

13 V May 2025

https://doi.org/10.22214/ijraset.2025.71261

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4672 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 Security Report Generation via LLM-RAG
Assisted Directory Scanning: An Integrated

Framework for Enhanced Software Documentation
and Vulnerability Detection

Utkarsh Rajendra Pingale1, Irfan Ajmer Pasha Shaikh2

Artificial Intelligence & Data Science AISSMS Institute of Information Pune, India

Abstract: Thorough and recent documentation is essential for software maintenance, security audits, and knowledge transfer.
Yet most software projects lack complete or recent documentation. Current tools mostly produce low-level code summaries
without incorporating external knowledge, resulting in inefficiencies and enhanced security risk. This paper introduces an
LLM-RAG-augmented automated documentation system utilizing Large Language Models (LLMs), Retrieval-Augmented
Generation (RAG), and Information Retrieval (IR) methods. The system reads project directories, extracts metadata, and
creates preliminary documentation using LLMs. A RAG module enhances this documentation by pulling external information
pertinent to the task, like security advisories and bug reports, to provide a complete and actionable documentation framework.
Evaluation is based on qualitative user studies and quantitative measurements. This work seeks to enhance documentation
quality, increase software maintainability, and streamline security auditing through an AI-powered, explainable, and transparent
report generation framework.
Keywords: Automated Documentation, Security Reports, LLM-RAG, Software Maintenance, Vulnerability Detection,
Explainable AI, Software Security

I. INTRODUCTION
A. Background of study
Latest software development is supported by precise and com- prehensive documentation to warrant efficient processes, strong
security auditing, as well as uncomplicated knowledge transferral. There are, nevertheless, numerous projects that are encountered
with constraints owing to uncompleted or dep- recated documentation, leaving developers unsure of software structure and how
security vulnerabilities can be solved. Suc- cessive updates as well as repetitions only tend to worsen this situation further, making
static docu- mentation inadequate. [1] Conventional tools emphasize the summarization of code but never integrate with resources
outside in the form of security databases, bug trackers and compliance models. This gap cre- ates incomplete docu- mentation that
does not correct funda- mental vulnera- bilities or account for recent patches, causing ineffi- ciencies and heightened security risks.
Integrated, real- time documentation also makes knowledge transfer difficult within teams. [2] New team members find it
difficult to learn complicated systems without complete resources, re- forcing onboarding and the likelihood of introducing
errors or vulnerabilities. To correct these issues, emergent solutions such as LLM-RAG-assisted directory scanning are required.
These technologies can automate documentation procedures, merge outside re-sources, and make real-time updates, filling code
summarization, security auditing, and knowledge-sharing gaps. This method improves efficiency, enhances security, and promotes
collaboration in software development projects. [1]

B. Problem Statement
Existing documentation automation solutions lack in some key areas, causing serious challenges in maintaining secure and efficient
software development processes. Precisely, these solutions lack:
1) In-Depth Insights into Security Vulnerabilities: Current tools tend to overlook the in-depth analysis and docu- mentation of

vulnerabilities, resulting in insufficient risk assessments. This hinders developers from spotting and fixing threats efficiently,
leading to a greater chance of skipped patches and exploitation of systems. [3]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4673 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2) Contextualized Knowledge from External Sources: Most automation tools are not integrated with external re- sources such as
CVE databases, CWE frameworks, and GitHub discussions. This denies developers rich in-sights into new vulnerabilities and
best practices, slowing down responses to security threats. [4]

3) Dynamic Updates Based on Project Evolution: Existing solutions fail to keep documentation up to date with evolving projects.
As software evolves, stale documenta- tion causes inefficiencies, confusion, and manual effort to accurately reflect updates.
Automated real-time up- dates are necessary to close this gap. [5]

4) The gap in these areas leads to several negative conse- quences: Outdated or incomplete documentation signif- icantly hampers
the efficiency of maintenance practices. Developers are often forced to spend excessive time searching for relevant information,
resulting in slower maintenance cycles and increased operational costs. Additionally, the absence of comprehensive vulnerabil-
ity insights and the lack of integration with external knowledge sources heighten security risks. Teams may remain unaware of
potential threats or fail to imple- ment best practices for mitigation, thereby increasing the likelihood of security breaches.
Furthermore, when documentation is not dynamically updated or enriched with external knowledge, teams tend to rely heavily
on individual expertise. This fosters the development of knowledge silos, which impede collaboration and hinder the effective
transfer of information across the organization.

