical design decision addresses when leave balances should decrease. Immediate deduction upon submission creates consistency
issues when requests are rejected—balances decrease but leave never occurred, requiring manual restoration. The implemented
approach defers balance deduction until approval confirmation. Leave submission creates LeaveRequest entity with PENDING
status without modifying balances. Only upon manager approval does the system execute balance deduction within the same
transaction as status update.

2) Transaction-Coordinated Approval Workflow

Leave approval through /api/leaves/{leaveld}/approve PUT endpoint demonstrates transaction management principles. The service
method annotated with @Transactional executes multiple data- base operations atomically. Spring’s transaction manager initiates
database trans- action before method execution. The method retrieves Leave- Request entity, validates PENDING status, updates
status to APPROVED, performs balance deduction, and saves modified entities.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

The @Transactional annotation establishes transaction boundaries with READ_COMMITTED isolation level. If any operation fails—
status update, balance modification, or attendance record creation—exception propagation triggers automatic rollback through
Spring’s transaction infrastructure. The database transaction aborts and all modifications revert, preventing partial updates.
This demonstrates ACID property preservation: operations execute atomically (all succeed or all fail), maintaining consistency
invariants (approved leaves always have corresponding balance deductions), with isolation preventing concurrent transactions from
observing intermediate states. The trans- action workflow is illustrated in Fig. 6.

3) Leave Rejection and Retrieval:

Leave rejection through /api/leaves/{leaveld}/reject updates status to REJECTED without balance impact, since deferred deduction
means balance never decreased. Leave retrieval supports empl- oyee-specific history via /api/leaves/employee/{employeeld} GET
for personal tracking and manager queues via /api/leaves GET with optional status filtering.

C. Employee and Department Management

The Employee module manages workforce master data through CRUD operations. Employee creation via /api/employees POST
establishes one-to-one relationship with User entity and many-to-one association with Department, demonstrating proper JPA
relationship modeling. The Department module provides organizational structure management via /api/departments endpoints.
While current implementation maintains flat organizational structure, the design supports future enhancement to multilevel
hierarchies.

D. Attendance, Holiday, and Payroll Integration Foundations

1) Attendance Module: The Attendance module implements basic record creation via /api/ attendance POST and retrieval via
/api/attendance/employee/ {employ- eeld} GET. The design establishes integration touchpoint where leave approval could
automatically generate attendance records marking approved dates as leave-type attendance. Current implementation provides
data structures and CRUD operations without implementing automatic generation—this integration represents identified future
enhancement.

2) Holiday Calendar: The Holiday module maintains organizational calendar through creation via /api/holidays POST and listing
via /api/holidays GET. The implementation establishes foundation for intelligent leave day calculation where duration
computation would exclude holidays from working day counts. Current implementation stores holiday data without active
integration to leave validation logic. However, the modular design allows future integration with holiday-aware leave deduction
systems, addressing limitations noted in studies like Mantri et al. [10].

3) Payroll Foundation: The Payroll module provides simplified data structures and basic operations. Payroll generation via
/api/payrolls/generate POST initiates processing, while retrieval via /api/payrolls/femployee/ {employeeld} GET provides
historical access. The implementation establishes data model relationships enabling payroll calculations to query leave and
attendance data. Current version maintains entity structure without implementing detailed calculation logic incorporating leave
deductions—this represents future work demonstrating comprehensive HR integration.

E. Data Transfer Objects and Exception Handling

The implementation employs DTOs separating API contracts from database entities. Request DTOs (LeaveRequestDto,
EmployeeRequest) define client-submitted data with Jakarta Validation annotations. Response DTOs (LeaveResponseDto,
EmployeeResponse) control data exposure, excluding sensitive fields. Service methods convert between DTOs and entities, enabling
independent evolution of API contracts and database schemas.

Exception handling employs custom exception classes extending RuntimeException. InvalidLeaveException signals validation
failures. NotFoundException indicates missing entities. Controllers catch service layer exceptions, construct error response objects
with HTTP status codes (400 for validation, 404 for not found, 500 for unexpected errors), descriptive messages, and timestamps.
This centralized error handling ensures consistent APl behavior.

F. Implementation Scope and Simplifications

Several simplifications distinguish this implementation from production systems. Password storage lacks BCrypt encryption.
Spring Security integration is absent authentication relies on client-provided identifiers without server-side session validation.
Leave balance tracking exists as data model structure with simplified implementation.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Weekend and holiday exclusions in leave day calculation remain unimplemented. These simplifications focus implementation effort
on demonstrating core architectural principles including layered design, validation frameworks, and transaction management rather
than comprehensive feature coverage.

