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Abstract: Large Language Models (LLMs) have become effective tools for natural language process-ing and have been used in 
many different fields. This essay offers a succinct summary of various LLM subcategories. The survey emphasizes recent 
developments and efforts made for various LLM kinds, including task-based financial LLMs, multilingual language LLMs, 
biomedical and clinical LLMs, vision language LLMs, and code language models. The survey gives a general summary of the 
methods, attributes, datasets, transformer models, and comparison metrics applied in each category of LLMs. Furthermore, it 
highlights unresolved problems in the field of developing chatbots and virtual assistants, such as boosting natural language 
processing, enhancing chatbot intelligence, and resolving moral and legal dilemmas. The purpose of this study is to provide 
readers, developers, academics, and users interested in LLM-based chatbots and virtual intelligent assistant technologies with 
use full information and future directions.  
This survey shed slight on the possibilities of LLMs and lays the groundwork for additional study and advancement in the area 
by looking at the background, benefits, and drawbacks of LLMs generally as well as the implications of various LLM models. 
Thus this paper offers significant information and future directions. Our goal is to look at LLM’s history, the advantages and 
disadvantages of LLMs in general, the types of various LLM models (eg: finance, clinical, multilingual, code, vision), and what 
all of this implies for the future 
Keywords: Natural language processing; large language models (LLM);financial LLMs; multilingual language LLMs; 
biomedical and clinical LLMs; vision language LLMs; code language models; transformer model; datasets; virtual intelligent 
assistant 
 

I.  INTRODUCTION 
The origins of the first AI language models can be found in the early history of AI. One of the oldest instances of an AI language 
model is the ELIZA language model, which made its debut in 1966 at MIT[1,2].An LLM is a development of the language model 
idea in AI that significantly increases the amount of data utilized for inference and training. As a result, the AI model’s capabilities 
are greatly increased. An LLM normally includes at least one billion parameters, while there isn’t a defined size for the data set that 
must be used for training. 
A trained deep-learning model called a big language model can read and produce text in a way that is similar to what a human 
would. Everything is accomplished behind the scenes using a sizable transformer model. In 2017[3] “Attention is All You Need,” to 
establish a transformer model (The ‘T’ in all the GPT models). It is based on the attention mechanism, dispensing with recurrence 
and convolutions entirely.  
Transformer language models use a deep neural network architecture called a Transformer and they are trained to predict either 
masked words (i.e. fill-in-the-blank) or upcoming words in text[4]. Uszkoreit et al. describe the Transformer, a cutting-edge neural 
network design based on a self-attention mechanism that aims to be especially effective at interpreting language[5]. Transformer 
language models have revolutionized the field of natural language processing (NLP) since their introduction in 2018[6]. 
Transformer language models have received widespread public attention, yet their generated text is often surprising even to NLP 
researchers[4,7].  
As per recent research, some of the top LLMs announced and released in the last few years (e.g. GPT-3/4[8], LLaMA[9], 
PaLM[10], MiniGPT-4[11], FinGPT[12], OPT[13], BERT[14], Bloomberggpt[15], BLOOM 176B[16], GPT NEO-X[17], 
RoBERTa [18], Dolly2.0[19] ;)[10,13,20–22]. For applications ranging from web search and chatbots to medical and financial 
document analysis, many language models are employed in the business[4,15,23]. 
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Figure 1. Distribution of language models 
 