C. Research Objectives
This research explores how Retrieval-Augmented Genera- tion (RAG) techniques can enhance automated documentation, improve
security reporting, and support software maintenance and audits by leveraging external data and structured AI- generated outputs.
This research addresses the following key questions:
1) How can LLM-RAG techniques enhance automated documentation by integrating real-time, domain-specific knowledge?
2) How does incorporating external vulnerability databases (e.g., CVE, CWE) and bug-tracking systems improve the accuracy and

relevance of security reporting?
3) How can structured, AI-generated reports aid in software maintenance and security audits by providing actionable insights and

reducing manual effort?
The primary objectives of this research are:
 Develop an LLM-RAG-based documentation framework: Design a system that automates documentation by retriev- ing relevant

external data and integrating it into structured outputs.
 Enhance documentation comprehensiveness: Leverage RAG to retrieve real-time information from external sources like

vulnerability databases and bug trackers, ensuring up-to-date insights.
 Evaluate documentation quality: Use qualitative (e.g., user feedback) and quantitative (e.g., accuracy metrics) methods to assess

the effectiveness of AI-generated doc- umentation in improving efficiency and security.

D. Significance of study
1) Enhanced Security Awareness and Mitigation Strate- gies: By incorporating external vulnerability databases (e.g., CVE, CWE)

and bug-tracking systems, the sug- gested system raises awareness of possible threats. This allows developers to react more
efficiently to vulnerabil- ities, minimizing risks and maintaining compliance with industry standards.

Fig. 1. LegacyGuard System Architecture

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4674 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2) Less Manual Work in Documentation Mainte- nance: Manual tools reduce effort by removing repeated tasks like manual
updates and vulnera- ability tracking. The dynamic update mechanism prevents documentation from becoming outdated
without extensive human intervention, thereby saving time and resources for developers.