V. RESULTS AND PERFORMANCE EVALUATION
This section presents functional validation outcomes and analytically derived performance characteristics of the implemented Leave
Man- agement System based on architectural design and operational behavior.

A. System Performance Characteristics

System performance characteristics are derived from architectural analysis rather than empirical stress benchmarking. Simple read-
oriented operations such as leave balance retrieval and request listing exhibit low latency due to indexed relational access patterns and
minimal busi- ness logic processing. In contrast, transactional workflows—including leave application submission and approval
processing—incur higher overhead as they involve multi-stage validation, entity state transitions, and coordinated database updates
within transactional boundaries. The system follows Spring Boot’s default embedded server configuration and connection pooling
strategy, making it suitable for small to medium organizational workloads under typical usage patterns. Actual throughput and
scalability are deployment-dependent and vary based on infrastructure specifications, database performance, and network
conditions. Performance benchmarking under concurrent load is identified as future work.

B. Functional Validation Results

Functional validation was conducted using scenario-based API testing, covering typical workflows (leave application, approval,
retrieval) and error conditions (invalid dates, overlapping requests, permission violations). Testing focused on validation logic
correctness and transactional behavior rather than performance metrics.

Eight core validation rules were verified: date range correctness, prevention of past-dated requests, overlapping leave detection
(captur- ing all intersection cases), leave type validation, employee existence verification, status transition enforcement, and
ownership validation. These ensure robust enforcement of business rules and data integrity. Transaction management was tested by
simulating faults during approval workflows. Results showed atomicity with automatic rollback on failure, preserving data
consistency. Concurrent approvals were handled with proper isolation, allowing only one successful transaction and preventing
duplicate processing. Integration tests confirmed coordination between leave and attendance modules, verifying leave approval
triggers correct attendance record creation. Although some modules remain partially implemented, the architecture supports
modular integration. Compared to manual paper-based processes, the system reduces submission time from minutes to seconds and
approval delays from days to immediate managerial response. Automated leave balance tracking prevents arithmetic errors, and
overlap detection eliminates scheduling conflicts, highlighting significant operational improvements. Testing was manual and
conducted with synthetic data under single-user conditions. Automated test suites, multi-user con- currency validation, and
performance benchmarking remain for future work. The system demonstrates functional correctness but is not production ready.

C. Comparative Analysis with Manual Systems

Compared to conventional manual leave management processes, the implemented system significantly reduces operational
overhead by automating request submission, approval workflows, and balance calculations. Manual processes requiring physical
form handling and sequential approvals are replaced by centralized digital workflows with immediate system-level validation.
Automated balance tracking eliminates arithmetic errors and synchronization delays inherent in manual systems, while centralized
database storage with ACID trans- action guarantees enables consistent audit trails and reliable historical access. These capabilities
directly address inefficiencies and data consistency issues documented in prior studies of traditional leave management practices.

V1. DISCUSSION
A. Design Validation and Key Observations
The implementation follows a three-tier architecture with Controller-Service-Repository layering, exemplifying separation of
concerns and maintainability. Declarative transaction management (@Transactional) cleanly handles atomic operations without
cluttering business logic. Complexities included formulating accurate overlapping leave detection queries and ensuring transaction
isolation to prevent concurrency issues. The DTO pattern decouples API contracts from persistence models, improving flexibility
despite initial complexity.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

Key limitations include the absence of Spring Security integration, plain-text password storage, incomplete leave balance
management, and unimplemented weekend/holiday leave calculations. Attendance and payroll modules provide basic structures
without full functionality. Testing relies mainly on manual API calls rather than automated suites. This system offers practical
exposure to enterprise Java development, RESTful API design, validation frameworks, and transactional consistency, suitable as an
academic prototype.

B. Limitations and Constraints

Despite functional correctness, the system is not production-ready. Authentication and authorization mechanisms are absent, with
no Spring Security integration, encrypted credential storage, or token-based session management. User identity relies on client-
provided identifiers, introducing security risks. Notification mechanisms for leave status updates are also unimplemented. The
system supports only single-organization deployment and lacks multi-tenant isolation. Leave calculations do not account for
weekends, holidays, or partial-day requests, and approval workflows are limited to a single managerial level. Performance
optimizations such as caching, pagination, and query tuning remain unaddressed.

