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Abstract: In order to build a prediction model we must label a large amount of data in order to mine software repositories. The 

accuracy of the labels has a significant impact on a model's performance. However, there have been few research that have 

looked into the influence on a prediction model, there are occurrences that have been mislabeled.. To close the gap, we conduct 

a research project on how to report a security bug (SBR)prediction in this paper. Furthermore, it has the potential to mislead 

SBR prediction research. We first enhance the label validity of these 5 datasets by personally evaluating each and every 

bugcomplaint in this study, and we discover 749 SBRs that were previously Non-SBRs have been mislabeled(NSBRs). We then 

examine the performance of the classification models both on messy (before the alteration) and cleaner (after our 

reconfiguration) datasets , impact of dataset label correctness. The results suggest that cleaning the datasets improves the 

performance of classification models. 

Index Terms: Prediction of security bug reports, data quality, software detection and report 

 

I. INTRODUCTION 

Mining software repositories (MSR) has evolved into a popular research topic for locating interesting and useful data about 

software systems and projects. MSR is based on big data in software engineering, and developing a prediction model requires a 

significant amount of labelled data. For appropriately analysing the success of a prediction model, the label correctness of data is 

crucial. Furthermore, poorly categorised data can lead to inaccurate results, which can lead to a misunderstanding of the target 

problem's study direction. 

Currently, there are few research that focus on the influence of inaccurate labels, and while building a predictive model, attention 

to label correctness is necessary. Because finding SBRs culled from such a humongous bug database is crucial for lowering a 

software product's security concerns, this article studies the effects of mislabeled instances on SBR prediction. In recent years, a 

slew of deep learning-based SBR data resolutions have surfaced. However, the results of the two recent studies proposed by Peters 

et al. and Shu et al. (e.g., F1-score) are not optimal. When it comes to F1-score, for example, Peters et al. only managed 0.37 in 

their best scenarios. Shu et al. Straight-forward applied the data-sets garbled by Peters et al. and applied a hyperparameter 

optimization strategy to increase the performance of prediction models. Their experiment findings indicated that in the best 

situation, their technique could achieve pd (recall) and pf (false positive rate) of 0.86 and 0.25, respectively, which implies that the 

number of false positive items in Chromium achieves 5,388 as that the NSBRs with in Chromium testing set are 20,855. It is still 

undesirable to put the instrument into operation with such a high proportion of false alarms. 

In this study, we investigate the factors that contribute to their research' poor performance, and we discover that one factor that 

cannot be overlooked is the standard of labels provided to the datasets. Peters et al. and Shu et al. employed 5 publicly available 

datasets: Chromium, Ambari, Camel, Derby, and Wicket. The first dataset, which comprises 40,940 bug complaints, was made 

available at MSR 2011, while the following 4 datasets were manually tagged by Ohira et al. In these 5 datasets, SBRs have indeed 

been misrepresented as NSBRs, according to Peters et al. Memory spillage and void pointer flaws have been reported as bugs, for 

example, are labelled as NSBRs in Chromium. They do, however, fall within the category of traditional vulnerability types, since 

they are regularly attacked by hackers and are among the top twenty five most hazardous CWE (Common Weakness Enumeration) 

kinds. 3 examples of mislabeled cases in Chromium are shown in Figure 1. The text indicating that the bug-report in question 

seems to be an SBR is marked in red. 
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Furthermore, Peters et al. and Shu et al techniques'swere labour-intensive and also sophisticated. Shu et al hyperparameter's tuning 

for the learner, for example, took roughly 5 hours to optimise the learner RF parameter on dataset Chromium. It is a recommended 

practise, according to Fu et al. [23] and Liu et al. [24], to study basic yet successful approaches. As a result, we look into the 

efficacy of basic text classification in SBR prediction. 

 

The following 2 research questions are the focus of our research: 

 

1) RQ1: To what degree does the accuracy of dataset labels affect the performance of classification models? 

Both the cleaner and noisier data-sets, we perform an experiment to assess the efficacy of categorization models. We initially use 

manual annotation to fix the five datasets' mislabeled entries, resulting in 5 clean data-sets. As a consequence, we discovered 749 

SBRs that were incorrectly categorised. 

We separated each of the 5 clean datasets into two equal portions, which we called the both a training and a testing setbased on 

Peters et al evaluation's [11]. Then, using the clean and noisy datasets, we use the techniques given by Peters et al. and Shu et al. to 

determine their performance values. Finally, we compare baseline techniques on clean datasets with those on noisy datasets to 

assess the influence of label accuracy. On cleaner datasets, the performance of three baseline techniques consistently beats that on 

noisy ones. Recall, Accuracy, F1-score, and G-measures are all up 191 percent, 46 percent, 147 percent, and 136 percent, 

respectively, on average. 

 

2) RQ2: How does basic text categorization perform for SBR prediction on clean and noisy datasets? 

We elevate RQ2 because the Description provided using text nature language is the major content of problem complaints for SBR 

prediction [25], [26]. 

 Furthermore, because text classification is simple and straightforward, much earlier work on bug report processing has employed 

text classification in conjunction with machine learning. [13], [14], [15], [16], [17], [27]. 

On both the cleaner and noisy data-sets, we execute all five classification techniques (Random-Forest, Naive-Bayes, K-Nearest-

Neighbour, Multi-layer Perception, and Logistical-Regression) applied by Peters et al. and Shu et al. using basic text 

categorization. The values for overall performance (i.e., Recall, Accuracy, F1-score, and G-measures) on clean datasets are 

substantially greater than in datasets with noise, according to our findings. In addition, with clean data-sets, the efficiency numbers 

are higher. (i.e., recall, precision, F1-score, and G-measure) of Random Forest employing text categorization outperform the 

baseline techniques based on security keywords matrices. 

Finally, we look at the reasons behind the Farsec's enactment flaws, the hyperparameter's time cost tweaking methods, and the 

consequences of our research. We show that data label correctness has a significant impact on classification model performance, 

When data label accuracy is enhanced, simple text segmentation is much more beneficial for SBR forecasting than properly 

designed matrix-based baseline approaches. 

 

The followings are the endowment made by this paper: 

a) For five publicly available datasets, we manually annotate the label validity (i.e., Chromium, Ambari, Camel, Derby, and 

Wicket). We discover none NSBRs that have been mislabeled as SBRs, but we do locate 749 SBRs that have been mislabeled 

as NSBRs. 

b) I believe that I'm the first one to experimentally examine the impact of data label correctness on SBR prediction. 

c) We discover that (1) performance on cleaner datasets is considerably better than performance on noisy datasets for the same 

classifier; (2) Text categorization that is straightforward that beats the 3 baseline techniques when training on clean datasets; 

and (3) simple-text- stratification surpasses the 3 base-guideline approaches when training on clean datasets. For SBR 

prediction researchers and practitioners, these data provide research hints and recommendations. 

d) The remainder of this thesis is organised as follows: The report's related stuff is described in Section 2. The background is 

presented in Section 3. Our data annotation strategy and outcomes are described in Section 4. Section 5 describes our 

experimental settings. Each research question's experimental outcomes are detailed in Section 6. Section 7 examines If Shu et 

al's tuning technique for basic text segmentation works, the patterns of improperly labelled SBRs in noisier data-sets, accuracy 

performance levels, the repercussions of our inquiry, and objections to the study's validity. The paper is summarised in 

Section 8. 
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II. RELATED WORK 

A. Prediction of SBR 

Peters et al. [11] and Shu et al. [12] have proposed 2 recent studies that focus on SBR prediction. Both of these research employ 

the same datasets and classification methods. Shu et al. build on Peters et alwork's by using the SMOTE oversampling and 

hyperparameter tweaking technique to the learner (classifier). 

Wijayasekara et al. [28] looked at bug detection reports from 2open-source projects that are well-known, MySQL and the Linux 

kernel. They discovered that THIRTY TWO percent and SIXTY TWO percent of Linux kernel and MySQL vulnerabilities 

reported in bug tracking systems between 2006 and 2011 were concealed vulnerabilities that were not identified as SBRs until they 

were publicly revealed [29]. Their research also revealed an upward tendency in the prevalence of concealed vulnerabilities over 

the next 2 years. Furthermore, the researchers or the authors developed a way of discovering flaws that aren't readily apparent by 

generating features from bug reports' lengthy explanation (i.e., the field narration) and short elucidation (i.e., the field salutation) 

before using a classification strategy. 