II. LITERATURE REVIEW

The research on automated documentation creation and vulnerability discovery emphasizes the increasing capability of Large
Language Models (LLMs) and Retrieval-Augmented Generation (RAG) methods to solve software maintenance and security
problems. Nevertheless, current research is typically deficient in integration of LLMs with external knowledge bases, which results
in wide gaps in comprehensiveness, precision, and responsiveness. This section elaborates on major studies and their applicability to
this research.
Large Language Models (LLMs) have garnered significant attention for their ability to generate natural language descriptions of
code, offering a promising avenue for automated documentation. For example, Mohammed’s (2024) work on LLM-driven
automation in vulnerability management explores the use of LLMs for tasks like risk identification and mitigation. However, the
study lacks consideration of external data integration or dynamic documentation updates, limiting its adaptability in evolving
software projects. Similarly, Li et al. (2024) demonstrate how LLMs can support static analysis for detecting security
vulnerabilities, yet their approach does not incorporate essential external resources such as CVE databases or bug-tracking
systems, which are vital for actionable security documentation. These studies underscore the capabilities of LLMs but also
emphasize the necessity for frameworks that integrate real-time external knowledge to enhance documentation accuracy and
relevance. Building on this, Retrieval-Augmented Generation (RAG) techniques offer a hybrid solution that merges generative AI
with information retrieval, enabling the creation of outputs enriched with up-to-date, context-aware data. Du et al. (2024), in their
work on Vul-RAG, propose a RAG-based framework that improves vulnerability detection by leveraging a dedicated knowledge
base. Nonetheless, this approach does not prioritize the generation of comprehensive documentation tailored to developers.
Lykousas et al. (2024) also explore the role of RAG in DevSecOps, showing its potential in delivering actionable insights but
falling short in addressing external knowledge integration and responsiveness to project- specific dynamics. These findings reveal
the contextual advantages of RAG techniques, while also pointing out existing shortcomings in their application to documentation
systems. Moreover, the integration of external knowledge sources—such as CVE databases, CWE frameworks, and
collaborative platforms like GitHub—is crucial for the production of actionable and context-rich documentation. Keltek and Li
(2024), through LSAST, use LLMs for static application security testing with effective vulnerability identification, yet do not
explore the use of RAG for dynamic documentation. Meanwhile, Bernardi et al. (2024) showcase how RAG-based LLMs can be
used to generate safety reports enriched with real-time data, though their application is limited to domains such as construction
safety. These studies collectively emphasize the necessity of incorporating external knowledge to make automated documentation
more relevant and functional.
Finally, current tools for automated documentation face notable limitations. Many lack adequate security insights due to their
inability to integrate with external vulnerability databases, and there is an absence of unified frameworks that combine both internal
project data and external knowledge sources. This leads to incomplete documentation that fails to meet the comprehensive needs
of modern software development teams.
Gaps Identified: The expanded literature review reveals several key gaps in current research on automated documentation
systems. One major limitation is the lack of integration with external data sources; most existing studies fail to incorporate real-time
information from platforms such as CVE and CWE databases or collaborative environments like GitHub discussions. Additionally,
many tools generate static documentation that does not update dynamically in response to changes within software projects,
reducing their long-term usefulness. Another shortcoming is the limited focus on producing actionable security insights—few
approaches provide tailored recommendations that address the specific needs of developers. Finally, there is an evident absence
of comprehensive documentation frameworks that seamlessly combine internal project data with external knowledge sources, which
is essential for creating rich, context-aware documentation.
Relevance of RAG: Retrieval-Augmented Generation (RAG) effectively addresses the gaps identified in current research by
enhancing documentation with real-time security insights drawn from external databases. This approach ensures that documentation
remains current, dynamically updating to reflect ongoing changes in software projects. Moreover, RAG provides actionable
recommendations that are grounded in contextualized knowledge, making the information more rele- vant and useful for developers.
By bridging the gap between traditional static analysis tools and comprehensive reporting systems, RAG offers a more holistic and
adaptive solution for automated documentation and vulnerability management.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4675 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

III. RESEARCH METHODOLOGY
This study employs a hybrid methodology, combining LLM- powered text generation with Retrieval-Augmented Generation (RAG)
to develop an enhanced automated documentation and security reporting system. The goal is to create a framework that integrates
real-time external knowledge with generative capabilities, ensuring accurate, contextual, and up-to-date out- puts. This design
allows the system to dynamically adapt to evolving project data and provide comprehensive, actionable security insights.

A. Research Design
The research design is structured around three key compo- nents. First, Large Language Models (LLMs) are utilized to generate
initial documentation drafts by analyzing elements such as source code, metadata, and overall project struc- ture (Mohammed,
2024) [6] Second, a Retrieval-Augmented Generation (RAG) framework is employed to enhance the generative process by
integrating external knowledge retrieval, resulting in more contextualized and comprehensive outputs (Li et al., 2024) [7] Finally, a
hybrid methodology is adopted, combining both qualitative and quantitative evaluation tech- niques. Qualitative assessments involve
user studies to evaluate the relevance, readability, and usability of the documentation, while quantitative assessments utilize metrics
to measure doc- umentation quality and the accuracy of security vulnerability detection (Du et al., 2024) [8]

B. Data Collection
To train, test, and validate the system, we use the following datasets:
1) Primary Data: Includes source code, project directories, and metadata extracted directly from software reposito- ries. The source

code will be selected from a diverse set of open-source projects, including projects written in Python, Java, and JavaScript, to
ensure that the system is robust across different programming languages and architectural styles.