As per Figure 1. numerous language models have emerged. Language models with a lot of parameters and great processing power 
are collectively referred to as "Large Language Models" (LLM)[24]. Whereas A sort of language model known as a statistical 
language model (SLM) uses statistical methods to give probability values to word sequences in a language. It is predicated on the 
notion that by examining the frequencies and patterns found in a sizable corpus of text, it is possible to predict the likelihood of a 
specific word appearing in a specific situation[25].In a Neural Language Model (NLM), the probability distribution of word 
sequences in a language is modeled using neural network topologies. NLMs are made to catch intricate word relationships and 
produce text that is appropriate for the surrounding context[26,27]. The term "Transformer Language Models" (TLMs) is used to 
describe language models that especially make use of the Transformer architecture[3]. The term "pre-trained language models" 
(PLMs) refers to language models that have been trained in an unsupervised fashion on sizable corpora before being adjusted for 
particular downstream tasks. By extracting patterns and structures from massive volumes of text data, these models learn 
representations of generic language. In recent years, in the field of healthcare, there are various biomedical and clinical transformer 
models are available for clinical concept extraction and medical relation[28]. BioBERT[29], Clinical BERT[30], 
BioMegatron[31],GatorTron-base[32],GatorTron-medium[32],GatorTron-large[32]. In2021, One of the largest models in the world 
for reading comprehension and natural language inference, Megatron-Turing Natural Language Generation 530B was created by 
Nvidia and Microsoft to facilitate tasks like summarizing and content creation[33]. HuggingFace unveiled BLOOM last year, an 
open big language model that can produce text in over a dozen programming languages in addition to 46 different natural languages 
and 13 programming languages[34]. vision language models [35] a family of Visual Language Models (VLM) models that can be 
rapidly adapted to novel tasks using only a handful of annotated examples is an open challenge for multimodal machine learning 
research. Table1. cited the work as having been mentioned by the corresponding author on this language model field. 
 
 
 
 
 
 
 
 
 
 

Figure 2. A word cloud showing the frequency of terms used in the articles we reviewed. 
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Figure 3. Mapping of visualize research articles 
 
In Figure 3., by using connecting lines to visually represent the citations for this work, it demonstrates the connection. Useful 
research resources and project state are included in this time-based citation network to arrange this review of the literature. The cited 
research addresses several topics, including model features, datasets, transformer models, and benchmarks for assessing LLM 
performance. The rest of the article is organized as follows. Section 2.1 presents prior related work that has various versions of LLM 
models (Finance base, Clinical base, Vision base, Code-base, Multilingual based)and tables respectively. In Section 3, define the 
configuration of various models with billions of parameters and created taxonomy tables to discuss the detailed methodology of 
LLM models such as (Benchmark and dataset, Dataset content, Implementation details etc.), A mapping of the articles used in this 
paper was also devel-oped Figure 3. In Section 4 (Open Issues and Research Directions ), the open issues and potential future 
directions of LLM mdoels. The conclusions are described in Section 5. 
 

Table 1. Studies on different language models 
Types of Language Models Study 

Statistical language models (SLM) Pre-
trained language models (PLM) Large 

language models (LLM) Neural language 
models (NLM) Transformer language 

models (TLM) 

Jelinek et al. [36], Rosenfeld et al. [37] 
Matthew et al.[38] Kaplan et 

al.[39] Bengio et al.[40] 
Vaswani et al.[3] 

 
II. RELATED WORK 

A. Multilingual Language-image Model 
An artificial intelligence model that can comprehend and produce both textual and visual content across several languages is called a 
multilingual language-image model. In order to assess and provide useful information from both modalities, these models are par-
ticularly trained to process and understand the complicated relationships between words and visuals. Chen et al. [41] study PaLI 
(Pathways Language and Image model), a model that extends this approach to the joint modeling of language and vision. Scheible et 
al.[42] discovered GottBERT is a pure German Language Model. AlexaTM 20B Soltan at al.[43] demonstrate that multilingual 
large-scale sequence-to-sequence (seq2seq) models,).pre-trained on a mixture of denoising and Causal Language Modeling (CLM). 
Dossou et al.[44] present AfroLM, a multilingual language model pretrained from scratch on 23 African languages (the largest 
effort to date) using our novel self-active learning framework. Scao et al.[16] present BLOOM, a 176B-parameter open-access 
Multilingual language model designed. 
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Table 2. Various multilingual language LLMs. 
Models Study Year 

BLOOM 
AfroLM 

AlexaTM 20B 
GottBERT PaLI 

Scao et al.[16] Dossou 
et al.[44] Soltan at 
al.[43] Scheible et 

al.[42] Chen at al.[41] 

