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Abstract: As Autonomous Vehicles (AVs) transition from controlled environments to real-world deployment, ensuring their 
cybersecurity has become critical. The integration of software, AI-based control systems, sensors, and Vehicle-to-Everything 
(V2X) communication significantly expands the attack surface, exposing AVs to a range of cyber and physical threats. This 
paper presents a review of AV security, with a particular focus on the classification of attacks across physical, software, 
communication, and hardware domains. It further analyzes existing defense mechanisms, including both traditional rule-based 
systems and emerging Machine Learning (ML) approaches, and examines current evaluation and testing strategies for assessing 
AV resilience. While notable progress has been made, the field still faces challenges related to generalization, real-world 
robustness, and standardized testing frameworks. This review identifies key gaps and outlines future directions toward building 
secure and trustworthy autonomous systems. 
Keywords: Autonomous Vehicle Security, Autonomous Vehicle, AV Cyberattacks, Security threats in AVs  
 

I. INTRODUCTION 
AVs are rapidly transforming transportation by integrating artificial intelligence, real-time decision-making, sensor fusion, and 
wireless communication. These systems promise safer roads, improved traffic efficiency, and greater mobility. But the same features 
that enable autonomy also introduce a broad and complex attack surface. AVs rely on tightly coupled components, sensors, control 
units, and communication, all of which can be exploited by attackers. From sensor spoofing and CAN bus injection to remote 
hijacking through exposed APIs, AVs are exposed to threats that span both the cyber and physical domains. As incidents of real-
world attacks and security demonstrations grow, concerns over safety, reliability, and public trust are escalating. In response, 
researchers have developed a wide range of security mechanisms, from rule-based intrusion detection to advanced machine learning 
approaches and sensor fusion techniques. However, challenges remain in achieving generalizable, real-time defenses and evaluating 
their effectiveness under realistic conditions. This paper provides a review of existing research in AV security. It begins literature 
review, followed by an analysis of key attack vectors and current defense mechanisms. The paper then discusses evaluation 
strategies for testing AV security, outlines future research directions, and concludes with a synthesis of core insights and open 
challenges. 
 

II. LITERATURE REVIEW 
Over the past decade, research on AV security has grown from technical discussions into a diverse field spanning attack surface 
analysis, intrusion detection, sensor fusion, adversarial machine learning, and regulatory policy. This evolution has been shaped by 
the rapid convergence of Artificial Intelligence (AI), embedded systems, vehicular networking, and physical control loops. As AVs 
move closer to deployment on public roads, the urgency to understand and mitigate cybersecurity risks has intensified. 
Early studies primarily focused on identifying architectural vulnerabilities and classifying threats based on component exposure. A 
foundational review by Chowdhury et al. (2020) offered a structured mapping of real-world attacks on self-driving cars. Their work 
emphasized vulnerabilities in perception modules and communication interfaces and proposed a layered mitigation framework 
based on conventional IT security principles [1].  
The field matured with Kim et al. (2021), who conducted a meta-analysis of 151 papers. They categorized threats across control 
units, sensors, communication buses, and software interfaces, while also tracking the increasing reliance on data-driven solutions 
such as anomaly detection, deep learning-based classifiers, and sensor redundancy [2]. Several studies have attempted to organize 
the space using architectural or layered taxonomies. Hataba et al. (2022) introduced an OSI-model-based framework that grouped 
AV vulnerabilities and defenses across physical, network, operating system, and application layers, offering a bridge between 
communication theory and cyber-physical systems [3].  
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Newer surveys have broadened the scope to include adversarial AI threats and novel defense strategies. Giannaros et al. (2023) 
explored blockchain-enhanced communication for V2X authentication, intrusion detection in federated learning environments, and 
sensor spoofing mitigation via cooperative perception [4]. Hamza et al. (2024) and Girdhar et al. (2023) focused on the risks posed 
by adversarial examples targeting deep learning models in AVs. Both studies analyzed defense techniques like adversarial training, 
input filtering, and model verification under constrained compute budgets [5], [6]. The use of ML for intrusion detection has become 
a dominant theme in recent years. Abdallah et al. (2023) surveyed supervised learning approaches for classifying malicious CAN 
bus traffic, noting the trade-offs between interpretability, detection delay, and false positives [7]. This stream of research is further 
supported by Rajapaksha et al. (2024), who introduced the CAN-MIRGU dataset, a rare real-world dataset capturing multiple 
injection attacks on a moving electric vehicle. The dataset addresses a critical bottleneck in IDS development: the lack of 
reproducible, high-fidelity ground truth data [8]. Efforts to standardize evaluation methodologies have also gained traction. Khadka 
et al. (2021) proposed a modular simulation-based benchmarking framework for assessing both perception and communication-layer 
attacks in AVs. The framework allowed researchers to test detection systems under varying environmental conditions and 
adversarial setups [9].   
Collectively, these studies map a wide but fragmented Autonomous Vehicle security landscape. While many surveys focus on the 
classification, fewer validate defenses through real-world testing or simulation. Standard benchmarks, attack generation methods, 
and diverse test scenarios are still lacking. Most ML defenses are trained and evaluated in limited or synthetic settings, raising 
concerns about their real-world reliability. This review builds on prior work by synthesizing key trends, comparing detection 
strategies, and identifying open challenges in both theory and application. 
 

