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Abstract: The aviation industry relies on accurate and secure maintenance data to ensure aircraft safety, operational efficiency, 
and regulatory compliance. Traditional maintenance management systems often face challenges such as data tampering, 
inefficient record-keeping, and delayed fault detection. This paper proposes an innovative aircraft maintenance system that 
integrates blockchain technology with machine learning to enhance security, reliability, and predictive capabilities. Blockchain 
ensures immutability and transparency of maintenance records, preventing unauthorized modifications and enabling trust 
among stakeholders. Meanwhile, machine learning models analyze real-time sensor data to predict the Remaining Useful Life 
(RUL) of aircraft components, enabling proactive maintenance scheduling. Smart contracts further automate maintenance 
validation and alerting, reducing manual intervention and improving workflow efficiency. The proposed system offers a scalable 
and secure solution that enhances aviation safety, minimizes operational costs, and optimizes aircraft maintenance strategies. 
 

I. INTRODUCTION  
Aircraft maintenance is a critical component of aviation safety and operational efficiency. Traditional maintenance management 
relies heavily on manual record-keeping and scheduled inspections, which can lead to inefficiencies, increased operational costs, 
and potential safety risks due to delayed fault detection. Furthermore, existing systems often suffer from data integrity issues, where 
unauthorized modifications or human errors can compromise maintenance logs, leading to compliance violations and operational 
failures. 
To address these challenges, this paper presents an advanced aircraft maintenance system that integrates blockchain technology and 
machine learning to enhance security, transparency, and predictive capabilities. Blockchain ensures that maintenance records remain 
immutable and verifiable, preventing tampering and enabling trustworthy data-sharing among stakeholders. Meanwhile, machine 
learning algorithms analyze real-time sensor data from aircraft engines and components to predict their Remaining Useful Life 
(RUL), enabling proactive maintenance scheduling and reducing unplanned downtime. 
Additionally, smart contracts are employed to automate validation processes, ensuring that predefined maintenance conditions 
trigger alerts and updates automatically. This reduces reliance on manual intervention, enhances efficiency, and streamlines 
compliance with aviation regulations. By combining these technologies, the proposed system offers a robust, scalable, and 
intelligent solution for modern aircraft maintenance management, reducing operational risks and improving overall aircraft 
performance. 
This paper discusses the architecture, implementation, and benefits of the proposed system, highlighting how blockchain and 
machine learning can revolutionize aircraft maintenance practices. 

 
II. RELATED WORK 

A. Litearture Review 
The transition from traditional aircraft maintenance record-keeping to blockchain-integrated predictive systems has gained 
significant attention in recent academic and industry research. Studies highlight the limitations of centralized databases, which are 
prone to tampering and inefficiencies, leading to increased operational risks. Research suggests that blockchain technology, with its 
immutable and decentralized structure, enhances traceability and security in aviation maintenance records [1]. The ability of 
blockchain to ensure real-time data integrity has been emphasized in several studies, demonstrating its effectiveness in preventing 
unauthorized modifications to critical maintenance logs [2,3]. 
Predictive maintenance using machine learning models has also been explored extensively. Deep learning techniques, particularly 
CNN-LSTM architectures, have proven effective in analyzing aircraft sensor data to predict component failures and estimate the 
Remaining Useful Life (RUL) of engines [6,10]. By leveraging real-time sensor data and historical maintenance records, these 
models enable proactive maintenance scheduling, reducing unexpected downtime and operational costs.  
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Additionally, research on hybrid approaches combining blockchain with AI-driven analytics shows promising results in automating 
maintenance workflows and improving decision-making processes [4,7]. 
Smart contracts have been proposed as a means to further streamline aircraft maintenance processes. These self-executing contracts, 
deployed on blockchain networks, can automate maintenance validation and compliance checks. Studies highlight how smart 
contracts can enforce maintenance schedules, triggering alerts and service requests based on predefined conditions, thereby reducing 
human intervention and minimizing errors [5,8]. 
Despite these advancements, challenges remain. Research indicates that integrating blockchain with machine learning requires 
careful consideration of computational costs and scalability [9]. Furthermore, data privacy concerns and interoperability between 
various aviation stakeholders continue to be key areas of ongoing investigation. 
This study builds upon these findings to develop a robust aircraft maintenance system that integrates blockchain for secure record-
keeping and machine learning for predictive maintenance, offering an efficient and scalable solution for modern aviation 
maintenance management. 
 