Michael et al. [13] proposed an earlier work in 2010 that focused on SBR prediction. The authors created an automated method for 

training a statistical model that is manually updated labelled bug detection reports that leverages descriptions of bug reports are 

mined for text.. This framework is then used to detect SBRs in the bug tracking system that have been manually mislabeled as 

NSBRs. On a Cisco software system, their technique is tested. 

 

 

Title & 

ID 

The root process has a 

memory leak. 

(Issue-1643) 

On shutdown, the Alsa audio 

output leaks. (Issue 

16036) 

Check:CrashForBitmapAlloca

tionFailure 

() (Issue 3795)  

 

 

 

 

 

Definiti

on 

The root process acquired 

1.6GiB of RAM after many 

days of use. And there was no 

way to restart or selectively 

destroy this process. The root 

process must not lose 

memory, and it must be easy 

to restart, taking up current 

page processes. Page 

navigation, for example, might 

be handled by a distinct child 

process. If it dies, it will 

respawn. 

A total of 1.6 

GB has been 

set aside. 

 

The shutdown function for Audio 

Output Stream does not 

appropriately destroy the output 

stream object once the thread is 

terminated. There is a resource 

leak as a result of this. Because 

the data source has been changed 

We should now remove the 

every-single-stream output task 

and write audio to avoid 

blocking. data using a single 

message loop that spans all 

output streams. 

Other than checking for GDI leaks, 

I'm really unaware what we'd do. 

Despite the dearth of evidence thus 

far, this is a common crash in 

154.6.. 

If we run out of GDI entities and 

if another problem arises, we 

won't receive a / bitmap here.. 

Since the data pointer is NULL, 

this will lead us to crash later. 

To ensure that individuals 

responsible for the crashes may 

be identified... 

Fig.1 In Chromium, below are some examples of bug reports that have been mislabeled. The contents of the red-colored words 

assist us in determining whether or not a bug-reports are definitely security-related (i.e., SBR).\ 

 

B. The Importance of Accurate Data Labels 

Specialists of software development have highlighted concerns about the dataset utilised by machine learning-based categorization 

systems in recent years. [4], [8], [30], [31], [32], [33], [34]. 

Tantithamthavorn et al. [4] Investigate if the emergence of misla- beling is a result of chance. The authors looked at 3,931 person 

sending the message on Apache Jackrabbit and Lucene platforms and came to certain findings. Mislabeling of problem reports, for 

example, is not arbitrary; mislabeled issue reports have a minor influence on accuracy. Their research found that models are 

trained on noisy data obtain 56 percent to 68 percent of Using clean data, the recall of training images. 

Kim et al. [8] conduct an experiment to see how noise affects inception fault analysis. They do their research on both a file and 

change level, inserting false negatives into their databases at random. Their findings demonstrate that when 25 percent to 35 

percent of the datasets are mislabeled, the model performance in defect prediction suffers dramatically. 

Mislabeled alterations' impact on the profitability and perception of only defect prediction models is investigated by Fan et al. [31].  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue V May 2022- Available at www.ijraset.com 

     

 
© IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  1570 

The scientists looked at four SZZ [35] variations and then used the labelled data from these four variants to create prediction 

models. AG-mislabeled SZZ's modifications produce a considerable performance drop, according to their experimental evaluation 

of 126,526 alterations from 10 Apache-projects. The mis-labeled modifications of B-SZZ and AG-SZZ result in NINE percent to 

TEN and ONE percent to FIVE more lost inspection work, respectively, when the developers' inspection work is taken into 

account. 

Tangled modifications affect the number of related defects for 16.6% of all source codes, according to Herzig et al. [33]. Because 

there are so many files affected by the number of flaws, the noise introduced by tangled modifications has a large influence on the 

models that forecast a lot of errors in origin source (root) codes. 

Kochhar et al. [32] pointed out concern-reports (issues) mislabeling, i.e. complaints classified as bugs but referring to non-bug 

concerns. The authors use feature values extracted from bug reports to determine whether such a bug report should be classed. 

Bug-detection-reports from the projects HTTPClient, Jackrabbit, Lucene-Java, Rhino, and Tomcat5 were used to evaluate their 

methodology. The Precision, Recall, and F1-score performance of their technique spans from 0.58 to 0.71, 0.61 to 0.72, and 0.57 

to 0.71, respectively. 

Our research contradicts the findings of the previous investigations. First, we use 2 recent SBR prediction works put forwarded by 

Peters et al. and Shu et al. to enhance the label accuracy of five publicly accessible datasets. Second, we employ Peters et aland .'s 

Shu et almethodologies .'s as the study's baselines. Third, we compare baselines' productivity on noisy datasets to baselines' 

performance on clean datasets to assess the influence of data label accuracy. Using the three baseline methodologies, We conduct 

an experiment to determine the impact of data label correctness. Finally, we demonstrate that cataloguing is a simple yet effective 

approach with reliable data labels by using the commonly used text classification approach to both cleaner and noisier data sets. 

 

III. BACKDROP ENVIRONMENT 

In this part, we review 2 most recently proceeded SBR prediction studies that influenced our research. 

Frame-works for Farsec. The 5 publicly accessible SBR-prediction data-sets, Chromium, Ambari, Camel, Derby, and Wicket, have 

a mislabeled issue, according to Peters et al. [11]. They create Farsec, a system for improving SBR analysis by screening out 

noisier data from NSBRs and integrating text mining with a matrix of security key words. There are three primary phases in the 

Farsec process: (1) Making data matri- ces and identifying security keywords. They start by tokenizing a dataset's SBRs to terms. 

The tf-idf value for each phrase is then computed, and the top 100 phrases with the largest tf-idf values are retained as security 

keywords. The prevalance of each security phrase in the Characterization of each bug report is then calculated for both the training 

and testing sets, For such training and testing sets, security-keywords matrices are created. (2) Filtering the NSBRs for terms 

linked to security. Filtration in Farsec is used to eliminate NSBRs that include security-related key phrases. They used seven 

distinct filters to do this: farsec, farsecsq, farsectwo, clni, clnifarsec, clnifarsecssq, and clnifarsectwo. A basic overview of these 

filters may be found in Table 1. Each one of these filters is applied to the training dataset of each data-set. As a result, seven 

additional training data-set models are created, each of which is used to fit into the model separately. (3) Bug-reports are ranked. 

Based on ensemble learning, a list of sorted bug reports was constructed after the SBRs were predicted. In the prediction results, 

the real SBRs show towards the top of the list. 

TABLE 1 

Peters et al. [11] employed seven filters. 

Filters Descriptions 

farsec No support function should be used. 

farsecsq Apply Jalali et al[36] .'s support functionalities to 

frequencies of terms present in SBRs. 

farsectwo Multiply the frequency by two in the Graham version 

[37]. 

clni Apply the CLNI (Closed List Noise Iden- tification) 

noise filter. 

clnifarsec Applying CLNI to farsec data which was filtered. 

clnifarsecsq ApplyingCLNIfilter to farsecs data which was filtered. 

clnifarsect

wo 

ApplyingCLNIfiltertofarsectwo data which was 

filtered. 
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Tuning uphyperparameters. Model criterion are used in machine learning to describe the qualities of training data. The process of 

finding the most ideal settings for the model's hyperparameters is known as hyperparameter optimization [38]. Shu et al. [12] use a 

hyperparameter optimization strategy to enhance the productivity of SBR prediction. They base their research on Peters et 

alfindings. .'s The controlled variables of a learner (i.e., classification algorithm) and the data-pre-processing technique SMOTE 

[39] are optimised using a differential evolution algorithm. They enhance Random Forest, for example, by adjusting the number of 

trees (i.e., the framework-parameter n estimators); the possible values is ten, with a tuning range of 10 to 150. In SMOTE, they 

adjust the number of neighbours (i.e., the framework-parameter k), with a default values of 5 and a tuning range of 1 to 20. In their 

work, Table 2 lists hyperparameters for adjusting classifier Random Forest settings, as well as the oversampling technique 

SMOTE. 