2022 
2022 
2022 
2020 
2022 

 
B. Clinical and Biomedical Transformer Model 
A clinical and biomedical transformer model is a type of artificial intelligence that was created with the express purpose of 
processing and analyzing clinical and biomedical text data. These transformer models make use of the architecture of the 
transformer, which has excelled in jobs requiring natural language processing. Clinical notes, electronic health records, research 
articles, and other pertinent sources of clinical and biomedical data are included in the large-scale datasets used to train the clinical 
and biomedical transformer models. These models gain knowledge of the specific words, phrases, and ideas used in the medical 
field. Clinical and biomedical transformer models’ main goals are to derive insightful information, carry out text categorization, 
entity recognition, relation extraction, question answering, and other activities particular to the clinical and biomedical area. Clinical 
decision support, information retrieval, patient risk assessment, and automated documentation are just a few of the activities that 
they may help healthcare workers with. Yang et al.[32] develop from scratch a large clinical language model – GatorTron – using 
>90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP 
tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), 
and medical question answering (MQA). Lee et al.[29] introduce BioBERT (Bidirectional Encoder Representations from 
Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale 
biomedical corpora. Li et al[45] Present Hi-BEHRT, a hierarchical Transformer-based model that can significantly expand the 
receptive field of Transformers and extract associations from much longer sequences. Using a multimodal large-scale linked 
longitudinal electronic health records. Wang et al.[46] propose an innovative causal inference model–InferBERT, by integrating the 
A Lite Bidirectional Encoder Representations from Transformers (ALBERT). Large language models in health care As per Anmol 
et al.[47] has already been proposed that LLMs, such as ChatGPT, could have applications in the field of health care due to the large 
volumes of free-text information available for training models.An LLM trained on more than 90 billion words of text from 
electronic health records (EHR)[28] Author Yang et al. develop a scratch a large clinical language model GatorTron using more 
than 90 billion words of text.  
Existing biomedical and clinical transformer models for clinical concept extraction and medical relation such as BioBERT[29], 
ClinicalBERT[30], BioMegatron[31], GatorTron-base[32], GatorTron-medium[32], GatorTron-large [32]. 
Santosh et al.[48] propose PathologyBERT - a pre-trained masked language model which was trained on 347,173 histopathology 
specimen reports and publicly released in the Huggingface1repository. Comprehensive experiments demonstrate that pre-training of 
transformer model on pathology corpora yields performance improvements on Natural Language Understanding (NLU) and Breast 
Cancer Diagnose Classification when com-pared to nonspecific language models. Jaiswal et al.[49] intorduce RadBERT-CL which 
is"Factually-Aware Contrastive Learning For Radiology Report Classification." Also show that the representations learned by 
RadBERT-CL can capture critical medical information in the latent space. Gu et al.[14] accelerate research in biomedical and 
released state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring BLURB 
benchmark (Biomedical Language Understanding Reasoning Benchmark)). The author challenges, the major advantage of domain-
specific pretraining from scratch stems from having an in-domain vocabulary. Peng et al.[50] introduce BLUE, a collection of 
resources for evaluating and analyzing biomedical natural language representation models. find that the BERT models pre-trained 
on PubMed abstracts and clinical notes see better performance than do most state-of-the-art models. Beltagy et al.[51] SCIBERT 
leverages unsupervised pretraining on a large multi-domain corpus of scientific publications to improve performance on 
downstream scientific NLP tasks. Alsentzer et al.[30] released Clinical BERT models for clinical text: one for generic clinical text 
and another for discharge summaries specifically. Also, demonstrate on several clinical NLP tasks that improve-ments this system 
offers over traditional BERT and BioBERT. Shin et al.[31] come up with BioMegatron consider as large biomedical domain 
lanuage model. Which show consistent improvements on benchmarks with larger BioMegatron model trained on a larger domain 
corpus, contributing to our understanding of domain language model applications. 
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Table 3. Various biomedical and clinical LLMs. 
Models Study Year 