2) Secondary Data: Several key external resources play a vital role in enhancing the quality and relevance of automated
documentation systems. The CVE (Common Vulnerabilities and Exposures) and CWE (Common Weakness Enumeration)
databases serve as essential references for identifying known security vulnerabilities and understanding best practices for
mitigation. GitHub Issues offer valuable insights into real-world software problems through reported bugs, user discussions,
and resolution histories within active projects. Stack Over- flow provides a rich collection of community-driven questions and
answers, contributing additional context for addressing coding issues and enhancing documen- tation clarity. Furthermore,
security advisories—official alerts and notices about vulnerabilities in software com- ponents, libraries, and frameworks—offer
critical infor- mation that helps maintain security-aware and up-to-date documentation.

The data collection process involves both static extraction of project information and dynamic retrieval of external resources based
on context. This dual approach ensures that the gener- ated documentation includes both project-specific details and relevant
external knowledge.

C. System Architecture
The proposed system architecture is composed of four key components that collaboratively enable the generation of enriched
and security-aware software documentation. The first component, the Directory Scanner, extracts the project’s structure,
metadata, and source code to form the foundational input for documentation generation. It analyzes file hierarchies, identifies
dependencies, and processes configuration files to offer a complete view of the project. This component uses Abstract Syntax Tree
(AST) parsing along with regular expressions and pattern-matching techniques to extract meaningful data from source files (Keltek
and Li, 2024). [9] The second component is the LLM-based Summarizer, which utilizes advanced natural language processing to
analyze the scanned data and generate initial drafts of the documen- tation. It offers insights into the software architecture and
performs static analysis to identify potential security vulner- abilities by examining code patterns. Prompt engineering is employed
to ensure the generation of accurate, relevant, and human-readable descriptions of complex code structures. The third component,
the RAG-powered Retrieval System, dynamically enhances the documentation by fetching real- time, contextually relevant
information from external sources such as the CVE and CWE vulnerability databases, as well as bug-tracking platforms like
GitHub. It leverages semantic search techniques and uses APIs to access these external resources. Additionally, it employs vector
databases for storing and retrieving embeddings of code segments and related contextual information. Finally, the Report Synthesis
Engine integrates the summaries generated by the LLM and the contextual insights retrieved by the RAG system to create
structured, comprehensive docu- ments tailored for software maintenance and security auditing. This component utilizes predefined
templates and supports multiple output formats such as Markdown, HTML, and PDF to maximize usability and adaptability across
various development and reporting environments (Bernardi et al., 2024). [10]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4676 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

D. Data Analysis
The evaluation of the proposed system is conducted using both qualitative and quantitative methods to comprehensively assess its
effectiveness. Qualitative evaluation involves user studies and expert reviews. In the user studies, software developers, security
auditors, and project managers are engaged to assess the relevance, readability, and usability of the generated documentation.
Participants perform specific tasks using the documentation and provide feedback through structured surveys and interviews. In
parallel, expert reviews are conducted with security professionals and documentation specialists, who evaluate the accuracy,
completeness, and structure of the reports. Their detailed feedback helps refine the quality and utility of the generated content.
On the other hand, quantitative metrics are employed to objectively measure system performance across two key dimensions:
documentation quality and vulnerability detection accuracy. For documentation quality, standard NLP evaluation metrics such as
BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation) are used to measure
similarity and content overlap between the generated and reference documentation. Additionally, readability is assessed using
metrics like the Flesch Reading Ease score to evaluate the clarity and complexity of the generated text.
In terms of vulnerability detection, the system’s perfor- mance is evaluated using precision, recall, and the F1 score to determine
its accuracy and balance in identifying actual vulnerabilities. Furthermore, time-to-detection is measured to compare the system’s
efficiency against manual vulnerability identification methods, thereby assessing the potential for time savings in real-world
scenarios.