 

IV. METHODS AND TECHNOLOGY FOR SBR DATA-ANNOTATION 

Data elucidation takes a long time to complete [24], [40], [41]. Because of the high demand for competent knowledge, 

appropriately labelling SBRs is never easy [42], [43], [44]. 

Chromium, Ambari, Camel, Derby, and Wicket are the 5 data-sets used by Peters et al. and Shu et al. We'll go over the annotation 

procedure for both noisy and clean datasets in this section. 

 

A. Noisy Datasets Annotation 

We'll go over how the SBRs throughout the five datasets we used for this project worked,are identified in this section. In addition, 

we investigate why the underlying datasets contain mislabeled cases. 

1) Chromium: Chromium1 is a web browser that is both free and open-source.. The Chromium dataset is supplied by the MSR 

conference's 2011 mining challenge [18], which comprises 40,940 bug-reports. The reports mark the SBR labels at first, and 

many of these are linked to CVE (Common risks and Subjections) entries [45]. Records with the identifiers Issue 34495 and 

Issue 34498, for example, are linked to CVE-2010-0048 and CVE-2010-0052, respectively. As a result, the SBR labels in the 

data-set are trustworthy. Furthermore, as Peters et al. [11] pointed out, There are still a lot of SBRs that have already been 

misidentified as NSBRs in this dataset. Because many bug reports are submitted by end-terminals, whom were seldom 

software security specialists, this is common in open-source projects. 

2) Four Apache Datasets: Ohira et al. [19] obtained the datasets for the 4 Apache projects Ambari2, Camel 3, Derby 4, and 

Wicket 5 - JIRA, This is a well-known approach for trailing problems [46]. In JIRA, there may be several sorts of issues, 

including Bug, Improvements, Documentation, and Task. For each project, Ohira et al. chose one thousand problems with the 

categories Bug or Improvement at random. These 4,000 problems were personally evaluated and categorised by graduates and 

academics. They used the following procedures to identify six high-impact categories of problems (blocking, security, 

scalability, and breakage flaws): 

a) For each project, one pupil and one research professor separately label the bug reports. 

b) They then address their differences in order to find a consensus. 

Because there were no set criteria for privacy, performance, and breakage categories, certain concerns were appraised differently, 

as Ohira et al. [19] pointed out. This might explain why certain SBRs in such data-sets have been mislabeled as NSBRs. Another 

factor that may contribute to the mislabeling is annotators' lack of security software awareness. If a null-pointer reference causes 

software to produce an exception, A bug reporting with insufficient security knowledge, for example, would submit the issue as an 

NSBR. The null-pointer, on the other hand, might be infected with malware, and the null-pointer de-reference is among the CWE 

top 25, this is a collection of the most common and significant flaws in software that can lead to major vulnerabilities [22]. 

 

B. Clean Datasets Annotation 

From the five datasets, we will look for SBRs that have been mislabeled as NSBRs (i.e., Chromium, Ambari, Camel, Derby, and 

Wicket). An SBR model is said to be a defect-reports that describes 1 or more software system susceptibilities [13]. A security 

flaw is a software flaw that a hacker can exploit to obtain ingress to the structure or web-network [47]. The emergence of a 

vulnerability might have potentially dangerous effects, such as data leaking and unauthorised privilege escalation. 

We don't only recruit highly qualified software-security professionals, but we also create a unique physical analysis procedure to 

ensure quality of our hand annotation results. As a starting point, we employ CWE [48]'s software vulnerability classes to create a 

codebook that may be used to determine if the bug-report is a SBR. 
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1) Observers 

We do have a total of 6 annotators. 2 of them seem to be Ph.D. Graduates, while another 4 are Huawei workers. They have had at 

least 4 years of expertise in software securities and were acquainted with the initiatives that resulted in the problem reports. 

Table 3 summarises the backgrounds of the 6 observers across 4 acreages: (1) their organisational roles (column Role); (2) their 

expertise with the practical software quality-checking (Testing) (column Software-development); (3) expertise with the initiatives 

or analogous projects (column Projects); and (4) encounter with security-bug-detection-reports and persual (source code exposed 

assessment, persual of security bug reports) (i.e., column Security-bug). We utilise year (amount of experience) to objectively 

quantify in order to be objective, the annotators' experience within every acreage. In addition, the table's last pole (Note) contains 

important annotator supplemental information. 

 

TABLE2 

For Random-Forest and SMOTE techniques, the hyperparameter tweaking is set. (Differential evolution is abbreviated as DE.) 

Targets Parametersof the given Targets ParametersoftheD

E 

Parameters Defau

lt 

values 

TuningRan

ge 

NP F CR ITER 

 

 

Random-

Forest 

nestimators 10 [10,150]  

 

60 

 

 

0.8 

 

 

0.9 

 

 

3,10 

minsamplesleaf 1 [1,20] 

minsamplessplit 2 [2,20] 

maxleafnodes None [2,50] 

maxfeatures auto [0.01,1] 

maxdepth None [1,10] 

 

SMOTE 

Technique 

k 5 [1,20]  

30 

 

0.8 

 

0.9 

 

10 m 50% [50,400] 

r 2 [1,6] 

 

2) Categories of the Software Vulnerabilities 

Taxonomies of vulnerability categories have been developed by software security experts. Security flaws in software systems, 

according to Landwehr et al. [49], varying from implementation flaws on a local level (e.g., In C/C++, the gets() method call is 

used), to Errors in the interprocedural interface (for example, a race among a access-connect check as well as a file operation), to 

far higher level design blunders. 

CWE is a society collection of common software flaws that, if left unchecked, might leave systems vulnerable to attack [48]. It 

includes flaws from major functional system vendors, commercial data security product suppliers, academia, government 

organisations, and research institutes, among others. The CWE principle states that , endangers that have a similar features 

are classified together into a single category, with 40 top-level CWE groups and 417 subtypes for software products [50]. CWE-

1228, for example, is a top-level category that describes API/function problems. It has something to do with using third-party or 

built-in functionality APIs. CWE-242 (Use of intrinsically harmful function), CWE-477 (Use of outdated functions), and CWE-

479 (Use of obsolete function) are among the seven subcategories (A potentially hazardous approach or function has been 

revealed.) [51]. 

Annotators were required to tie each SBR to certain CWE categories in order to illustrate the features of SBRs. (or sub-categories) 

CWE requires a comprehensive and in-depth knowledge basis for the annotation process. However, the domain region and 

development languages involved in a particular software system are often stable, reducing the number of CWE associated with the 

research and therefore minimising the effort of physically correlating CWE categories from SBRs. 

 

3) Generation of Codebook 

Before beginning the human review, we create a coding scheme to assist the annotation process, similar to Viviani et al. [52]. The 

351 originally labelled SBRs from the 5 noisy datasets were used to create this codebook. Each one of the six authors individually 

evaluates the SBRs and generates a codebook.  
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There are two parts to the codebook: 

a) Why is the bug report an SBR? The Annotators must write out why bug-reports is indeed an SBR based on their experience 

and skills. They're indicated for describing the potential security dangers or implications of SBR after it happens. 

b) Empirical words or phrases: rather than duplicating the whole bug report summary, annotators pick and record the words and 

expressions that best demonstrate that bug-report is a SBR. 

The six code books were then integrated and duplicates were deleted by the same annotators. Figure 2 shows an example of a 

codebook excerpt. 

 

4) Card Sorting and Manual Annotation 

We undertake the manual review using the card categorizing [53], [54] technique, in which each data-set is examined and 

classified separately by two corporate workers and one Ph.D. student based on CWE vulnerability analysis categories and the 

codebook. Annotators A1, A4, and A6 operate on the 4 tiny datasets (Ambari, Camel, Derby, and Wicket), whereas A2, A3, and 

A5 made activities on Chromium, according to their experience. As a consequence, each bug report is represented by three cards, 

for a sum of 137,820 cards across all five datasets. To quantify the agreement among the 3 annotators of each dataset, we use the 

Fleiss's Kappa Coefficient values [52], [55]. 

 

TABLE3 

The 6 annotators' backgrounds. (Note: 4 of them are Huawei software engineers, as well as the other 2 are Ph.D. graduates 

specialising in software security- analysis.) 

