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Abstract: MPC (multi-party computation) is a comprehensive cryptographic concept that can be used to do computations while 
maintaining anonymity. MPC allows a group of people to work together on a function without revealing the plaintext's true 
input or output. Privacy-preserving voting, arithmetic calculation, and large-scale data processing are just a few of the 
applications of MPC. Each MPC party can run on a single computing node from a system perspective. Multiple parties' 
computing nodes could be homogenous or heterogeneous; nevertheless, MPC protocols' distributed workloads are always 
homogeneous (symmetric). We investigate the system performance of a representative MPC framework and a collection of MPC 
applications in this paper. On homogeneous and heterogeneous compute nodes, we describe the complete online calculation 
workflow of a state-of-the-art MPC protocol and examine the fundamental cause of its stall time and performance limitation. 
Keywords: Cloud Computing, IoT, MPC, Amazon Service, Virtualization. 

I. INTRODUCTION 
The rising popularity of distributed computing in recent years has spawned a slew of new projects that make use of a variety of 
distributed computing platforms. Cloud computing enhances dispersed computing by adding virtualization and administration 
capabilities, and cloud services have grown in popularity and are widely available from a variety of vendors (e.g. Amazon, Google). 
Multiple organisations or private persons may provide community clouds.  
Finally, new research suggestions include cloud systems that combine in-home, mobile, and data centre computing resources, 
thereby increasing the overall pool of computing resources by adding the continuously growing computational power from various 
personal and mobile computing devices. The number of linked devices is rapidly increasing, resulting in the Internet of Things (IoT), 
a vast network of networks connecting smart devices such as sensors and actuators. Devices like these are used in areas including 
public health, smart grids, smart transportation, waste management, smart homes, smart cities, agriculture, and energy management, 
among others. 
The requirements and limitations of connected "things" present a number of challenges, including connectivity challenges for 
billions of devices to communicate with one another, security challenges with the need to protect IoT networks from being attacked 
(according to a Gartner report, 20% of organisations have experienced at least one IoT attack in the last three years) while also 
preventing them from being exploited to become an attack tool, and so on (e.g., Mirai botnet). These challenges are “augmented” 
with the resource-limited nature of IoT devices which renders traditional communication protocols and security schemes inefficient 
and even infeasible for IoT. The prevalence of IoT devices and their usage in important applications, which amplify the impact of 
any security breach to the point of becoming life-threatening, are making IoT-related security challenges more alarming. A such 
scenario might be imagined based on a flaw discovered in a pacemaker device in2017, which led to the recall of 500,000 
pacemakers by the US Food and Drug Administration (FDA) due to concerns that security flaws could allow a hacker to manipulate 
the heart-beat regulating device. 
Distributed computing systems can be used for a variety of applications and services, such as media content distribution and editing, 
content-rich social networks, gaming, data storage, home security, and more. The data in most of these applications could be 
commercially sensitive or personal, such as family films or photographs acquired by a home security system. This places a high 
demand on the distributed computing system to handle data in a secure and confidential manner. The growing high level of diversity 
of distributed systems, which includes diverse computing devices, owners of such devices, and surroundings in which they are 
operated, strengthens the justification for security and privacy. 
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II. MPC OVERVIEW AND RELATED WORKS 
MPC allows several entities to jointly compute a mathematical function that takes inputs from many contributing entities and 
provides a formal guarantee of the input data's privacy and the computed result's correctness. Yao first presented the two-participant 
form of MPC as the millionaire's issue. Following that, research efforts will be focused on increasing security and deploying MPC 
(e.g. SEPIA). Other cryptographic techniques are used in MPC's protocol. Secret sharing is an important strategy that secures the 
input data's secrecy. Shamir's system, which uses polynomial interpolation, is the most widely applicable secret sharing scheme, 
which we focus on in this study. Other methods of secret sharing may also be appropriate. Shamir briefly discusses the concept of 
allocating uneven numbers of shares to participants according on their attributes (e.g., amount of power), which is referred to as a 
hierarchical scheme. This concept, however, has yet to be implemented in MPC. In this study, we present a strategy for 
implementing this concept in MPC, and we compare our approach to a baseline mechanism in which each participant receives a 
single share. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Illustration of SMPC 

 
An example MPC system using secret sharing is shown in Fig. 1. The MPC protocol consists of the three following stages: 

A. Input Sharing 
For secure computing, a number of participants offer input data. The input data is exchanged with the participants using the 
previously stated secret sharing technique. Each secure computing entity may be assigned one or more shares, as shown in Fig. 1.  

 
B. Arithmetic Operation 
Using the data they've been given, the participants create a mathematical function. Addition of two values only requires addition of 
two shares since the two are equivalent. Multiplication of two values is a more complicated process, and after local multiplication of 
input data shares, re-sharing and reconstruction stages are necessary.  
 