E. Workflow
The workflow of the proposed system is structured into a series of interconnected stages, beginning with project initial- ization,
where the user either provides a project directory or a repository URL. The Configuration Manager then applies default or user-
defined settings that determine the scope of analysis, desired output format, and intended audience. At this stage, the system also
establishes a dedicated working directory to store intermediate results and log files.
Next, in the directory scanning phase, the Directory Scanner navigates through the project structure to extract relevant data such as
file hierarchy, source code, and metadata. Dependency information is collected through configuration files like re- quirements.txt
for Python or package.json for JavaScript. Ad- ditionally, metadata such as timestamps, author information, and version history is
gathered to provide contextual depth. In the preliminary documentation generation stage, the LLM- based Summarizer processes
the extracted data to generate initial drafts. This includes textual descriptions of functions, classes, APIs, and the overall
architecture of the software. Concurrently, the system performs static analysis to identify and flag potential vulnerabilities by
recognizing risky code patterns and outdated dependencies.
To enrich the documentation with real-time insights, the con- text retrieval step employs a RAG-powered Retrieval System. It
dynamically queries external knowledge sources such as CVE/CWE databases and GitHub issues, focusing on the pre- viously
identified vulnerabilities and dependencies. Retrieved information is ranked based on relevance and recency using semantic search
algorithms, then pre-processed and aligned with specific sections of the documentation.
The documentation enhancement phase integrates this contex- tual knowledge into the LLM-generated drafts. This process not only
adds security insights but also embeds actionable mitigation strategies for the flagged vulnerabilities. Supple- mentary content such
as best practices and real-world exam- ples from similar projects is appended to further enrich the documentation.
Following this, the report synthesis module compiles the en- hanced content into structured documents, supporting multiple output
formats including Markdown and HTML. Tailored versions of the documentation are produced for different stakeholder groups—
developers, security auditors, and project managers. To improve comprehension, the reports include visual aids like dependency
graphs and vulnerability heatmaps. A feedback loop is incorporated into the system to ensure con- tinuous improvement. Users
review the final documentation and provide feedback regarding its accuracy, relevance, and usability. This feedback is then used to
fine-tune subsequent iterations of the system, and interaction logs help improve underlying models over time.
Finally, the output delivery stage generates and delivers com- prehensive documentation in the requested format, complete with
embedded links to external resources for traceability. Security reports include a prioritized list of identified vulner- abilities, each
accompanied by detailed recommendations for remediation.

IV. EXPECTED OUTCOMES AND IMPACT
The proposed framework for automated documentation generation using LLM-RAG (Large Language Model with Retrieval-
Augmented Generation) techniques offers a paradigm shift in how software documentation and security auditing are approached.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4677 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Traditionally, software documentation has relied heavily on manual authoring, which is both time-consuming and prone to
becoming outdated as the project evolves. Moreover, security documentation, particularly re- lated to vulnerabilities and mitigation
strategies, often lacks integration with real-time threat intelligence. The use of LLMs allows for natural language understanding
and generation capabilities, enabling the system to produce human-readable, coherent, and technically accurate documentation
from code, metadata, and other internal project artifacts. However, to address the limitations of static outputs, the framework
incor- porates a RAG-based architecture, enabling it to retrieve up-to- date, contextually relevant information from external sources
and dynamically integrate this into generated reports. [11] One of the central benefits of this approach is the abil- ity to
produce automated, structured, and security-enriched documentation. By leveraging real-time data from reputable sources such
as CVE (Common Vulnerabilities and Exposures) and CWE (Common Weakness Enumeration) databases, the system ensures
that its outputs are not only comprehensive but also current. These databases are authoritative sources widely used in the
cybersecurity community to classify and communicate known security flaws. Their integration into the documentation process
means that developers are made aware of vulnerabilities in their dependencies and code patterns as they are discovered, rather
than post-facto. This shifts security left in the software development lifecycle (SDLC), improving security posture while
reducing the time spent manually reviewing advisories and incorporating them into documentation. [11]
In addition, the framework significantly reduces manual effort in documentation maintenance. Traditional tools and work- flows
require developers to frequently update documentation as codebases change or as new security advisories emerge. This manual
upkeep is not only labor-intensive but often leads to inconsistencies and outdated records, which can become liabilities during audits
or when onboarding new developers. The proposed system addresses this by using dynamic update mechanisms that automatically
detect changes in project files, dependencies, and external knowledge, and seamlessly reflect these changes in the documentation.
By automating repetitive tasks such as vulnerability tracking and configuration summary generation, the system allows developers to
focus on higher- order tasks like code optimization and architectural planning Another critical advantage lies in improving
vulnerability awareness and mitigation strategies. The framework retrieves and integrates insights from external sources such as
CVE and CWE databases, GitHub issue trackers, and Stack Overflow discussions, allowing developers to understand the context,
severity, and remediation steps for identified threats [12]. This helps bridge the gap between detection and action, making
vulnerability data not just informative but actionable. In traditional setups, developers must manually search for this information,
evaluate its credibility, and determine relevance to their project. With the proposed system, this process is stream- lined and
embedded directly into the development workflow, thereby reducing response times and increasing the efficacy of mitigation
strategies.
The system also enhances explainability and trust in AI- generated documentation. One common critique of AI- generated content is
the black-box nature of model outputs. By embedding traceable references to external data sources—such as direct CVE links,
GitHub issue numbers, and Stack Over- flow threads—the framework ensures that users can verify and trace the origins of the
information presented. This level of transparency increases stakeholder trust in the generated outputs, which is essential for security
audits, compliance assessments, and cross-functional collaboration. Furthermore, structured formatting and the use of templates
improve doc- ument readability, allowing both technical and non-technical stakeholders to derive insights without steep learning
curves.