III. SECURITY CHALLENGES IN AUTONOMOUS VEHICLES 
As AVs become more connected and software-driven, they face a wide range of security challenges. Their reliance on sensors, 
control systems, and wireless communication makes them vulnerable to both physical and remote attacks. Addressing these risks is 
essential to ensure safety, reliability, and public trust in AV technologies. Cybersecurity is a foundational requirement for AVs, not a 
feature to be added later. AVs integrate complex software, AI-driven decision systems, high-bandwidth communication, and vast 
sensor arrays, all of which widen the attack surface. A single successful exploit can jeopardize human lives, disrupt transportation 
systems, and erode public trust. Public trust and adoption also depend heavily on security. Incidents involving AVs, especially those 
related to cyberattacks, can cause lasting reputational harm and slow regulatory approval. Meanwhile, data privacy is a growing 
concern, as AVs constantly collect sensitive information such as real-time location, behavioral patterns, and potentially biometric 
data. In short, AV security isn't optional; it must be included in every layer. 
 
A.  Classification Of Attacks 
Autonomous Vehicles are exposed to a wide range of cyber and physical threats. These attacks can be classified based on the 
specific subsystem they target, such as physical access, safety-critical components, communication networks, diagnostics, software, 
and hardware. Fig. 3.1 provides a high-level categorization of these attack surfaces across different AV subsystems. 

 
Fig. 3.1: Classification of attacks in Autonomous Vehicles 
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B. Physical & Access Level Attacks 
Each attack category is detailed, beginning with physical and access-level attacks. These threats exploit exposed interfaces or 
insecure entry points to gain unauthorized control over vehicle systems. Table 3.1 summarizes the primary attack types within this 
category, including their techniques, targeted components, and consequences. 

 
Table 3.1: Physical & Access Level Attacks 

Target 
Component(s) Attack Type Technique Impact Ref. 

Keyless entry, 
ECUs 

Relay Attacks Capture and retransmit legitimate 
messages to mislead systems 

Disrupts operations by 
acting on outdated or 
unauthorized data 

[4], 
[10] 

Door locks, 
ignition 
system 

Key Fob 
Spoofing 

Cloning fobs; intercept/replay unlock 
signals 

Unauthorized vehicle 
access and theft; exploits 
weak protocols like CAN, 
Ethernet, FlexRay 

[1], 
[11] 

Application 
Units (AUs) 

Password/Key 
Attacks on 

AUs 

Brute-force, dictionary, and rainbow 
table attacks on application constraints 

Unauthorized control over 
diagnostics and remote 
functions 

[1], 
[11] 

Immobilizer 
system 

Immobilizer 
Hacking 

Reverse-engineering transponder 
cryptography; cloning keys or 
extracting authentication algorithms 

Bypasses engine start 
restrictions without 
physical tampering 

[2] 

 
C. Safety-Critical System Attacks 
Safety-critical systems in AVs include perception, localization, and control components, each responsible for real-time interpretation 
of the environment and execution of driving decisions. Attacks on these systems can lead to direct operational failures, collisions, or 
loss of control. Table 3.2 categorizes the major attack vectors targeting these subsystems, detailing their techniques, affected 
components, and potential impacts. 
 

Table 3.2: Safety-Critical System Attacks 
Targeted 

Subsystem Target Component Attack Type Technique Impact Ref. 