Annotat

ors 

Roles Experience(Years) Notes 

Softwa

re 

develo

ped 

Projects 

count 

Securit

y 

bugs 

A

1 

Senior-

Developer 

16 4 4 Working on Hadoop-related products as a 

product developer Apache's products include 

Ambari, Camel, Derby, and Wicket. 

A

2 

Senior-

Developer 

9 5 2 is experienced with web crawler development; is 

a Project chromium volunteer 

A

3 

Test-Manager 12 6 7 For the past 5 years, I've performed as a security 

tester, analysing bug reports and recording and 

analysing CWE and CVE data. 

A

4 

Security-

Tester 

5 4 5 carries out security testing, such as fuzzing and 

penetration testing. 

A

5 

Ph.D.student 4 3 5 For the past three years, I've worked as an 

application security tester; my current research 

focuses on safety&security flaw report persual. 

A

6 

Ph.D-

student 

1 3 5 specialises in vulnerability mining and has won 

over $30,000 in cash wins from vulnerability 

scanning competitions in the previous three 

years.. 
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Reasonsofbeingan

SBR 

Evidenceorphrases Bug 

reportID 

 

 

disclosure of 

sensitive 

data 

• • The services does not follow all of OWASP's 

recommendations for making it much harder for an 

attacker to crack encrypted passwords. It does not use 

an arbitrary salt and only performs one hash operation. 

 

Derby-5539 

• • A issue point with the display pass-code; password 

leaks 

Chromium-

1758 

• • You might want to include the superior pass-code. Chromium-

1785 

..

. 

..

. 

 

 

may result in a 

system crash or a 

DOS attack 

• • In Google Chrome crawler, there is a memory 

corruption issue; investigate the underlying cause since 

this appears to be exploitable. 

Chromium-

11308 

• • When dragging a file to a new tab, memory corruption 

occurs. 

Chromium-

12027 

• • None storage harm is caused by the incorrect cache. Chromium-

27509 

..

. 

..

. 

..

. 

..

. 

..

. 

Fig. 2 A. A codebook list snippet after getting merged 

 

C. The Data Annotation results 

The five datasets have a total of 118 conflicting label outcomes based on our hand annotation results. The mean agreement 

between many annotators is calculated using the Fleiss kappa statistic. The Fleiss kappa agreement level for the 5 datasets is 

significant or Near clear (the values of Fleiss kappa vary from 0.73 to 0.87 across the 5 datasets) 6, indicating excellent annotator 

agreement [52]. 

We utilise the labels of authors as final outcomes for bug-detection-reports that have received 3 harmonous la- bels. The 

annotators, on the other hand, plan a face-to-face review conference for bug reports with conflicting label findings to debate until a 

consistent outcome is obtained for each item. As a consequence, our hand annotation has certified 749 NSBRs of noise data-sets as 

SBRs. There are around 616, 27, 42, 91, and 37 newly detected SBRs for Chromium, Ambari, Camel, Derby, and Wicket, 

respectively, in each dataset. It's worth mentioning how no SBRs in noise data-sets have indeed been verified as NSBRs, implying 

that SBRs in noise datasets are quite reliable. One explanation might be that experienced users were more likely to report SBRs in 

bug detection and report methods. 

6. Relationship between agreement level and Fleiss kappa value (Kp). Poor: Kp 0; Slight: 0.01 Kp 0.20; Fair: 0.20 Kp 0.40; 

Moderate: 0.40 Kp 0.60; Significant: 0.60 Kp 0.80; Near-perfect: 0.80 Kp 1. 

Security testers who were specialised in system security or were particularly worried about it. 

The vast majority of SBRs uncovered are obvious security issues that can be attributed to a single CWE. Figure III shows four 

SBRs that are associated with well-known susceptible categories (inappropriate permission, null pointer, wrong memory 

management, privacy leaks, etc.). The Camel-286, for example, is an SBR that is connected to null points. It is indeed component 

of CWE-465 (Pointer Errors), When an application removes a pointer that it assumes is legitimate but is NULL, it crashes or exits. 

So because Because void pointer decrementing is only 1 step back from crashing a programme (worst-case scenario) or giving an 

attacker unrestricted access to the system [58], identifying the null pointer issue is critical to system security. [56], [57]. 

In compared to the original datasets, our labelled datasets are clearer. As a result, we refer to our labelled data-sets as clean data-

sets, whereas the original data-sets are referred to as noisy datasets. 
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The dispersion of the noisy data-sets, and also our clean datasets, is shown in Table 4. In the 5 datasets for such noisy data-sets, 

there’s only a tiny number of bug-reports identified as SBRs. SBRs make up 0.45 percent to 8.80 percent of the population. For 

clean datasets, the proportion of SBRs ranges from 1.93 percent to 17.90 percent. We detected 616 SBRs in the huge dataset 

Chromium, which were categorised into NSBRs in the noisier sample, raising the number of SBRs by – 320% percent. 

 

TABLE4 

The five datasets were distributed both in noisy and clean versions. 

Datasets #BR Percentage analysis Percentage analysis 

#Noisy(%) #Clean(%) #Noisy(%) #Clean(%) 

Chromium 41,940 193(0.47%) 809(1.94%) 41,749(99.55%) 41,133(98.08%) 

Ambari 1,000 30 (3.00%) 57 (5.70%) 972(97.12%) 945(94.50%) 

Camel 1,000 33 (3.30%) 75 (7.50%) 969(96.90%) 927(92.70%) 

Derby 1,000 8 (8.90%) 180(18.00%) 913(91.30%) 822(82.20%) 

Wicket 1,000 11 (1.10%) 48 (4.80%) 991(99.10%) 954(95.40%) 

 

ID                Title&Description of the Snippets given 

Camel 

   286             ,When there is a connection between both the  

router and the service, it is called an endpoint.  

Endpoints of the CXF. 

NullPointerException 

                         occurs in CXF routes. Whenever an endpoint is 

                        introduced between such a cxf router and another  

cxf router... 

. 

Ambari-   On a big cluster (100 nodes), the no. of  

     3315                

Out of Memory occurs when the number of  

ExecutionCommandEntity instances grows. Use this  

script to recreate the issue... 

 

Chromium C on cer n s  a bou t  s i t e s '  ca pa ci t y t o t r a ce  

   838 8    t h e u s er ' s  h i s t or y ou t we i gh  con cer n s   

               about  p r iva c y l eak s  fr om u t i l i s i n g  n on -

in cogn i t o h i s t or y d a t a bas es  t o . . .  

 

 

Chromium  

muchUnder Linux, the heap stack and others have  

        29824     permissions to read and write executables... 

Memory  

corruption is far easier to exploit with these  

permissions, especially when using a rwx HEAP. To  

be defeated. To perform a heap, an attacker might  

just use javascript. 

 

Fig.3. The following are some examples of evident SBRs found in our data analysis. The contents of the red-colored words assist 

us in assessing if a bug report represents a safety concern (i.e., SBR). 
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V. SETTING UP FOR EXPERIMENTAL USE 

We introduce the basic methodologies proposed by prior studies in this section (i.e., Peters et al. and Shu et al.). Following that, 

we'll show you how we used a simple-text classification setup to explore RQ2.Finally, the classifiers and performance assessment 

metrics used in our investigation are explained. 

 

A. Baseline Strategies 

As a starting point for determining the impact of data label correctness, we adopt the methodologies suggested by Peters et al. and 

Shu et al., which we’ve described in Section 3. By adopting the nomenclature of their work, we refer to Peters et alwork's as Farsec. 

We acquired two baseline methods from Shu et al. [12]'s work, as they modify the learner and SMOTE hyperparameters, 

respectively, in their investigation.Because They fully relate the trained and check set matrix data supplied by Farsec throughout his 

study, FarsecTuned is the name given to the process for tuning the learner's characteristics, as well as the strategy for adjusting the 

features of SMOTE. 

 

The process of creating these 3 baselines is referred to as fol- lows: 

1) Farsec: A substructure for minimising the prevalence of security-related keywords in bug reports by filtering and rating them. 