GatorTron-base 
BioBERT 

EntityBERT Hi-
BEHRT InferBERT 

PathologyBERT 
PubMedBERT 

SciBERT RadBERT 
ClinicalBERT 

BlueBERT 
BioMegatron 

Yang et al.[32] Lee et 
al.[29] Lin et al.[52] 
Li et al[45] Wang et 

al.[46] 
Santosh et al.[48] Gu et 

al.[14] Beltagy et 
al.[51] Yan et al.[53] 
Alsentzer et al.[30] 

Peng et al.[50] Shin et 
al.[31] 

2022 
2020 
2021 
2022 
2021 
2022 
2021 
2019 
2022 
2019 
2019 
2019  

C. Large Language Model for Finance 
These models can analyze and grasp complicated financial text data efficiently by making use of deep learning techniques like 
transformer architectures. They can help with jobs including compiling financial reports, summarizing financial documents, 
researching investments, managing portfolios, and analyzing financial news. Financial professionals’ ability to make more educated, 
data-driven decisions may be improved by the use of large language models in the field. They can offer insights for investing plans, 
assist in identi-fying market trends, evaluate risk factors, and spot abnormalities. Wu et al.[15] present BloombergGPT (A large 
language model for finance), a 50 billion parameter language model that is trained on a wide range of financial data. Author 
validates BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most 
accurately reflect our intended usage. Scao et al.[16] present BLOOM, a 176B-parameter open-access language model designed and 
built. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising 
hundreds of sources in 46 natural and 13 programming languages (59 in total). Black et al.[17] introduce GPT-NeoX-20B, a 20 
billion parameter autoregressive language model trained on the Pile[54],evaluate its performance on a range of language-
understanding, mathematics, and knowledge-based tasks. Araci et al.[55]introduce FinBERT language model based on BERT, to 
tackle NLP tasks in the financial domain. Zhang et al.[13] present Open Pre-trained Transformers (OPT), a suite of decoder-only 
pre-trained transformers ranging from 125M to 175B parameters. Yang et al.[12] present an open-source large language model 
FinGPT, for the finance sector. FinGPT responds innovatively by lever-aging pre-existing LLMs and fine-tuning them to specific 
financial applications. Xie at al.[56] discovers the PIXIU LLM model for Instruction Data and Evaluation Benchmark for Finance. 
 

Table 4. Various finance-based LLMs. 
Models Study Year 

BloombergGPT 
GPT-NeoX OPT 

BLOOM-176B 
FinBERT FinGPT 

PIXIU 

Wu et al.[15] Black 
et al.[17] Zhang et 

al.[13] Scao et 
al.[16] Araci et 
al.[55] Yang et 

al.[12] Xie at al.[56] 

2023 
2022 
2022 
2022 
2019 
2023 
2023 

 
D. Classifications of Vision Language Models 
Artificial intelligence models called "vision language models" are created to compre-hend and produce data from the combination of 
visual and linguistic inputs. These models seek to close the gap between the comprehension of images or other visual content and 
that of natural language. These models are capable of carrying out a number of tasks, such as image captioning, visual question 
answering (VQA), image generation from text descriptions, and image-text matching. For instance, a vision language model can 
produce a caption for an image that accurately describes the image’s content.  
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Similar to this, the model can offer pertinent responses or justifications when asked a text query regarding a picture. Alayrac et 
al.[57] comes with Flamingo, a family of Visual Language Models (VLM) models that can be rapidly adapted to novel tasks using 
only a handful of annotated examples is an open challenge for multimodal machine learning research. Monajatipoor et al.[58] 
Vision-and-language (VL) models take image and text as input and learn to capture the associations between them.Prior studies 
show that pre-trained VL models can significantly improve the model performance for downstream tasks such as Visual Question 
Answering (VQA).Koetal.[59]presentF-VLM,asimpleopen-vocabularyobjectdetectionmethodbuilt upon Frozen Vision and 
Language Models. Where F-VLM simplifies the current multi-stage training pipeline by eliminating the need for knowledge 
distillation or detection tailored pretraining. Zhu et al.[11] projected MiniGPT-4 which is a enhancing vision-language 
understanding with advanced large language models. Hong et al.[60] propose a recurrent BERT model that is time-aware for use in 
of vision-and-language navigation(VLN). In this paper author propose a recurrent BERT model that is time-aware for use in VLN. 
Thrush et al.[61] present a novel task and dataset for evaluating the ability of vision and language models to conduct visio-linguistic 
compositional reasoning, which we call Winoground. Wang et al.[62] propose a smaller and faster VL model, MiniVLM, which can 
be fine-tuned with good performance on various downstream tasks like its larger counterpart. MiniVLM consists of two modules, a 
vision feature extractor and a transformer-based vision-language fusion module. 
 