C. Result Reconstruction 
This is accomplished by computing a linear combination of the participants' outputs, which is produced using a polynomial 
interpolation procedure such as Lagrange interpolation or Neville's algorithm.  
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III. MPC IN HETEROGENEOUS ENVIRONMENT 
Consider a sensitive data application that is processed on a heterogeneous distributed computing platform with a variety of devices 
and players operating the devices. Different security standards inside participating corporations or personal (including in-home) 
computer devices, trust levels in adhering to the established collaboration protocol, and reliability differences of the included 
devices are all examples of heterogeneity. 

 

TABLE I 
Description of variable 

 

 

 

 

 

 

As is commonly done in MPC, is likely to result in substandard MPC performance. This motivates our interest in exploring uneven 
sharing of data and processing in a heterogeneous MPC system. The most obvious consequence of unequal share distribution is that 
a participant may receive more than a single share. Therefore, together with the potential performance gain, we also need to explore 
the corresponding processing complexity and communication overhead. 
Table 1 lists the variables used in the paper. An MPC system consists of n contributors (that provide the input data Di) and m 
participants (that perform MPC protocol). An entity can be a contributor, participants or both. Each of the n contributors generates l 
shares and distributed the shares over m participants, where each participant receives li shares from each contributor. To simplify the 
analysis, we define resolution, r, the average units of shares per participant which describes the relationship between m and l 
according to l = r×m. In equal share distribution, l = m and li = 1 ∀i while in unequal share distribution,  l >mand li ≥ 1 ∀ i∈ [1..k−1]. 
We also introduce the notion of share index, which refers to the point where the polynomial is evaluated to obtain the share. It is 
important that the contributors have agreed on li that is allocated to each Pi before the protocol begins, to ensure the mathematical 
function to be properly executed. 
The MPC procedure must be updated to allow for the allocation of multiple shares to selected participants and the processing of 
multiple shares in the case of unequal share distribution. While this work only considers addition and multiplication of two numbers, 
our method can be applied to other mathematical operations.  
For input sharing, unequal share distribution requires contributors to generate a larger number of shares, since l > m. Similarly, 
addition of two values requires each participant to repeat the addition operation li times. 

 
 
 
 
 
 
 
 
 
 
 
 
 

k  number of shares required or the threshold to recover the secret 
n  total number of contributors (i.e. input data provider) 
m  total number of MPC participants 
l  total number of shares in the system 
r  resolution, describes the relationship between m and l 
li  number of shares received by participant i from each contributor 
c  number of corrupt participants 
Pi  participant i 
Dj  input from contributor j 
Dj

i  share from contributor j’s input with index i 
 

Algorithm 1. Multiplication of two values for Pi 

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue XI Nov 2021- Available at www.ijraset.com 
     

914 ©IJRASET: All Rights are Reserved 
 

We present details of the multiplication of two input values for unequal share distribution MPC in Algorithm 1. First, each 
participant needs to locally multiply two shares with the same share index for each of the li shares. Each participant then re-share 
each local multiplication result to all other participants. In the final step, each participant needs to reconstruct the result. To do this, 
the participant computes the recombination vector, [r] using interpolation to solve the polynomial of size l. The final result for each 
li is then recovered by summing up with [r] as weights.  
For result reconstruction in unequal distribution MPC, each participant must send li outputs to the reconstructing entity. The 
recombination vector computation and result recovery are equivalent to the operations in MPC with equal share distribution. 

IV. PERFORMANCE EVALUATION 
The benefit of unequal distribution of shares Simulations based on the original C++ implementation are used to evaluate MPC. 
Because determining the ideal share distribution for uneven MPC is fundamentally a combinatorial optimisation problem with no 
analytical solution, we did not do an analytical study.  
1) Simulation, Results and Discussion: We consider a scenario where the participants can be divided into two classes: resilient 

participants which have low Pci (close to fully honest) and vulnerable participants which have high Pci (close to corrupt). We 
note that this represents the upper bound on the potential performance gains compared to the unequal share distribution, and 
that considering participants with closer corrupt probabilities may result in lower performance improvement. We present only 

the results for MPC integrity failure that is for  for privacy failure only relates to a threshold change. In the simulations, 

we vary m, r and the share distribution algorithm. m is increased from 6 to 21, higher m is not simulated due to high complexity. 
We use r = 2, 5, 10 for unequal share distribution MPC, where r = 2 represents the smallest possible resolution and r = 5, 10 
represent higher resolutions. Note that r can be any positive integer. The performance of equal share distribution is considered 
as a baseline, which we compare to the performance of the exhaustive search, heuristic method and GA share distribution 
algorithms. For resilient participants Pci = 0.1 and for the remaining participants Pci = 0.9. 

 

 

 

 
 
 

Fig. 2  Failure probability of MPC with different share distribution algorithms for resolution 2 and 5 in the scenario where a third of 
the participants are vulnerable. 