Farsec builds security before aligning the prediction models, several filters are used to filter out non-security bug reports 

containing safety-related terms. (shown in Table 1). In our research, we used the farsectwo filter since it accounts for 80% of 

the data. In Peters et alinvestigation.'s farsectwo produced the best outcomes across all five datasets. Farsec is a method of 

rating. It creates a keywords matrix for each dataset with above X security-related keywords.We ran trials (the inner-project 

experiments of Peters et alstudy) .'s with X = 50, 100, and 200 to find the best value for X. The average F1-score was the same 

(0.15) for all three settings, however the G-measure acquired with option 100 was indeed the best (0.29).As a result, we used 

the top 100 in our analysis, which matches the setup of Peters et alstudy.'s [11]. Peters et alstudy.'s [11] was conducted in this 

environment. 

2) FarsecLearner: Using the multi - objective evolutionary approach to tune crucial factors of the learners using the computed 

passcode lock matrix information as inputs (i.e., the train and test set) [59]. 

3) FarsecSmote: Modifying the key dimensions of SMOTE with dynamic optimization, utilising the computed security phrases 

matrix records as inputs (i.e., the training dataset and testing set). To be impartial, we take Shu et alsourcecode .'s directly and 

leave all of the parameter settings (i.eFor each key parameter, there are crucial key components, attribute values, and tuning 

ranges.) exactly because they are engrossed in their task The three baselines employ the same categorization approaches in their 

research (Random-Forest, Naïve-Bayes, K-Nearest-Neighbour, Multi – layer-perception, and Logistical-Regression)as well as 

data-sets (Chromium, Ambar, Camel, Derby, and Wicket). 

 

B. Text Categorization Made Easy 

The 100 best Matrix of security keywords is used to build models of classification in the three baseline techniques. This is not the 

same as standard text categorization. We also utilise simple text categorization as another strategy for our experimental assessment 

in this study since it is common and used by most bug report analyses [13], [14], [16], [17], [27]. To pre-process the content of the 

bug report using Count-Vectorizer and Select- FromMode from the machine-learning package for text standardisation and 

dimension reduction scikit-learn [60]. Description. 

The CountVectorizer programme turns the content of a bug-report description into a token count matrix. Stop - word like a, the, and 

are eliminated to prevent being used as a signaling for prediction since they are assumed to be unspecific in expressing the substance 

of a document.  

The token counts are then represented in a sparse representation matrix. A feature selection method is SelectFromModel. It weighs 

the relevance of characteristics and picks them based on their weights. It is a morpho that may be used in conjunction with other 

meta-transformers. any estimator with a coef or feature ’s significance property, which specifies the feature weights.If the cor- 

responsive coef or features importance values were less than the set threshold-value, the aspects are taken insignificant and 

eliminated. There are built-in algorithms for finding a barrier using a text parameter, in addition to defining the threshold 

numerically. Float, Mean, Median duplicates of these, such as 0.1*mean value, are available heuristics. For the CountVectorizer and 

SelectFromModel arguments, we utilise the default values. 
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C. Performance Metrics and Classifiers 

We apply the performance indicators and classifiers  used by Peters et al. and Shu et al. in this work to make the assessment 

findings objective. 

Classifiers. We employ the five classifiers used by Peters et al. and Shu et al. in this investigation to be more purposeful. Random-

Forest (RF), Naïve-Bayes (NB), K-Nearest-Neighbor (KNN), Multilayer-Perceptron (MLP), and Logistics Support Regression are 

all examples of machine learning algorithms (LR). These algorithms are also commonly used in the mining of software data 

repositories [61], [62]. To answer RQ1, however, we solely employ classifier RF in combination with baseline techniques to make a 

comparison clearer and easier. We chose RF [63] as the major classifier because (1) It is among the most popular clustering 

methodologies and needs to perform well for software development text classification; (2) this is one of to play a dominant role in 

baseline Farsec test research results; (3) it was the most frequently used classification methods and performs well enough for 

software development text classification [52], [54]. 

Metrics for measuring performance. We use all of the performance evaluations to eliminate bias and provide a comprehensive 

review.Retention (i.e., pd in their job), pf (probability of false-alarm), Accuracy, F1-score, and G-measures are some of these 

measures. The first 4 are widely used standards in empirical software development [61], [64], whereas G-measures is a prominent 

statistic in Peters et alstudy .'s [11]. Both the F1-score and the G-measures are harmonic means, with the G-measures taking into 

account the both majority and minority classes' recalls [11]. 

 

There are 3 possible outputs of the forecast result for each bug report: 

 Classified as +VE(positiive) (TP): an SBR is projected to be SBR;  

 False –VE(negative) (FN): an SBR is anticipated to be NSBR;  

 True –VE(negative) (TN): an NSBR is expected to be NSBR; 

The performance measures Recall, pf, Accuracy, F1-score, and G-measures may be derived based on these results: 

 

 

 

 

 

 

Fig. 4 Setting up data and the basic procedure for conducting studies. 

 

   Recall = pd = TP/FN+TP (1)     

   Pt = FPR = FP / TN+FP (2)  

   Calculating Accuracy = TP / FP+TP (3) 

   F1-measure = 2*recall*precision / Precision +Recall (4)  

   G – measures = 2*recall*(1-pf) / (1-pf) +recall (5) 

The higher the recall, accuracy, F1-measure, and G-measures are among these 5 performance indicators, while the lower the pf, the 

better. 

 

D. Setting of Data 

To guarantee that the comparison is fair, we divide the training and testing sets according to the baseline Farsec method. To put it 

another way, each dataset is categorized sequentially before being separated into 2 equal halves (i.e., 50 percent and 50 percent). 

The first section acts as a warm-up exercise., The second acts as a practise set., both of which are representative of the actual usage 

scenario in production. Shu et altwo .'s baselines (FarsecTuned and FarsecTuned) As they use similar matrix data processed, they 

use the same data-set partition technique by Peters et al. 

In this experimental setup is depicted in Figure 4. On either noisy or clean data, we use several categorization algorithms (i.e., 

Farsec, FarsecTuned, FarsecTuned, Text, TextTuned, and TextTuned). However, we evaluate each technique using the test set's 

clean labels, along with the model trained using noisy data. We do it because the most important thing is if the prediction accuracy 

were right in stating of the reality, i.e., clean statistics. 

 

 

 
Cleanlabelling approaches    
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VI. RESULTS OF THE EXPERIMENT 

In this section, we give the outcomes of our experiment by responding to the two questions. 

 

A. RQ1's Response 

RQ1: To what degree does the accuracy of dataset labels affect classification performance algorithm? 

To address RQ1, we are using the classifier RF to execute the 3 baseline proposition (i.e., Farsec, FarsecTuned, and FarsecTuned) 

on both the noisier and cleaner datasets. 

The results obtained of the 3 baselines learned both with noisy and clean datasets are shown in Table 5. 
 

TABLE 5 

Both on Noisy and Clean datasets, performance outcomes of the 3 baseline techniques with classifier RF. All of the labels in the test 

dataset are from the Cleaner datasets. If the value of a Cleaner dataset is greater than that of a Noisy dataset, it is bold-faced (Note: 

For Recall, the greater the number, the better. , Accuracy, F1-score, and G-measures; the lower the number, the better for 

pf). 

Data 

names 

Approaches Recall pf Accuracy F1-score G-measures 

Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean 

 

Chromium 

Farsec 0.01 0.66 0.00 0.00 0.83 0.95 0.02 0.78 0.02 0.79 

Farsec
Tuned

 

Learn

er 

0.03 0.67 0.00 0.00 0.39 0.94 0.05 0.78 0.05 0.80 

FarsecTuned
 

Smote 

0.30 0.80 0.17 0.07 0.04 0.22 0.07 0.35 0.45 0.86 

 

Ambari 

Farsec 0.44 0.50 0.02 0.07 0.39 0.19 0.41 0.28 0.60 0.65 

FarsecTuned
 

Learn

er 

0.38 0.56 0.02 0.06 0.35 0.23 0.36 0.33 0.54 0.70 

FarsecTuned
 

Smote 

0.44 0.44 0.05 0.06 0.22 0.19 0.29 0.26 0.60 0.60 

 

Camel 

Farsec 0.07 0.33 0.02 0.12 0.27 0.21 0.11 0.26 0.12 0.48 

FarsecTuned
 

Learn

er 

0.11 0.24 0.04 0.05 0.21 0.33 0.14 0.28 0.20 0.38 

FarsecTuned
 

Smote 

0.07 0.33 0.06 0.13 0.11 0.20 0.08 0.25 0.12 0.47 

 