Table 5. Various vision language LLMs. 
Models Study Year 

Flamingo 
BERTHop F-

VLM 
MiniVLM 
VLN-BERT 
Winoground 
MiniGPT-4 

Alayrac et al.[57] 
Monajatipoor et al.[58] 

Kuo et al.[59] Wang et 
al.[62] Hong et al.[60] 

Thrush et al.[61] Zhu et 
al.[11] 

2022 
2022 
2022 
2020 
2021 
2022 
2023 

 
 
E. Classifications of Code Large Language Model (Code LLMs) 
Large-scale language models have the potential to promote programming by pro-moting code reuse, knowledge sharing, and 
developer collaboration. They can aid in eliminating errors, automating repetitive coding processes, and accelerating the develop-
ment process.  
A code big language model is designed to help programmers with a variety of coding-related tasks. These models are capable of 
tasks like code completion, code generation, code summarization, and code translation and can comprehend the syntax, semantics, 
and programming patterns of code.  
Luo et al.[63] In this paper introduced Wiz-ardCoder, which empowers Code LLMs with complex instruction fine-tuning, by 
adapting the Evol-Instruct method to the domain of code. Nijkamp et al.[64] release a family of large language models up to 16.1B 
parameters, called CODEGEN, on natural language and programming language data. Jain et al.[65] present an approach to augment 
these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the 
syntax and semantics of programs. Wang et al. [66] present CodeT5,a unified pre-trained encoder-decoder Transformer model that 
better leverages the code semantics conveyed from the developer-assigned identifiers. 
 

Table 6. Various code language models (Code LLMs) 
Models Study Year 

WizardCoder 
CodeGen Jigsaw 

CodeT5 

Luo et al.[63] 
Nijkamp et al.[64] 

Jain et al.[65] Wang et 
al. [66] 

2023 
2022 
2022 
2021 
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III. TAXONOMY TABLES OF VARIOUS LLM MODELS 
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Table 12. Detailed of several existing LLMs configuration with Millions/ Billions of parameters. 
Model Optimizer and Layers Model size Reference 

GPT-2 GPT-3
Microsoft DialoGPT 

BloombergGPT Vicuna 
Dolly2.0 BLOOM 

LLaMA Jurassic-1 
GLM PaLM 
OPT 175B Chinchilla 

BERT-base 
BERT-large ALBERT 

RoBERTa base RoBERTa 
large 

Megatron-Turing NLG 
BioBERT ClinicalBERT 
BioMegatron GatorTron-
base GatorTron-medium 
GatorTron-large Gopher 
GPT-NeoX Bloom 