C. Alignment with Literature Findings
The implementation addresses key shortcomings identified in existing literature, particularly inadequate transaction handling and
weak validation frameworks. The use of declarative transactions and multi-layer validation ensures data consistency and prevents
invalid sub- missions at the point of entry. Deferred balance deduction aligns with best practices for maintaining accurate leave
balances across approval outcomes.

VIl. CONCLUSION AND FUTURE WORK
A. Conclusion
This paper presents a Leave Management System prototype demonstrating layered architecture, comprehensive validation,
transaction management, and RESTful API design. The system confirms key software engineering principles through working
code. The layered architectural approach supports maintainability and clear separation of concerns, while transaction-coordinated
workflows prevent data inconsistencies during concurrent operations or failure scenarios. The system demonstrates the
effectiveness of modern enterprise Java frameworks in developing structured and reliable leave management solutions.

B. Future Work

Future work involves integrating Spring Security and BCrypt password hashing, expanding automated test coverage, completing
leave balance and calendar-aware leave calculations, enabling multi-level approvals, and extending attendance and payroll
functionality toward production readiness. Additional planned enhancements include automated email notifications, multi-tenant
deployment support, perfor- mance optimizations such as caching and pagination, and deeper integration with payroll and holiday
calendar systems.

VIIl. ACKNOWLEDGMENT

The authors would like to thank Bonam Venkata Chalamayya Engineering College and the Department of Computer Science and
Engi- neering for their support in this research work.

REFERENCES

[1] Adamu, "Employee Leave Management System," FUDMA Journal of Sciences (FJS), vol. 4, no. 2, pp. 86-91, 2020. doi: 10.33003/fjs-2020-0402-162.

[2] N. Harshika, P. U. Vardhan, C. Vaishak, A. Akhil, B. Varshitha, and S. S. Raoof, "A Multi-Faceted Leave Management Ecosystem Employing Al-Driven
Semantic Categorization and Probabilistic Algorithms with Dynamic Schedule Reallocation," International Journal of Progressive Research in Engineering
Management and Science (IJPREMS), vol. 5, no. 4, pp. 1145-1153, 2025.

[3] S. M. Alade, S. Adejumo, and T. J. Alade, "Design and Implementation of a Web Based Leave Management System," International Journal of Computer
Applications Technology and Research, vol. 11, no. 4, pp. 123-144, 2022. doi: 10.7753/1IJCATR1104.1006.

[4] R. Srinithi and P. Sakthi Murugan, "Employee Leave Management System," International Journal of Innovative Research in Electri- cal, Electronics,
Instrumentation and Control Engineering (IJIREEICE), vol. 13, no. 4, pp. 198-202, 2025. doi: 10.17148/1JIREE- ICE.2025.13432.

[5] Rashmi, S. S. Dhulugade, P. N. Gaikwad, and D. M. Rathod, "Leave Management in Power Apps,” International Journal of Innovative Research in Technology
(NIRT), vol. 11, no. 1, pp. 674679, June 2024.

[6] R.S. Birje, R. Benne, and A. Unki, "Design and Development of E — Leave Management System," International Journal of Research Publication and Reviews,
vol. 6, no. 10, pp. 6464-6472, 2025.

[71 N. Choudhary, A. Khalfe, Y. Khan, and M. Ansari, "Leave Management System for AIKTC," International Research Journal of Engineering and Technology
(IRJET), vol. 7, no. 3, pp. 1715-1717, Mar. 2020.

[8] M. Singh, P. Singh, R. Singh, S. Singh, and S. Gupta, "Leave and Payroll Management System," in Proc. International Conference on Computing and
Virtualization (ICCCV-17), Thakur College of Engineering and Technology, 2017, pp. 62-66.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

[9]1 R. Sapona, A. H. Thohari, and Nelmiawati, "Web-based Leave Management System for Politeknik Negeri Batam," Journal of Com- puter Sciences and
Engineering, pp. 72-74, 2020.

[10] Y. Mantri, D. A. R. Kumar, and S. U. Kumar, "Emergency Leave Management System with Company Data Analysis," International Journal of Research in
Engineering and Science, vol. 11, no. 21, pp. 163-174, 2023. ISSN: 2320-9364.

[11] A. I. Pathan, B. Nayak, B. Nayak, V. B. Dhatrak, and A. K. Daivat, "An Design of Al Based Leave Scheduling and Managing Application," International
Journal of Computer Sciences and Engineering, vol. 8, no. 4, 2020. doi: 10.26438/ijcse/v8i4.115.