Derby 

Farsec 0.24 0.84 0.18 0.54 0.25 0.27 0.25 0.41 0.38 0.60 

FarsecTuned
 

Learn

er 

0.38 0.69 0.22 0.44 0.30 0.27 0.33 0.39 0.51 0.62 

FarsecTuned
 

Smote 

0.33 0.60 0.28 0.25 0.22 0.37 0.27 0.45 0.45 0.67 

 

Wicket 

Farsec 0.00 0.52 0.00 0.05 0.00 0.34 0.00 0.41 0.00 0.67 

FarsecTuned
 

Learn

er 

0.00 0.52 0.00 0.08 0.00 0.24 0.00 0.33 0.00 0.67 

FarsecTuned
 

Smote 

0.00 0.39 0.00 0.05 0.00 0.26 0.00 0.32 0.00 0.55 

 

Average 

Farsec 

FarsecTuned
 

Learn

er 

FarsecTuned
 

Smote 

All 

0.15 

0.18 

0.23 

0.19 

0.57 

0.54 

0.51 

0.54 

0.04 

0.06 

0.11 

0.07 

0.16 

0.13 

0.11 

0.13 

0.35 

0.25 

0.12 

0.24 

0.40 

0.40 

0.25 

0.35 

0.16 

0.18 

0.14 

0.16 

0.43 

0.42 

0.33 

0.39 

0.22 

0.26 

0.32 

0.27 

0.64 

0.63 

0.63 

0.63 
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The average Recall, Accuracy, F1-score, and G-measures scores across the 5 datasets after training with the noisy dataset are 0.15, 

0.35, 0.16, and 0.22 in Farsec; 0.18, 0.25, 0.18, and 0.26 in FarsecTuned; and in FarsecTuned, 0.23, 0.12, 0.14, and 0.32. The mean 

prices of Recall, Accuracy, F1-score, and G-measures across the 5 datasets are 0.57, 0.40, 0.43, and 0.64 in Farsec; 0.54, 0.40, 0.42, 

and 0.63 in FarsecTuned; and 0.51, 0.25, 0.33, and 0.63 in FarsecTuned. The following findings may be obtained when evaluating 

performance post training with cleaner and noisier datasets:  

(1) On cleaner data-sets, the maximal of Recall, Accuracy, F1-score, and G-measures of the baseline methods are greater than on 

noisy datasets. 

(2) Recall, Accuracy, F1-score, and G-measures average values have grown by 191 percent, 46 percent, 147 percent, and 136 

percent, respectively. 

 
 

B. RQ2’s Response 

RQ2: How does the basic text classification perform for SBR prediction on cleaner datasets? 

To answer RQ2, we use basic text classification to run the five classification algorithms (RF, NB, MLP, LR, and KNN). Each one of 

the 5 classification techniques is initially trained on a noisy dataset and its clean counterpart. The model is then used to anticipate 

the project's testing set. The precise data labels are then used to fabricate the model's performance measures. 

The outcomes derived of the 3 baseline methods learned both with noisy and clean datasets are shown in Table 6. If the clean 

dataset's performance is better than the noisy dataset's, the clean dataset's performance is emphasised in boldface. It's worth noting 

that the clean edition of the five datasets has substantially higher total values of Recall, Accuracy, F1-score, and G-measures than 

the noisy version. Recall, Accuracy, F1-score, and G-measures have average values of 0.08, 0.29, 0.11, and 0.14 for models, 

respectively. 

bred on noisier dataset, and 0.37, 0.54, 0.42, and 0.51 on cleaner data-sets, which are 362 percent, 86 percent, 281 percent, and 264 

percent higher than noisy datasets. The gain on the huge dataset Chromium, in particular, is significant. The average F1-score for 

the 5 suggest that educators on the clean Chromium dataset is 654 percentage points greater than for the messy Chromium data-set. 

 
In terms of Precision, our results for basic text categorization contradict Tantithamthavorn et alconclusion's that mislabeling has no 

influence on prediction model Precision [4]. We dug deeper into the causes and discovered that TantithamthavornTo combat class 

imbalance, we re-balanced the data to train., which has an influence on prediction model precision [65], [66]. In fact, their 

conclusions are quite alike to the outcomes of our baseline techniques (Farsec, FarsecTuned), and FarsecTuned), and these baselines 

reduce class imbalance by removing noise from the dominant group or applying SMOTE. 

 

Table 6 

Both on Noisy and Clean datasets, the five classifiers performed well with basic text classification. The test dataset's labels were 

from the Cleaner datasets. If the values of Cleaner datasets is greater than the value of Noisier datasets, it is bold-faced (Note: For 

Recall, the greater the number, the better., Accuracy, F1-score, and G-measures; For pf, the lower the better.). 

Data 

names 

Learner Recall pf Accuracy F1-score G-measures 

Nois

y 

Clea

n 

Nois

y 

Clean Nois

y 

Clea

n 

Noisy Clea

n 

Nois

y 

Clean 

 

Chromiu

m 

RF 0.01 0.72 0.00 0.00 0.99 0.92 0.02 0.81 0.02 0.84 

NB 0.15 0.66 0.02 0.04 0.17 0.29 0.16 0.40 0.26 0.79 

ML

P 

0.06 0.49 0.00 0.00 0.33 0.71 0.10 0.58 0.11 0.66 

LR 0.04 0.58 0.00 0.00 0.37 0.84 0.07 0.69 0.08 0.73 

Finding1 

 

Finding2 
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KN

N 

0.04 0.58 0.00 0.00 0.37 0.84 0.07 0.69 0.08 0.73 

 

Ambari 

RF 0.13 0.25 0.02 0.02 0.20 0.31 0.15 0.28 0.22 0.40 

NB 0.13 0.44 0.02 0.02 0.15 0.39 0.14 0.41 0.22 0.60 

ML

P 

0.31 0.38 0.03 0.02 0.28 0.38 0.29 0.38 0.47 0.54 

LR 0.19 0.25 0.01 0.01 0.38 0.40 0.25 0.31 0.32 0.40 

KN

N 

0.19 0.25 0.01 0.01 0.38 0.40 0.25 0.31 0.32 0.40 

 

Camel 

RF 0.00 0.37 0.00 0.00 0.00 0.89 0.00 0.52 0.00 0.54 

NB 0.04 0.30 0.05 0.05 0.09 0.37 0.06 0.33 0.08 0.46 

ML

P 

0.00 0.20 0.02 0.03 0.00 0.43 0.00 0.27 0.00 0.33 

LR 0.02 0.15 0.00 0.02 0.33 0.39 0.04 0.22 0.04 0.26 

KN

N 

0.02 0.15 0.00 0.02 0.33 0.39 0.04 0.22 0.04 0.26 

 

Derby 

RF 0.10 0.46 0.02 0.01 0.59 0.90 0.18 0.61 0.19 0.63 

NB 0.16 0.53 0.06 0.13 0.39 0.50 0.23 0.51 0.28 0.66 

ML

P 

0.14 0.39 0.03 0.07 0.50 0.56 0.22 0.46 0.25 0.55 

LR 0.12 0.39 0.01 0.06 0.67 0.60 0.21 0.48 0.22 0.55 

KN

N 

0.12 0.39 0.01 0.06 0.67 0.60 0.21 0.48 0.22 0.55 

 

Wicket 

RF 0.00 0.48 0.00 0.00 0.00 0.92 0.00 0.63 0.00 0.65 

NB 0.00 0.30 0.00 0.03 0.00 0.30 0.00 0.30 0.00 0.46 

ML

P 

0.00 0.22 0.00 0.02 0.00 0.36 0.00 0.27 0.00 0.36 

LR 0.00 0.13 0.00 0.01 0.00 0.38 0.00 0.19 0.00 0.23 

KN

N 

0.00 0.13 0.00 0.01 0.00 0.38 0.00 0.19 0.00 0.23 

 

Average 

RF

NB

ML

PL

RK

NN 

All 

0.05 0.46 0.01 0.01 0.36 0.79 0.07 0.57 0.09 0.61 

0.10 0.45 0.03 0.05 0.16 0.37 0.12 0.39 0.17 0.59 

0.10 0.33 0.02 0.03 0.22 0.49 0.12 0.39 0.17 0.49 

0.07 0.30 0.01 0.02 0.35 0.52 0.11 0.38 0.13 0.44 

0.07 0.30 0.01 0.02 0.35 0.52 0.11 0.38 0.13 0.44 

0.08 0.37 0.01 0.03 0.29 0.54 0.11 0.42 0.14 0.51 

 

 

 On the cleaner and noisier datasets, Figure 5 displays the Recall boxplots, Accuracy, F1-score, and G-measures for the techniques 

Text, Farsec, tuned learner, and Farsec tuned SMOTE. The cleaner datasets' scores are presented in red boxes, The scores of the 

noisier data-sets are displayed in blue color boxes. The Precision of the 3 standardising on pure and ambiguous information is 

comparable, as seen by the Precision charts., which is consistent with Tantithamthavorn et alresult .'s [4]. 