176 
PubMedBERT AlexaTM 
20B AfroLM-Large Hi-
BEHRT PathologyBERT 

BioMegatron 
BioMegatron medium 

BioMegatron large 
BloombergGPT BLOOM-
style GPT-NeoX-20B 

CODEGEN 

Adam, 12 layers Adam, 96 
layers - 

GELU, 70 layers -- 
Adam,70 layers AdamW,-- 

AdamW,-Adafactor,-
AdamW, 96 Adam,80 
layers Adam,12 layers 

Adam,24 layers Adam ,12 
layers Adam,12 layers 

Adam,24 layers -- 
Adam Adam,24 Adam,24 

layers Adam,48 layers 
Adam, 56 layers Adam,-

AdamW Adam,24 layers - 
-,46layers -,10layers 

Adam, layers Adam, 12 
Layers Adam, 24 Layers 
Adam, 36 Layers Adam, 

24 Layers Adam, 70 Layers 
Adam, 70 Layers Adam, 

44 Layers - 

1.5 billion 175 
billion 147 
million 50 
billion 13 
billion 12 
billion 176 
billion 65 
billion 178 
billion 130 
billion 540 
billion 175 
billion 70 
billion 100 
million 300 
million 12 
million 125 
million 355 
million 530 
billion 13.5 
billion 1.28 
billion 1.2 
billion 345 
million 3.9 
billion 8.9 
billion 280 
billion 20 
billion 176 
billion 110 

million 19.75 
billion 264 
million 264 
million 347 
million 345 
million 800 
million 1.2 
billion 50.6 
billion 50 

billion 20 
billion 16.1 

billion 

[131] 
[132,133] 
[134,135] 

[15] [136] 
[19] [34] 
[9] [137] 
[138] [139] 
[13] [67] 
[14] [14] 
[140] [18] 
[18] [141] 

[29] 
[30,142] [31] 

[32,143] 
[32,143] 
[32,143] 

[144] [17] 
[16] [89] 
[43] [44] 
[45] [48] 
[31] [31] 
[31] [15] 
[145] [17] 

[64] 

 
In Table12. based on what we’ve seen, the billions to millions range. Dataset optimiza-tion is a crucial step in LLM models, 
particularly those with a large number of parameters, with the goal of improving the model’s functionality and speed. To make sure 
the training data is representative, diverse, and in line with the anticipated results, dataset optimization entails carefully choosing 
and preparing the training data. Researchers and programmers can enhance the model’s capacity to comprehend and produce words, 
leading to more precise and cogent responses, by optimizing the dataset. Basically, dataset optimization helps LLM models reach 
their full potential by supplying high-quality training data that is in line with the particular tasks or objectives at hand. 
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IV. OPEN ISSUES AND RESEARCH DIRECTIONS 
Due to the size of large language models, their deployment requires a high level of technical expertise, including a firm 
understanding of deep learning, transformer models, distributed software, and hardware as well as ethical and legal issues arising 
from the liability and harm potential of such systems. 
Many professionals in the IT sector are working to support research and create tech-nologies that can open up access to broad 
language models, allowing customers and companies of all sizes to take advantage of them. 
It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured 
electronic health records (EHRs) within the current legal and ethical framework while ensuring privacy of patient information and 
accuracy of the information provided[28]. 
Scaling and maintaining large language models can be difficult and expensive. Build-in a foundational large language model often 
requires months of training time and millions of dollars [33]. 
And because LLMs require a significant amount of training data, developers and enterprises can find it a challenge to access large-
enough datasets to train such systems while ensuring data is collected ethically and with permission of the parties involved. 
Maintaining them by putting in place systems to ensure accurate and useful outputs at scale is also a significant challenge. 
 

V. CONCLUSION 
In this study, the most recent advances in large language models (LLMs) were show-cased and the key concepts, findings, and 
strategies for understanding and exploiting LLMs were presented. A wide range of issues are covered in this study, including 
model features, datasets, transformer models, and LLM performance benchmarks. Recent studies have focused on various 
LLM types, such as multilingual LLMs, biomedical and clinical LLMs, vision language LLMs, and code language models. 
This survey attempts to cover the most recent research on LLMs and provides academics and engineers with a helpful 
resource. 
 
A. Acronyms 
BERT Bidirectional Encoder Representation From Transformers. 
BioBERT Bidirectional Encoder Representations from Transformers for Biomedical Text Mining. 
BLUE Biomedical Language Understanding Evaluation. 
C4 Colossal Clean Crawled Corpus. 
LLaMA Large Language Model Meta AI. LLM Large Language Model. 
MTEB Massive text embedding benchmark. 
RoBERTa Robustly Optimized BERT approach. 
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