A. Gantt Chart

Fig. 2. Gantt Chart

B. Breakdown
Another transformative feature of the system is its support for dynamic updates in evolving software projects. Unlike static
documentation tools that require manual regeneration, the proposed framework automatically detects changes in project files,
version history, and external security advisories. This ensures that the documentation always mirrors the current state of the project,
reducing the risks associated with outdated or incomplete documentation, which is a common issue in agile and continuous
integration environments. Moreover, the system greatly streamlines security audits and compliance checks. By embedding best
practices, detailed vulnerability data, and mitigation steps into the documentation, the system makes it easier for security teams to
assess risk, identify gaps, and provide feedback.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4678 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

For regulated indus- tries—such as finance, healthcare, or defense—where com- pliance with standards like ISO 27001, HIPAA, or
OWASP is critical, this automation reduces the cost and time associated with maintaining audit-ready documentation. [12]
A further benefit is fostering collaboration across development and security teams. Documentation often becomes siloed, with
different teams maintaining separate artifacts with inconsistent or conflicting information. The unified, real-time documenta- tion
produced by the proposed framework serves as a single source of truth, accessible to all relevant stakeholders. This promotes a
culture of shared responsibility for security and knowledge dissemination, which is especially vital in large or distributed teams.
Finally, due to its modular and API-driven architecture, the framework demonstrates high scalability across domains. While it is
tailored for software development, the core princi- ples—automated report generation, contextual enrichment via RAG, and
dynamic updates—are applicable to other fields such as construction safety documentation, medical record compliance, or even
legal reporting. By customizing the knowledge base and summarization logic, the system can be repurposed to meet the
reporting requirements of various industries, thereby demonstrating strong potential for cross- domain adaptability and reuse. [11]
[12]

V. TIMELINE
The LegacyGuard research project is structured to run over a comprehensive 12-month period, divided into six major phases:
1) Phase 1: Project Initialization and Planning (Month 1): The initial month establishes the foundation for the entire project,

focusing on refining project objectives, forming the research team, and setting up the necessary technical infras- tructure.
During this phase, a research team is assembled, consisting of experts in static code analysis, machine learning for code
understanding, and security vulnerability assess- ment. Concurrently, the research infrastructure is established, including
development environments, code repositories, and collaborative tools that will facilitate smooth coordination and productivity
throughout the project. In addition, the team finalizes initial project planning documents such as detailed work breakdown
structures and communication protocols, which outline task distribution, timelines, and reporting methods. A comprehensive
technical requirements specification is also completed, which includes documentation of the target legacy programming
languages—namely COBOL, C/C++, Java, FORTRAN, and Visual Basic—and their specific vulnerability patterns. Finally,
evaluation metrics and baseline performance targets for the framework are established to assess progress and effectiveness in
later stages of the project.