When measuring the results of basic text categorization to the three baselines trained on clean datasets (i.e., Farsec, FarsecTuned, 

and FarsecTuned), the Precision has increased dramatically, with an average increase of 125 percent. In terms of Recall, however, 

the 3 baselines perform better. The proportion of real SBRs recognised from the overall SBRs of the ” proposed is measured by 

recall, whereas the percentage of authentic SBRs from  the identified SBRs is measured by accuracy.. For SBR prediction, recall 

and accuracy were both significant criteria. To eliminate bias, we employ the F1-score as one of the most significant assessment 

statistic. 
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The F1-score is a mean of Accuracy and Recall that determines whether an improvement in Accuracy (Recall) balances a decrease 

in Recall (Precision) [67]. To eliminate bias in this research, we employ the F1-score as one of the most essential assessment 

statistic. On the cleaner dataset (red), the box of basic text categorization (txt) is way greater than the 3 benchmarks, as seen in the 

F1-score boxplots (fsc, ftl, and fts). In terms of F1-score, Simple text classification outperforms the other three baselines by 46 

percentage points. 

 
 

VII. DISCOURSE 

Here we discuss whether Shu et alhyperparameter's tuning method works when incorporating simple-text-categorization, ways of 

misidentifying in the actual data-sets, current achievement of various authors (Professionals vs Doctoral students), the 

repercussions of our research, In this part, we'll discuss the threats to the credibility of our research. 

 
Figure 5: shows the execution of the cleaner (red) and noisy (blue) data-sets for basic text-classifications, as well as the 3 Baselines 

(For example, Farsec, FarsecTuned), as well as FarsecTuned). (Noting the letters txt, fsc, ftl, and fts stand for Text, Farsec, and 

FarsecTuned,), as well as FarsecTuned,respectively). 

 

A. Do Shu et Alhyperparameter's Tweaking Techniques work for Simple Text Classification? 

We test whether Shu et alhyperparameter .'s tuning approach works in conjunction with the ordinary text categorization approaches 

presented in RQ2. Here, we use RF to test Shu et altwo .'s hyperparameter tuning techniques. We use FarsecTuned and TextTuned 

to imply the mixture of learner improvements for text classification (tweaking the important guidelines of learner RF) and the 

mixture of text-categorization with Smote intonation (able to tune the important parameters of Smote), respectively, following the 

mentioning rule of our baseline approaches. 

Finding3 
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The results of integrating text-classification with hyperparameter tweaking are shown in Table 7. (i.e., tune and SMOTE 

respectively).  

Across the five datasets, the best values of Recall, Accuracy, F1-score, and G-measures are 0.76, 0.94, 0.84, and 0.89, respectively; 

while the mean of Recall, Accuracy, F1-score, and G-measure is 0.56, 0.58, 0.52, and 0.68. FarsecTuned (combo of basic text 

classification and learner hyperparameter tweaking) increases Precision significantly, while FarsecTuned (combo of simple text 

categorization and SMOTE hyperparameter adjustment) improves Recall significantly. FarsecTuned beats FarsecTuned on average, 

given the relevance of the harmonic metric F1-score. 

Figure 6 shows boxplots of the performance rating of the six techniques over the five clean datasets to compare the efficacy of 

FarsecTuned and FarsecTuned with the 4 main ways used to answer RQ1 and RQ2. Each group is represented by a paired colour, 

with the blue coloredpair representing 2 basic techniques (Farsec and Text), the greener coloredpair representing appeal with learner 

hyperparameter tuning (FarsecTuned and Tuned Learner), and the red pair representing appeal with SMOTE hyperparameter tuning 

(FarsecTuned and TextTuned). 

 

TABLE7 

  The effectiveness of Shu et alhyperparameter .'s optimization methodologies paired with basic text categorization. 
Data-sets Approaches Recall pf Accuracy F1-score G-measures 

Chromium TextTuned 

Learner 

0.76 0.00 0.94 0.84 0.87 

TextTuned 

Smote 

0.86 0.08 0.17 0.28 0.89 

Ambari TextTuned 

Learner 

0.25 0.02 0.31 0.28 0.40 

TextTuned 

Smote 

0.50 0.02 0.50 0.50 0.66 

Camel TextTuned 

Learner 

0.39 0.00 0.95 0.55 0.56 

TextTuned 

Smote 

0.41 0.09 0.32 0.36 0.57 

Derby TextTuned 

Learner 

0.52 0.01 0.93 0.66 0.68 

TextTuned 

Smote 

0.68 0.25 0.40 0.50 0.71 

Wicket TextTuned 

Learner 

0.52 0.01 0.71 0.60 0.68 

TextTuned 

Smote 

0.70 0.03 0.57 0.63 0.81 

 

Average 
TextTuned 

Learner 

TextTuned 

Smote 

All 

0.49 

0.63 

0.55 

0.01 

0.09 

0.04 

0.77 

0.39 

0.59 

0.59 

0.45 

0.53 

0.64 

0.73 

0.69 

 

In terms of Accuracy and F1-score, we can see that FarsecTuned (green) is significantly better than FarsecTuned (light green), 

which is consistent with evaluating Text (blue) with FarsecTuned (green) (light blue). For all four performance parameters, though, 

TextTuned (red) consistently surpasses FarsecTuned (light red) (Recall, Accuracy, F1-score, and G- measures). TextTuned 

outperforms Text in terms of the crucial performance metric F1- score, making it the strongest of the 6 techniques. 

 

 

B. Mislabeling Patterns in the Source Datasets 

Data reflection by hand is a time-consuming process. This section evaluates the manually identified SBRs in order to detect patterns 

of misrepresentation in order to give information on subsequent advanced data cleansing and data labelling efforts. 
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1) Pervasiveness 

The manual assessment found a total of 749 SBRs from the misinterpretation of noisy datasets. Each record has one or more CWE 

tags applied to it. We were able to comprehend the distribution of mislabeled objects thanks to these tags. 

The 749 SBRs also include than 50 CWE categories. However, we grouped these SBRs as from 40 top-level CWE classes of 

software evolution to derive the most common properties. Finally, the top 3 categories with the most SBRs are CWE-1218 (Cache 

memory error), CWE-199 (Information administration mistake), and CWE-465 (Pointer Issues). They account for over 75% of all 

SBRs.Chromium is responsible for roughly 90% of the entries in CWE-1218 and CWE-199, whereas the four tiny datasets are 

responsible for 95% of the records in CWE-465. 

 

2) Description Patterns 

With plain language, a bug description is a brief summary of the observed behaviour. (OB) and/or the expected behaviour (EB). The 

following are the most prevalent OB and EB patterns, according to Chaparro et al. [26]: 

a) OB: ([subject]) ([negative aux. verb]) ([subject]) ([subject]) ([subject]) ([sub [adverb] [adverb] [adverb] [adverb] [ Here, 

[deleterious aux. verb] means "not," "can't," "doesn't," "didn't," "didn't," "didn't," "didn't," "didn't," "didn't," " For instance, the 

shutdown code for [Audio Output Stream] [It] [doesn't] [doesn't [After the thread has been shut down, appropriately destroy the 

output stream object...] (Image courtesy of Chromium Issue 16036). 

b) EB: [topic] should/shall/must/must/must/must/must/must/must/must/must/must/must for instance, [It] shouldn't [mind asking 

back to the Main thread because it'll be pointless at current point.] (Adapted from Chromium 41547). When something comes 

to SBRs, there are a few things to consider, the [object] and [verb]/[complement] of the SBRs' description contain certain 

security-related keywords. For such top three CWE classes, Table 8 summarises several high-frequency phrases. (CWE-1218, 

CWE-199, and CWE-464) based on the 749 SBRs detected. SBRs Always include a mix of terms both from [subject] & 

[verb]/[complement] classes, or words with comparable roots, in each category. 