Perception 

LiDAR  

Spoofing 
Injecting fake 
signals/waveforms; relayed or 
crafted laser pulses 

Unsafe braking, swerving, or 
collisions 

[1], 
[4]  

Jamming 
Emitting light at LiDAR 
wavelength to saturate or 
disrupt the signal 

Impairs detection accuracy; 
induces blind spots or noise [1] 

Radar  
Spoofing 

Transmitting falsified radar 
signals using microcontrollers 
or replica devices 

Manipulated velocity/distance 
readings that lead to erratic AV 
behavior (braking, lane 
change) 

[12] 

Jamming Emitting radio interference Disrupts radar-based 
perception [10] 

Camera 

Camera 
Blinding 

Intense light (e.g., laser or 
LED) aimed at the camera 

Causes missed detections or 
unnecessary emergency stops [11] 

Camera 
Adversarial 

Attacks 

Visual perturbations like 
stickers or projected images 

Misclassification (e.g., false 
lanes, fake signs) that leads to 
unsafe actions 

[1]  

Ultrasonic  Spoofing & 
Jamming 

Emitting deceptive or 
interfering ultrasonic signals 

Triggers false stops, missed 
braking, and misjudged 
proximity 

[3], 
[13] 
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Localization 

GPS  
GPS Spoofing Broadcasting fake satellite 

signals (often post-jamming) 

Falsified location that leads to 
wrong routes, unsafe 
navigation 

 [4], 
[14], 
[12], 
[15] 

GPS Jamming Overpowering GPS frequency 
signals 

Navigation failure due to lost 
positioning data 

[4], 
[14] 

Inertial 
Measurement Unit 

(IMU) 

IMU Spoofing / 
Acoustic 
Attacks 

Acoustic resonance or signal 
manipulation of 
acceleration/gyroscope data 

Causes misinterpretation of 
motion that leads to lateral 
drift, instability, and 
misclassification 

[4], 
[12] 

Sensor fusion, 
navigation system 

False Data 
Injection (FDI) 

Injecting fake sensor data into 
control loops 

Causes the AV to shift lanes or 
misinterpret the environment [16] 

Control & 
Actuation 
Attacks 

Electronic Control 
Units (ECUs) 

ECU Re-
programming / 

Tampering 

Flashing malicious firmware; 
altering memory or security 
keys 

Loss of control (brakes, 
airbags); persistent 
compromise 

[1], 
[2], 
[5] 

Actuation systems 
(steering, 

acceleration) 

Control System 
Hijacking 

Exploiting network or ECU 
vulnerabilities for direct 
control 

Full vehicle takeover; 
unauthorized commands 
affecting core driving 
functions 

[2], 
[5], 

[10], 
[15]. 

 
D. Communication & Connectivity Attacks 
Communication systems in AVs include both internal networks and external interfaces. Attacks in this category aim to disrupt, 
intercept, or manipulate the flow of information between components or between the vehicle and its environment. Table 3.3 
organizes these threats. 

 
Table 3.3: Communication & Connectivity Attacks 

Targete
d Sub 
system 

Target 
Compo

nent 
Attack Type Technique Impact Ref. 

In-
Vehicle 
Networ

k 

CAN 
bus 

Fuzzing 
Attacks 

Injecting random CAN 
messages with arbitrary IDs and 
data 

Unpredictable behavior, 
system instability 

[7], 
[8] 

LIN 
bus 

LIN False 
Frame 
Attack 

Injecting fake frames into the 
LIN bus 

Disrupts slave node 
operations, causes subsystem 
malfunctions 

[11] 

Etherne
t 

networ
k 

Ethernet 
CAM Table 
Overflow 

Flooding Ethernet switch with 
spoofed MACs 

Disrupts legitimate 
communication by exhausting 
switch memory 

[11] 

Externa
l / V2X 

AV 
networ

ks 

Denial-of-
Service 

Flooding communication 
channels with traffic 

Prevents legitimate access to 
resources or services 

[4], 
[5]  

V2X 
links 

Man-in-the-
Middle 

Intercepting and modifying 
communication between two AV 
entities 

Data tampering, misdirection, 
stealth exploitation 

[1], 
[10] 

Networ
k peers 

Impersonatio
n  

A malicious node pretends to be 
a legitimate one 

Sends deceptive messages, 
potentially causing AVs to 
make unsafe decisions 

 [1] 
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E. Software-Based Attacks 
Due to their complexity and reliance on software, AVs are vulnerable to software-based attacks, which can disrupt functionality, 
cause accidents, or lead to fatalities [5]. Table 3.4 outlines common software-layer threats, including techniques such as remote code 
execution, malware injection, and API abuse, along with their impacts. 

 
Table 3.4: Software-Based Attacks 

Target 
Component Attack Type Technique / Vector Impact Ref. 

Operating 
system, 

middleware 

Remote 
Code 

Execution 

Exploiting software flaws to 
overwrite memory or execute 
unauthorized code 

Crashes, arbitrary code 
execution, full system 
compromise 

[18]. 