B. Existing Solutions and Limitations 
Several automated solutions have been introduced to address the challenges inherent in traditional methodologies. Notable among 
these are models based on blockchain and machine learning, which have shown significant promise in enhancing data security and 
predictive accuracy [5], [6]. However, reliance on large, annotated datasets remains a common limitation. Additionally, the 
integration of blockchain with existing systems and real-time operations can be complex and resource-intensive. 
 

III. SYSTEM DESIGN 
A. Sequence Diagram 
The sequence for Uploading and Processing maintenance Data is as follows: 
 

 
 
1) Maintenance Workflow Sequence 
 Maintenance Technician initiates maintenance 
 Log Maintenance Record to Aircraft System 
 Send Log Maintenance Record to Blockchain Network 
 Blockchain Network verifies maintenance record 
 Send Verification Result back 
 Record Verified Details in Smart Contract and ML Model 
 
2) Price Prediction Workflow: 
 Maintenance Technician triggers price prediction 
 Price Prediction System fetches relevant data 
 Provide Relevant Data to Aircraft System 
 Predict Aircraft Price 
 Return Predicted Price 
 Send Predicted Price back to Maintenance Technician 
 Optionally Log Predicted Price in systems 
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B. Architecture Diagram 

 
 
The diagram illustrates a two-layer architecture integrating blockchain and machine learning technologies: 
1) Blockchain Layer 
 Represents a decentralized network of interconnected blocks 
 Uses public and private key cryptography 
 Includes signature mechanisms for transaction validation 
 Ensures secure and transparent transaction processing 
 
2) Machine Learning Layer: 
 Starts with a dataset 
 Performs data balancing preprocessing 
 Splits data into testing and training sets 
 Develops learning model 
 Trains and deploys machine learning models 
 Generates model predictions 

 
IV. IMPLEMENTATION 

This section proposes the design, technologies, and architecture for implementing blockchain based aircraft maintenance record 
storage and predictive insights using LSTM. The following subsections detail the system's modules, data structures, algorithms, and 
implementation plan. 
 
A. Feature Technology 
1) Blockchain Framework: Ethereum-based smart contracts for secure maintenance record storage. 
2) Machine Learning Framework: LSTM for predictive analytics and RUL estimation. 
3) Flask Web Framework: Web interface for user interaction and data visualization. 
4) Ganache: Local blockchain simulator for Ethereum smart contract development and testing. 
5) Truffle: Development framework for blockchain-based applications, facilitating contract deployment and testing 

 
B. Major Modules 
The proposed aircraft maintenance system consists of five interconnected modules, each designed to facilitate efficient maintenance 
record management and predictive insights. These modules are described below: 
1) Authentication and Authorization Module Ensures secure user access to the system by implementing role-based authentication. 

This module verifies user credentials and assigns appropriate permissions, preventing unauthorized access to maintenance 
records and predictive models. 

2) Record Storage Module Leverages blockchain to securely store and manage maintenance records. The module ensures data 
integrity, immutability, and accessibility for authorized stakeholders while preventing tampering or fraudulent modifications. 

3) RUL Calculation Module Uses machine learning algorithms to estimate the Remaining Useful Life (RUL) of aircraft 
components. This module processes sensor data and historical maintenance logs to predict wear and tear, enabling proactive 
maintenance scheduling. 
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4) Health Prediction Module Analyzes real-time sensor data from aircraft engines and other critical components to predict potential 
failures. The module generates alerts based on anomaly detection, allowing maintenance teams to take preventive measures 
before system failures occur. 

5) Smart Contracts Definition Module Implements Ethereum-based smart contracts to automate maintenance processes. This 
module ensures that predefined maintenance conditions trigger automatic updates, notifications, or service requests, reducing 
manual intervention and enhancing operational efficiency. 
 