 

C. Engineers vs. Ph.D. Students in Terms of Annotation Performance 

6 annotators work on our clean datasets annotation, including four Huawei software engineers and 2 Ph.D. Graduates. This section 

discusses the quality standards of comments from business personnel and university student-personnels.  

The accuracy rate of company annotators is superior than those of Ph.D. students on the basis about each annotating result and the 

clean datasets' final labels. Ph.D. students A5, who has 3 years of test automation expertise and is presently concentrating on bug 

report analysis, surpasses company accuracy A3, who has 8 years of software design expertise and is acquainted with the project 

Chromium. – i.e., authors who have done hands-on development and testing are more apt to provide correct labels.; However, 

knowledge in software security-related operations aids in correct labelling even more. 

 
Figure 6 shows boxplots with On the cleaner datasets, paired colour for the effectiveness of the six included classification 

techniques. The blue pair represents two fundamental techniques (Farsec and Text), the green-colored pair represents learner 

hyperparameter tuning (Farsec Tuned Learner), and the red pair represents SMOTE hyperparameter tuning (Farsec Tuned SMOTE) 

(FarsecTuned and TextTuned). (Note that fsc, txt, ftl, ttl, fts, and tts Smote are abbreviations for Farsec, Text, FarsecTuned, 

FarsecTuned, and TextTuned, respectively.) 
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D. Indications 

We have distilled several general insights from this work that go beyond the specific objective and methodology.The quality of your 

data is crucial.The most significant challenge for Microsoft's data scientists is data comprehensiveness, based on the findings of Kim 

et al. [68]. Data quality difficulties, according to researchers, make it tough for data analysts to have faith in the accuracy of their 

work.The potency of SBR estimation techniques is strongly correlated with data label correctness, as evidenced by our SBR 

prediction experiment results. A model fit with clean data outperforms a model fit with filthy information with skewed data by a 

significant margin. In the world of software engineering, comparable verification has indeed been done in the fields of static code 

defect prediction. [31], [68], legitimate bug prediction [32], and clone detection [69]. Kim et al. [68], for example, looked at the 

effect of data-labels on fault prediction. The prediction model's performance has definitely worsened, with mislabels exceeding 

25%, according to their evaluation results. According to Tantithamthavorn et al. [4], predictive prototype are trained on noisier 

dataset attain 56 percent to 68 percent of the Remembering of trained models on clean data. 

It will need a team effort. A high-quality dataset is required for appropriate experimental assessment of SBR prediction techniques. 

Because the existing automated technique cannot handle SBR prediction dataset labelling adequately, manual work is required. 

Despite the fact that manual data labelling is laborious and costly, it may be overcome with a collective effort. There are several 

examples of collaborative initiatives yielding high-quality datasets. Svajlenko et al. [69], [70], for example, By mining and manually 

inspecting clones of 10 common characteristics, we were able to construct a huge clone detection benchmark. Six million authentic 

affirmative mutations of various clone types are available. (Type-1, Type-2, Type-3, and Type-4) make up the benchmark. Over the 

course of 216 hours of mechanical attestation efforts, three judges discovered these clones. Researchers [71], [72], and [73] often 

utilise these datasets. 

 

TABLE8 

Mislabeling SBRs in the top three categories resulted in the following keywords. 

Categorie

s 

 

[Subjects] [verbs]/[complements] 

CWE-

1218 

heaps, stacks, 

caches, buffers, 

pools, cpu, loops, 

length, ranges, 

indices, arrays, 

files, directory, 

data, exception, 

bound 

consumptions. 

out, consume, 

uncontrolled, dereference, 

use-after-free, out-of-

bounds 

CWE-119 user, user-name, 

sessions, pro-file, 

security, licences, 

hosts, certificates 

leak, exposure, mask, 

stockpiling, transfers, 

logs, delicate, clean, 

hashing, authorize, allow, 

invalid, malicious are all 

terms that may be used to 

describe a situation. 

CWE-465 Pointer indication. dereference, release, 

wrong, improper, null, 

outside, invalid, exception, 

uninitialized, initialise, 

out-of-range, expired, 

handle 

A collaborative effort is required to properly identify data and develop high-quality openly accessible data-sets in the realm of SBR 

prediction. One of the stages toward accomplishing that aim is the job we do. Our datasets and manually annotations files have been 

made openly available for others to check and extend. 
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E. Validity Challenges 

1) Internal Validity: It  is a term used to describe the validity of a Possible mislabels in the clean data-sets pose a danger to the 

study's internal validity. We take a number of steps to lessen the hazard. However, ensuring that the clean datasets are free of 

false positives and negatives remains a challenge. Since there is no specific definition for SBR, as Ohira et al. [19] pointed out, 

determining whether such a bug (error) reported is either an SBR or an NSBR is difficult. To determine if a bug report is an 

SBR, we apply the criteria of CWE, the most certified institution in the field of vulnerability management. Furthermore, each of 

the manual review's six annotators has extensive practical expertise and a thorough understanding of various vulnerability kinds 

and features. Furthermore, Viviani et al. [52] describe a solid data strategy; we use their method to construct a code-book by 

evaluating 351 known SBRs from the five studies. The arguments why is it that a bug-report is tagged as SBR, as well as the 

particular terms that justify this judgement, are recorded in this codebook. We utilise the codebook as a guide for the 

subsequent evaluation processes, The cards sorting process is also used to confirm that the label findings are accurate. The 

influence of optimizing for the outcomes is another danger to internal validity. In order to counteract this threat, we tested a 

variety of approaches, including selecting optimum value for Farsec (i.e., using the farsectwo and the top 100 access control 

keywords), tuning important parameters of classifier (i.e., FarsecTuned and TextTuned Learner), and tuning metrics of the over-
sampling approach SMOTE. The results of the experiments reveal that various tuning procedures have minimal effect on the 

results. Other tuning techniques, such as facet pick and under investigation, may be studied in the later [74]. 

2) Validity from the Outside: The scope of our findings exposes us to external validity challenges. In this work, we compare the 

outcomes of similar SBR predictions on noisier data-sets to those of clean datasets to determine the impact of data label 

correctness. The three baseline approaches from Peters et al. and Shu et alrecent .'s SBR prediction work, as well as basic text 

categorization models, are used. Furthermore, the evaluation is based on a series of performance metrics (most of the 

performance measures that they used in their study), including Recall, pf, Accuracy, F1-score, and G-measures. The 

generalisation of the findings is another external hazard. The influence of data integrity on SBR prediction is investigated in this 

study. Our findings are not universally applicable to all technology analytics activities. Data annotation, on the other hand, is 

used in many MSR activities. Source-codes defect predictions [4], [8], [31], high-impact-bug-reporting predictions [27], [32], 

[34], and software productivities and quality analysis [68] are only a few examples. One of the most important aspects 

impacting a model's efficacy for prediction model-related activities is data quality [64].The label accuracy of training data has 

been shown to affect the performance of the classification models in most prior research [31], [33], [68], which really is 

consistent with our findings. We believe that the insights of this article can be used to MSR scenarios that have comparable 

features to SBR prediction. These features encompass, but aren't restricted to: (1) a large class imbalance in the scenario; (2) a 

text mining-based problem-solving technique. The most likely scenario is the forecast of a high-impact defect report. Prediction 

of performance bug reports [75] and config bug reports [76], for example, are significant jobs that might affect software quality. 

 

VIII. OUTLINE 

We enhanced the label accuracy of five publicly accessible SBR predictions data-sets and conducted an extensive experimental 

examination of the impact of data label consistency on classification methods in this study.  

The findings demonstrate that (1) when using the same forecasting models (e.g., Peters et aland's Shu et almethods), .'s the 

performance on cleaner data-sets is considerably preferable than on noisier datasets. (2)  

On clean datasets, uncomplicated text categorization performs substantially better than on noisy ones. (3) With clean datasets, basic 

text classification surpasses Peters et al. and Shu et albaseline's techniques. 
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