ECUs, in-
vehicle 

software stack 

Malware 
Attack 

Injecting malicious code via 
diagnostic tools, OBD ports, or 
Bluetooth vulnerabilities 

Reprograms control systems, 
disables safety features, 
enables data theft  

[1], 
[5] 

AV storage 
and update 

systems 

Ransomware 
Attack 

Encrypting in-vehicle data and 
demanding cryptocurrency for 
decryption 

Prevents access to data or 
functions; disrupts operation 
and updates 

[1], 
[5] 

 
F. Diagnostics & Maintenance Exploits 
Diagnostic interfaces and maintenance procedures provide essential access for system monitoring and updates, but they can also 
serve as entry points for attackers. Table 3.5 summarizes attack types targeting diagnostic ports and over-the-air update mechanisms. 

 
Table 3.5: Diagnostics & Maintenance Exploits 

Target 
Component Attack Type Technique Impact Ref. 

OBD Port 
OBD Port Access 

for Malware 
Injection 

Malware delivered via OBD 
diagnostic interface 

Enables internal monitoring, 
CAN frame sniffing, or remote 
takeover 

[11] 

Software 
update 
system, 
ECUs 

Firmware Over-
the-Air (FOTA) 

Attacks 

Exploiting the OTA update 
mechanism to inject malicious 
firmware 

Fault injection, control override, 
and potential system 
compromise during updates 

[5], 
[11] 

 
G. Hardware-Based Attacks 
Hardware-level attacks exploit physical components or side effects of hardware operation to bypass security controls or gain 
persistent access. These threats are difficult to detect and often occur during manufacturing, maintenance, or when the vehicle is 
unattended. Table 3.6 summarizes key hardware-based attack vectors. 

 
Table 3.6: Hardware-Based Attacks 

Target 
Component Attack Type Technique  Impact Ref. 

Cryptographic 
processors, 

ECUs 

Side-Channel 
Attack 

Analyzing power consumption, 
electromagnetic emissions, or 
timing to extract sensitive data 

Reveals secrets such as passwords or 
encryption keys, enabling deeper 
system compromise 

[5], 
[10] 

Any exposed 
internal 
interface 

Evil Maid 
Attack 

Physical tampering occurs when the 
vehicle is unattended and unsecured 

Covert access to AV systems, 
malware installation, & data theft [10] 

ECUs, sensors, 
microcontrollers 

Hardware 
Trojan 

Insertion 

Inserting malicious hardware 
components during manufacturing 
or maintenance 

Persistent backdoors may allow 
remote access or cause failures at 
critical moments 

[10] 
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IV. EXISTING DEFENSE MECHANISMS 
Autonomous Vehicle security has moved from ad‑hoc fixes to layered, system‑wide strategies. The literature shows a clear split 
between “classical” protections, derived from decades of automotive and IT security, and newer, data‑driven approaches. Below is a 
narrative that threads the key ideas together while pointing to representative work. 

 
A.  Traditional Security Methods 
Early countermeasures lean on principles familiar to any safety‑critical system: isolate, authenticate, detect, and fail‑safe. 
 Cryptography and Secure in‑vehicle networks: Many surveys still open with recommendations for strong encryption and 

message authentication on the CAN bus and V2X channels. Kim et al. catalogue these as baseline defences against replay, 
spoofing, and DoS attacks, framing them as the “first wall” of protection [2]. 

 Intrusion detection tuned to deterministic traffic: Rule‑based or signature‑based IDS remain attractive because CAN traffic is 
highly repeatable. Boughanja et al. map classic signature IDS and timing‑based anomaly detectors to every layer of the AV 
stack [17]. 

 State‑observer techniques: For sensor integrity, model‑based filters such as the Extended Kalman Filter (EKF) coupled with 
Cumulative Sum (CUSUM) change detection still perform well. Wang et al. show that pairing EKF residuals with a CUSUM 
discriminator and a simple rule engine can flag and isolate rogue GPS or LiDAR readings during live trials [16]. 

 Redundancy and physical fail‑safe design: Jakobsen et al. argue that “old‑school” hardware redundancy, spare sensors, 
side‑channel authentication, and out‑of‑band checks remain indispensable, especially for LiDAR and camera spoofing, where 
software alone may fail [18].  

These measures are limited by fixed rules and the assumption that attacks look different from normal operation. As AVs gain 
connectivity and AI decision‑making, that assumption breaks down, motivating a shift toward data‑driven defence. 

 
B.  Modern Techniques  
Recent work embraces learning algorithms, physics‑informed models, and cross‑sensor reasoning to spot subtler or zero‑day attacks. 
 Machine‑Learning IDS for the CAN Bus: Deep autoencoders, CNN‑LSTM hybrids, and traditional Random Forest 

classifiers all deliver >97 % accuracy on public or lab CAN datasets, often outperforming rule‑based baselines and adapting 
better to fuzzy, flood, and replay traffic. Transfer‑learning approaches shrink training time by re‑using vision models for 1‑D 
sensor streams. 