2) Phase 2: Data Collection and Preparation (Months 2-4): During this period, the project team will focus on gathering diverse
legacy codebases and establishing a comprehensive vulnerability knowledge base. The team will acquire open- source legacy
codebases spanning the targeted programming languages, with a particular emphasis on systems developed prior to 2010. At the
same time, partnerships will be pur- sued with organizations willing to grant access to propri- etary legacy systems under
strict confidentiality agreements, enabling a broader and more representative dataset for anal- ysis. This phase will also center
around the construction of the vulnerability knowledge base by integrating data from reliable external sources such as the
National Vulnerability Database (NVD), Common Vulnerabilities and Exposures (CVE), OWASP Top 10, and other industry-
specific security reports focused on legacy software environments. To support the Retrieval-Augmented Generation
(RAG) component of the system, additional contextual information—including system documentation, maintenance histories,
and architecture records—will be collected. Furthermore, stratified sampling techniques will be implemented to ensure
diversity across programming languages, application domains, and vulnerability types. Labeled datasets will be prepared
for both training and evaluation purposes, ensuring that the machine learning models developed later in the project are robust
and reflective of real-world conditions in legacy code environments.

3) Phase 3: Component Development (Months 5-7): During this phase, the three core components of the LegacyGuard
framework—static analysis integration, LLM adaptation, and Retrieval-Augmented Generation (RAG) system implementa-
tion—will be developed in parallel. The team will begin by configuring and customizing static analysis tools tailored to each
target programming language. This includes utilizing CodeSonar for C/C++, FindBugs/SpotBugs for Java, Veracode SAST for
COBOL, Visual Expert for Visual Basic, and FLfortra for FORTRAN. These tools will undergo baseline testing to establish
performance benchmarks and identify the limitations of traditional static analysis methods when applied to legacy systems.
Simultaneously, work will proceed on adapting and fine- tuning large language models (LLMs) for vulnerability detec- tion
across multiple languages. The team will experiment with architectures such as CodeBERT and CodeT5 to evaluate their
effectiveness in understanding legacy code. Custom fine-tuning strategies will be developed, alongside prompt engineering
techniques, to ensure the LLMs can accurately identify and explain vulnerabilities in diverse codebases. In parallel, the RAG
system will be implemented to enrich the analysis with contextual knowledge. This will involve setting up a vector database

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4679 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

using ChromaDB, creating embedding generation pipelines for both code samples and vulnerability descriptions, and
integrating context-aware retrieval mechanisms. To ensure secure operation, appropriate security controls will be put in place to
mitigate potential risks associated with external data retrieval in the RAG system.

4) Phase 4: Integration and Framework Development (Months 8-9): This phase concentrates on integrating the individual
components into a cohesive and functional Lega- cyGuard framework, while also establishing interfaces and workflow
mechanisms for smooth user interaction. During this month, the development team will focus on building the integration layer,
which will include the implementation of a multi-model voting system to combine outputs from different analysis engines,
along with confidence scoring mechanisms to assess the reliability of identified vulnerabilities. Cross- language correlation
capabilities will be integrated to support analysis across heterogeneous legacy systems. Additionally, robust APIs and user
interfaces will be developed to facilitate seamless interaction with the framework. To enhance the interpretability and usability
of the framework, this month will also involve the implementation of explanation generation capabilities. Leveraging LLMs,
the system will produce human-readable explanations for each detected vulnerability, accompanied by actionable remediation
recommendations. Furthermore, visualization tools will be designed to help users understand the relationships between
vulnerabilities, dependencies, and risk factors, thereby promoting better decision-making in security audits and maintenance
planning.

5) Phase 5: Evaluation and Validation (Months 10-11): This is a critical stage in the project, focusing on rigorous testing
and comprehensive evaluation of the LegacyGuard framework against both established benchmarks and real- world legacy
codebases. During this phase, systematic ablation studies will be conducted to quantify the individual contri- bution of each
core component—static analysis tools, LLMs, and the RAG system—to the framework’s overall performance. These studies will
help identify the strengths and limitations of each module and their synergy when combined. In parallel, a comparative
analysis will be undertaken to benchmark LegacyGuard against existing vulnerability detection tools across various
legacy programming languages, evaluating its competitiveness and performance efficiency. Furthermore, this phase will
include real-world validation using proprietary legacy codebases provided by industry partners under confidentiality
agreements. The framework will be tested in realistic environments, allowing for robust performance measurement in terms of
precision, recall, and F1-score. In addition to quantitative assessments, expert evaluators will perform a qualitative analysis of
the human- readable explanations and remediation suggestions generated by the system, offering insights into its practical
utility and trustworthiness in real-world software maintenance and security auditing contexts.