C. Data Structures 
The proposed aircraft maintenance system utilizes a structured data model for storing maintenance records and sensor data. This 
data structure ensures efficient retrieval, security, and integrity through blockchain implementation. The schema is defined as 
follows: 
{ 

"recordId": "uint", 
"aircraftName": "string", 
"engineId": "uint", 
"sensorValues": [ 

"uint", "uint", "uint", "uint", 
"uint", "uint", "uint", "uint" 

], 
"RUL": "uint" 

} 
 
D. LSTM Algorithm 
1) Step 1: Data Preprocessing 
The data preprocessing starts by merging the test dataset (dfTest) with the RUL dataset (dfRUL) based on the unit_id column. The 
Remaining Useful Life (RUL) is then calculated for each entry by subtracting the current cycles from the maximum cycle value of 
the corresponding unit, adjusted by the RULmax value from dfRUL. After calculating the RUL, certain sensor columns (s22 and 
s23) are dropped from both the training and test datasets (df and dfTest) as they are deemed unnecessary or irrelevant for model 
input. This ensures the data is clean and ready for model training and evaluation. 
Example: 
dfTest=pd.merge(dfTest, dfRUL, on='unit_id') 
dfTest['RUL']=(dfTest.groupby(['unit_id'])['cycles'].transform(max)+dfTest['RULmax'])-dfTest['cycles'] 
 
df=df.drop(['s22','s23'],axis=1) 
dfTest=dfTest.drop(['s22','s23'],axis=1) 
 
2) Step 2: Algorithm for LSTM Model Architecture 
The LSTM model architecture begins by defining the optimizer as Adam with a learning rate of 0.004. A Sequential model is 
created, and the first layer is an LSTM with 100 units, using a window of 70 time steps as input and applying L2 regularization to 
avoid overfitting. This is followed by a second LSTM layer with 50 units, again using L2 regularization. The final layer is a Dense 
layer with units corresponding to the shape of the labels and a sigmoid activation function to predict binary outputs (RUL 
classification). The model is compiled with a binary cross-entropy loss function, the Adam optimizer, and recall as the evaluation 
metric. The model summary is printed to review the architecture. 
Example: 
from tensorflow.keras import regularizers 
batch70=70 
opt = keras.optimizers.Adam(learning_rate=0.004) 
model = Sequential() 
model.add(LSTM(input_shape=(batch70, 
trainLSTM.shape[2]),units=100,return_sequences=True,activity_regularizer=tf.keras.regularizers.l2(0.01))) 
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model.add(LSTM(units=50,return_sequences=False,activity_regularizer=tf.keras.regularizers.l2(0.01))) 
model.add(Dense(units=trainLabel.shape[1], activation='sigmoid')) 
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[tf.keras.metrics.Recall()]) 
print(model.summary()) 
 
3) Step3: Algorithm For Model Training 
The model training process begins by extracting the unique unit IDs from the training dataset. For each unit, the data is processed in 
batches of 70 rows. A loop iterates through the training data, selecting windows of 70 consecutive time steps (features), which are 
appended to the input array. The corresponding labels (RUL values) for each window are also collected. After the data for all units 
is processed, the input data is reshaped into a 3D array with dimensions suitable for LSTM processing and converted to the float32 
data type. The labels are then reshaped into a 2D array for the model. The resulting arrays are ready for training the LSTM model. 
Example: 
 
batch70=70 
trainIDs=list(df['unit_id'].unique()) 
inputNP = np.empty((0,18), int) 
labelList=[] 
In [ ]: 
# Create 3D array from training set for input to LSTM 
for id in trainIDs: 
    dfTemp=df.loc[df['unit_id']==id] 
    start=0 
    for i in  range(len(dfTemp)-batch70+1): 
        inputNP = np.append(inputNP, dfTemp.iloc[start:start+batch70,1:-2], axis=0) 
        labelList.append(dfTemp['label30'].iloc[start+batch70-1]) 
        start=start+1 
trainLSTM = np.reshape(inputNP, (-1,70, 18))  
trainLSTM=trainLSTM.astype('float32') 
trainLSTM.shape 
In [ ]: 
# Array for training labels 
trainLabel=np.array(labelList) 
trainLabel=np.reshape(trainLabel, (-1,1)) 
trainLabel.shape 
 
4) Step4: Algorithm For Model Evaluation 
The model is set to evaluation mode, and the test data is prepared by iterating through each unit ID, extracting relevant features, and 
reshaping the data into a 3D array suitable for the LSTM model. Once the test data is formatted, it's passed through the trained 
LSTM model to generate predictions for the Remaining Useful Life (RUL) of each aircraft. These predictions are then compared to 
the ground truth labels (the actual RUL values). Evaluation metrics such as accuracy or the Dice coefficient are computed to assess 
the model's performance, and the results are logged for further analysis and refinement of the model. 
Example:  
testIDs=list(dfTest['unit_id'].unique()) 
inputNP = np.empty((0,18), int) 
labelList=[] 
 
for id in testIDs: 
    dfTemp=dfTest.loc[dfTest['unit_id']==id] 
    start=0 
    for i in  range(len(dfTemp)-batch70+1): 
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        inputNP = np.append(inputNP, dfTemp.iloc[start:start+batch70,1:-2], axis=0) 
        labelList.append(dfTemp['label30'].iloc[start+batch70-1]) 
        start=start+1 
testLSTM = np.reshape(inputNP, (-1,70, 18))  
testLSTM=testLSTM.astype('float32') 
testLSTM.shape 
 