 
Fig. 2(a) and 2(b) present the failure probability results for r = 2 and r = 5. We can see that pfail for unequal share distribution MPC 
is significantly lower regardless of the share distribution algorithm used. Due to high complexity, exhaustive search has been 
omitted for the subsequent evaluation, but it is apparent from Fig. 2(a) that the performance of GA (and the heuristic method for m = 
12) closely follows exhaustive search. Fig. 2(b) shows the result for r = 5. In this case, heuristic method performs slightly better than 
GA. The graph for r = 10 is not included as the result is similar to r = 5 in this particular scenario. 

 
 
 
 
 
 
 
 
Fig. 3  . Failure probability of MPC when the total number of participants is 18 andthe number of vulnerable participants is varied 

between 4 and 16 
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The performance improvement of unequal share distribution is demonstrated in Fig. 3(a) and Fig. 3(b). We can observe that the 
failure probability of equal distribution MPC rapidly increases as the percentage of corrupt participants increases. Complete failure 
(i.e. Pfail = 1) for equal share distribution occurs when at least 45% of the participants are vulnerable. On the other hand, unequal 
share distribution MPC suffers complete failure when there are close to 90% vulnerable participants in the system. The resolution 
only affects the rate of change of Pfail, where the rate of change is higher when r = 2 compared to when r = 5. As can be logically 
expected, this demonstrates the improved resilience of unequal share distribution compared to equal distribution MPC to the number 
of low trustworthy participants. 
While we evaluate a specific scenario, this result can be applied to a more generic case where each participant has different Pci. 

V. NUMERICAL EVALUATION 
We numerically evaluate the group computation and communication overhead, defined as the ratio of the complexity of the unequal 
distribution MPC to the equal distribution MPC, i.e. the increase in operations or messages required. m is varied between 6 and 120, 
and for unequal MPC r= 2, 5, 10. Fig. 4(a) to 4(d) shows the overhead of unequal distribution MPC as m increases. In all the graphs, 
the ratio converges to a value, which can be obtained by dividing the complexity of unequal distribution MPC to equal distribution 
MPC. For input sharing, the group overhead ratio is represented by Fig. 4(a), where the ratio approaches r2 as m increases. Fig. 4(b) 
shows the overhead ratio for addition of two values. We can observe that the ratio is equal to r, which is expected from the results. 

The group overhead for multiplication of two values is presented in Fig. 4(c). The trend shows that the ratio approaches for 

large m. Finally, Fig. 4(d) presents the overhead ratio for result reconstruction. Similar to input sharing, the ratio approaches r2 when 
m increases. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  . Group computational overhead in terms of the ratio of the computational complexity of the unequal distribution MPC to 
the equal distribution MPC 

 
The communication complexity in Table 3 shows that the ratio for input sharing and result reconstruction is proportional to r while 
for multiplication of two values the overhead ratio is r2. 
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VI. DISCUSSION 
We calculate the time it takes for MPC operations on mobile devices to see if unequal share distribution is feasible. The MPC 
operation of multiplication of two values is chosen because it has the highest computational complexity of all the MPC procedures. 
The estimated computation time presented in Table 2 is computed by using the expressions in Table 1 and the computation power of 
the mobile device obtained using Linpack benchmark (e.g., Android Nexus S device has the computation power of 17 MFLOPS). 
While the MPC operations may not always be floating point, this provides the upper bound on the expected values as the floating 
point operations require more time to compute than integer operations. 

TABLE III 
Estimated computation time for the multiplication of two values (MS) 

m\r 1 2 5 10 
6 

12 
30 
60 

0.0046 
0.018 
0.11 
0.43 

0.027 
0.10 
0.64 
10.19 

0.33 
1.29 
8.0 

127.24 

2.36 
9.39 

58.41 
932.47 

 
The system is still considered to be practical if the computation time is below or close to the Internet latency. Assuming that MPC 
participants are located worldwide, the average latency is estimated to be 100 ms. As can be seen from Table, the computation time 
for small m is still well below the average latency even for high resolution. The computation time becomes very high when both m 
and r are high. The increase in communication load is considered less critical than the complexity, as the size of MPC protocol 
messages is small. Although the full impact of unequal distribution MPC will depend on the protocol implementation and the 
computing platforms, we have clearly demonstrated the improved performance of unequal distribution compared to that of equal 
distribution on heterogeneous platforms. While the computation and communication overheads increase with r, it is not always the 
case for the robustness. Hence, it is important to carefully select the value of r. 

VII. CONCLUSIONS 
We investigate unequal share distribution in MPC on heterogeneous platforms and show that it improves the system's robustness 
greatly when compared to the typical situation in which all players have the same number of shares. However, such progress is 
accompanied by an increase in complexity and overhead. As a result, when determining parameter values, we take into account the 
trade-off between the two. We intend to examine the methods for reducing the complexity and costs of unequal share allocation in 
MPC in the future. 
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