[12] S. D. Jadhav, A. A. Ranaware, and P. D. More, "Design Steps of Online Leave Management Application System for Academic Institution,” in Proc. National
Conference on Emerging Trends in Science and Advances in Engineering, Phaltan, India: International Journal of Innovations in Engineering Research and
Technology, 2023.

[13] V. K. Kaushik, A. K. Gupta, A. Kumar, and A. Prasad, "Student Leave Management System," International Journal of Advance Research and Innovative ldeas
in Education, vol. 3, no. 5, pp. 124-131, 2017.

BIOGRAPHIES OF AUTHORS
Raghabendra Kumar Shah is currently residing at Odalarevu, East Godavari, Andhra Pradesh-
533210. He is a B.Tech student specializing in Computer Science & Engineering at Bonam
Venkata Chalamayya Engineering College, Odalarevu, with an expected graduation in May 2026.
He aims to secure a position that leverages his strong organizational skills, educational
background, and ability to work effectively with others. He possesses key skills in Python,
MySQL, Machine Learning, ML libraries (scikit-learn, pandas, matplotlib, seaborn), Git/Github.
While his professional experience is listed as a student, his proactive approach and skill set
indicate a strong potential for growth and contribution in a professional setting. Phone No.:
6304690343 Email: 22221a05d4@bvcgroup.in. ORCID: https://orcid.org/0009- 0000-5900-3538
Aman Verma is currently residing at Odalarevu, East Godavari, Andhra Pradesh-533210. He is
a B.Tech student specializing in Computer Science & Engineering at Bonam Venkata
Chalamayya En- gineering College, Odalarevu, with an expected graduation in May 2026. He
aims to secure a position that leverages his strong organizational skills, educational background,
and ability to work effectively with others. He possesses key skills in Java, Spring Boot,
MySQL, React.js, HTML, CSS, JavaScript. While his professional experience is listed as a
student, his proactive approach and skill set indicate a strong potential for growth and
contribution in a professional setting. Phone No.: 8969336981 Email: 22221a05d0@bvcgroup.in.
ORCID: https://orcid.org/0009-0006-7165-7335

Pabitra Khatri is currently residing at Odalarevu, East Godavari, Andhra Pradesh-533210. She
is a B.Tech student specializing in Computer Science & Engineering at Bonam Venkata
Chalamayya Engi- neering College, Odalarevu, with an expected graduation in May 2026. She
aims to secure a position that leverages her strong organizational skills, educational background,
and ability to work effectively with others. She possesses key skills in Java, Spring Boot, System
Design (LLD), HTML, CSS, JavaScript, React.js. While her professional experience is listed as a
student, her proactive approach and skill set indicate a strong potential for growth and contribution
in a professional setting. Phone No.: 6281651217 Email: 22221a05d1@bvcgroup.in. ORCID:
https://orcid.org/0009-0008-7948-5544

Pasupuleti Niranjan is currently residing at Odalarevu, East Godavari, Andhra Pradesh-533210.
He is a B.Tech student specializing in Computer Science & Engineering at Bonam Venkata
Chalamayya Engi- neering College, Odalarevu, with an expected graduation in May 2026. He aims
to secure a position that leverages his strong organizational skills, educational background, and
ability to work effectively with others. He possesses key skills in HTML, CSS, JavaScript,
React.js, MongoDB, Node.js, Express.js. While his professional experience is listed as a student,
his proactive approach and skill set indicate a strong potential for growth and contribution in a
professional setting. Phone No.: 8142686499 Email: 22221a0588@bvcgroup.in. ORCID:
https://orcid.org/0009-0008-7423-0796

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue Il Feb 2026- Available at www.ijraset.com

B. Ganga Bhavani is Research Scholar at college, Koneru Lakshmaiah Education Foundation
(KLEF) Green Fileds, Vaddeswaram also Mrs.Ganga Bhavani Billa is Associate Professor at
college Bonam Venkata Chalamayya Engineering College,Odalarevu. She holds a M.Tech
degree in Computer Sci- ence and Engineering in GIET College, Rajahmundry. Her Research
areas are Machine Learning,Deep Learning and Artificial Intelligence.She has number of patents
related to machine learning field and industrial designs on her innovative ideas and has been
awarded with international patents and pub- lished different articles in international
conferences.She can be contacted at address: Mrs.Ganga Bhavani Billa is Research Scholar at
college, Koneru Lakshmaiah Education Foundation (KLEF) Green Fileds, VVaddeswaram, A.P —
522302 Email: bgangabhavani.bvce@bvcgroup.in ORCID: https://orcid.org/0000- 0003-1433-5832

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)