6) Phase 6: Documentation and Dissemination (Month 12): The final stage of the project is centered on documenting research
findings and preparing for their dissemination to both academic and industry stakeholders. During this period, the team will
complete all research-related documentation, including comprehensive technical details of the LegacyGuard framework, a
thorough analysis of evaluation outcomes, and the drafting of academic papers aimed at submission to relevant conferences and
peer-reviewed journals. In parallel, dissemination activities will be initiated, which include pack- aging open-source
components for public release, developing case studies that showcase the practical applications of the framework, and creating
best practices guides for potential adopters. To further extend outreach, workshops and webinars will be organized to
demonstrate the capabilities and value of LegacyGuard to software developers, security professionals, and academic researchers
alike, ensuring the framework’s impact is both far-reaching and sustainable.

REFERENCES

[1] N. Lykousas, V. Argyropoulos, and F. Casino, “The potential of llm- generated reports in devsecops,” arXiv.org, vol. abs/2410.01899, Oct. 2024. [Online].
Available: https://export.arxiv.org/pdf/2410.01899v1.pdf

[2] M. L. Bernardi, M. Cimitile, and R. Pecori, “Automatic job safety report generation using rag-based llms,” vol. abs/1605.02592, p. 1–8, Jun. 2024.
[3] X. Du, G. Zheng, K. J. Wang, J. Feng, W. Deng, M. Liu, X. Peng, T. Ma, and Y. Lou, “Vul-rag: Enhancing llm-based vulnerability detection via

knowledge-level rag,” Jun. 2024. [Online]. Available: https://arxiv.org/pdf/2406.11147
[4] K. Mohammed, “Llm-driven automation in vulnerability management,” Open access research journal of science and technology, Sep. 2024.
[5] Z. Li, S. Dutta, and M. Naik, “Llm-assisted static analysis for detecting security vulnerabilities,” May 2024. [Online]. Available:

https://arxiv.org/pdf/2405.17238
[6] M. Keltek and Z. Li, “Lsast – enhancing cybersecurity through llm-supported static application security testing,” Sep. 2024. [Online]. Available:

https://export.arxiv.org/pdf/2409.15735v2.pdf
[7] R. Gupta, G. Pandey, and S. K. Pal, “Automating government report gen- eration: A generative ai approach for efficient data extraction, analysis, and

visualization,” Sep. 2024.
[8] K. E. Hill, “Systems and methods for soft- ware scanning tool,” Mar. 2016. [Online]. Available:

https://patents.google.com/patent/US20160274903
[9] J. Chen, H. Xiang, L. X. Li, Y. Zhang, B. Ding, and Q. Li, “Utilizing precise and complete code context to guide llm in automatic false positive

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

4680 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

mitigation,” Nov. 2024. [Online]. Available: http://arxiv.org/pdf/2411.03079
[10] W. Dai, Q. Ouyang, X. Zeng, C. Zhao, L. Zhu, and Y. Chen, “Method of automatically generating report,” Sep. 2018.
[11] J. L. Turner and R. E. Turner, “Method for providing customized and automated security assistance, a document marking regime, and central

tracking and control for sensitive or classified documents in electronic format,” Sep. 2006. [Online]. Available:
 https://patents.google.com/patent/US7958147B1/en

[12] S. Pranathi, T. Akshita, M. Vaishnavi, M. Ramachandra, and D. Sundaragiri, “Transforming raw data into polished reports: An llm- powered
solution for customizing template-based pdfs,” International Journal For Multidisciplinary Research, May 2024. [Online]. Available:
https://www.ijfmr.com/papers/2024/3/18590.pdf