V. TESTING AND EVALUATION 
A. Unit Testing 
1) Objective: Validate the functionality of individual modules, such as data encryption, blockchain transactions, and machine 

learning predictions.  
2) Approach: Use test scripts to independently test each function, including blockchain-based data storage, encryption methods, 

and predictive accuracy of machine learning models. Ensure that maintenance records are securely stored and retrieved 
accurately. 

3) Expected Outcome: Each module operates as expected, ensuring data integrity, security, and accurate predictions, while 
properly handling edge cases (e.g., incomplete or corrupted data). 

 
B. Integration Testing 
1) Objective: Ensure smooth interactions between interconnected modules, such as the blockchain framework, machine learning 

models, and smart contract executions. 
2) Approach: Test scenarios like: recording maintenance logs on the blockchain, retrieving stored records, and verifying that 

machine learning models correctly process sensor data. Ensure that smart contracts trigger appropriate maintenance alerts when 
necessary. 

3) Expected Outcome: The components work together seamlessly, maintaining accurate data storage, retrieval, and predictive 
insights without errors in communication between blockchain, machine learning models, and smart contracts. 

 
C. Performance Metrics 
1) Response Time 
 Metric: Time taken to preprocess images, run them through the model, and generate segmentation masks. 
 Expected Standard: Achieve a response time of under 5 seconds for processing and segmentation to ensure smooth operation 

for real-time or large-scale data processing. 
2) Scalability:  
 Metric: The system's ability to handle high volumes of seismic image data for salt segmentation.  
 Approach: Load testing with large datasets to evaluate the performance of the image processing pipeline and model inference 

under high load.  
 Expected Standard: The system remains responsive and produces accurate segmentation outputs under peak loads, ensuring 

scalability for processing large sets of seismic images. 
 

VI. RESULTS 
While the system is still under development, the expected results from testing and evaluation once the salt segmentation model is 
operational are: 
1) Enhanced Data Security and Integrity through Blockchain 
By integrating blockchain, aircraft maintenance records are stored in a tamper-proof decentralized ledger. This prevents 
unauthorized modifications, ensuring that all stakeholders have access to authentic and verifiable data. The immutability of 
blockchain also helps in regulatory compliance and audit transparency. 
 
2) Improved Predictive Accuracy for Maintenance Scheduling 
Machine learning models analyze real-time sensor data from aircraft engines to predict potential failures. The system accurately 
estimates the Remaining Useful Life (RUL) of components, allowing proactive maintenance planning. This reduces the likelihood 
of sudden failures, improving aircraft safety and operational efficiency. 
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3) Reduction in Operational Costs and Unplanned Downtime 
The predictive maintenance approach significantly minimizes unexpected breakdowns, reducing costly emergency repairs and 
aircraft groundings. By scheduling maintenance based on data-driven insights rather than routine checks, airlines can optimize 
resource allocation, leading to lower maintenance costs and increased aircraft availability. 

 
VII. CONCLUSION 

This project demonstrates a robust approach to securing aircraft maintenance data and optimizing maintenance schedules using 
blockchain and machine learning. By leveraging blockchain technology, maintenance records remain immutable and transparent, 
reducing the risk of data manipulation and enhancing trust among stakeholders. Meanwhile, machine learning models provide 
accurate predictions of engine failures, enabling proactive maintenance strategies that minimize unexpected breakdowns and 
improve operational efficiency. The integration of these technologies significantly improves aviation safety, reduces costs, and 
ensures regulatory compliance. Future work includes expanding predictive capabilities using deep learning techniques, integrating 
AI-driven diagnostics for real-time anomaly detection, and enhancing system scalability for deployment across various aircraft 
models. Furthermore, incorporating more extensive datasets and advanced security mechanisms will enhance the model’s accuracy 
and robustness. This research serves as a foundation for the next generation of intelligent aviation maintenance systems. 
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