 Hybrid physics‑data models for localization: GPS spoofing defence has matured quickly. GPS‑IDS blends a bicycle‑dynamics 
model with tree‑based classifiers, detecting attacks up to 56 % faster than a pure EKF baseline [19]. Mohammadi et al. push 
further, showing that a lightweight ANN can catch “multiple small biased” drifts (sub‑metre shifts) in real‑world driving 
logs [20]. 

 Multi‑sensor fusion as a defence layer: When attackers target a single modality, fusion algorithms can expose inconsistencies. 
Zhu et al. and Jakobsen et al. both advocate cross‑checking LiDAR, radar, and camera outputs; their experiments confirm that 
an object forged for one sensor often betrays itself in another [18], [21] 

 Benchmarking and Shared Datasets: The community now values repeatable evaluation. Khadka et al.’s modular framework lets 
researchers replay both vision and network attacks under identical metrics [9], while Rajapaksha et al.’s CAN‑MIRGU dataset 
captures 36 real injection scenarios on a moving EV, giving IDS developers rare, high‑fidelity ground truth [8]. 

 Emerging AI directions: Surveys highlight interest in adversarial‑training defences, graph neural networks for V2X trust, and 
privacy‑preserving federated IDS, though full‑scale vehicle trials remain scarce  

Overall, modern techniques aim to balance accuracy, transparency, and onboard computation. Yet they often rely on simulation, 
synthetic attacks, or narrowly scoped datasets, so their real‑world robustness is still an open question. 
 

V. EVALUATION AND TESTING OF AV SECURITY 
To ensure the safety and resilience of autonomous vehicles, evaluation is essential, especially in the face of cyber threats. Yet 
demonstrating that an AV system is secure and reliable across real-world conditions remains a major challenge. First, AVs must 
operate safely across a vast range of scenarios, many of which are unpredictable or difficult to define in advance. Their safety-
critical behavior must generalize to edge cases rarely seen in human driving data. Second, because crashes are rare, billions of miles 
of driving would be required to statistically validate AV safety with high confidence.  
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Third, AI complexity introduces further uncertainty; autonomous systems can fail in subtle, non-obvious ways, especially when 
exposed to adversarial inputs or out-of-distribution environments [22]. To address these issues, researchers rely on multiple testing 
environments, some of which are mentioned below. 
 Real-World Testing: Companies like Waymo and Tesla have conducted extensive on-road trials [23], which have accumulated 

millions of miles, offering valuable insights through disengagement reports and incident logs [24]. Field experiments using 
robotic testbeds also help evaluate system behavior in controlled, physical environments [16], [19]. 

 Simulation-Based Testing: Simulators play a critical role in AV cybersecurity research. Simulation tools such as CARLA, which 
enables testing of urban driving scenarios, TORCS can support track-based control, and Gazebo provides general-purpose 
robotics simulation, are useful [25]. They allow researchers to evaluate rare or dangerous situations, including cyberattacks, 
without physical risk. Simulation also enables rapid iteration and large-scale testing of AI-based detection systems [22]. 

 Hybrid Approaches: Some methods integrate real-world data into simulation pipelines to improve fidelity.  
Together, these approaches provide some valuable insights. But ensuring real-world security still requires broader scenario 
coverage, stronger adversarial testing, and evaluation frameworks that consider both physical and digital threats in a unified way. 
 

VI. CONCLUSION & FUTURE RESEARCH DIRECTIONS 
Autonomous Vehicles bring together AI, real-time control, and complex networked systems, creating powerful capabilities but also 
exposing wide, layered attack surfaces. This review outlined the major categories of threats across physical, communication, and 
software domains, and assessed both traditional and ML-based defense strategies. While progress is clear, most existing solutions 
still rely on narrow assumptions or are tested only in controlled environments, making them fragile when faced with real-world 
variability. Security in AVs is no longer just about isolated protections; it's about designing resilient, adaptive systems from the 
ground up. 
Looking forward, the field needs more robust, generalizable defenses backed by high-fidelity datasets and unified testing 
frameworks. Research should push toward lightweight, explainable, and certifiable models that can operate on constrained hardware 
without sacrificing performance. As AV connectivity expands, especially through V2X and OTA updates, tackling distributed and 
coordinated threats becomes critical. Building trust in autonomous vehicles will ultimately hinge not just on functional safety, but on 
security that holds up under pressure—both in simulation and on real roads. 
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