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Abstract: The SHA-256 hash function is a standardized and trusted algorithm that takes a set of data and produces a unique, 
deterministic, and irreversible representation called a hash or digest. A component of other protocols, SHA-256 protects 
password storage, secures and verifies Bitcoin transactions, and authenticates internet communication.  We did a thorough 
analysis of the hash function and a preexisting Verilog implementation at the algorithmic, architectural, and circuit levels to 
identify and address the bottlenecks. We propose a new SHA-256 hardware architecture that utilizes binary tree structured adder 
trees to speed up hash computation. The proposed design targets Intel DE10-Lite FPGA and achieves 23% increase in 
computation speed. In applications, this can offer faster online communication or a more secure Bitcoin network. 
Keywords: Hash function, Verilog, Field Programmable Gate Array, Binary Tree, Modular addition. 
 

I.      INTRODUCTION 
Hash functions are extremely useful and are used in almost all information security applications [1]. It is a mathematical function 
that converts a numerical input value into another compressed numerical value. Secure Hash Algorithms, also known as SHA, are a 
family of cryptographic functions designed to keep data secured. It works by transforming the data using a hash function: an 
algorithm that consists of bitwise operations, modular additions, and compression functions. The SHA-256 algorithm is a secure and 
trusted industry standard used in e-transactions, Bitcoin, and certain United States governmental applications to protect information 
from adversaries. The Secure Hash Signature Standard (SHS) was proposed by the US National Institute of Standards and 
Technology (NIST) in 2002 [2]. The standard describes four secure hash algorithms (SHA) and the version which outputs a 256-bit 
message digest is referred to as SHA-256. Technology leaders and public-sector agencies widely use and safely rely on SHA-256 
due to the algorithm not having any known vulnerabilities that make it insecure and not being “broken” unlike other popular 
algorithms. 
Hash functions take a message and produce a digest, a fixed-length representation of the message [1]-[3]. Key properties of hash 
functions are that the same message always yields the same digest, no two messages share the same digest, and a message cannot be 
decrypted from a given digest. Hash functions are used to identify data without revealing it, to identify whether a piece of data 
changed, or to confirm whether two pieces of data are the same. 
Hardware implementations of hash functions are advantageous over software implementations for better security and faster speed. 
Field Programmable Gate Array (FPGA) devices provide an excellent technology for the implementation of general purpose 
cryptographic algorithms [4]–[12]. They are used as coprocessors for microprocessor based systems or in high performance 
embedded applications as they are more physically secure by nature and are physically separated from the main processor.  They 
can also perform computation more efficiently due to specialized logic. Moreover, FPGAs are well-suited for implementing hash 
functions as they are flexible and easily upgradable. 
This research proposes a new SHA-256 hardware architecture targeting Intel DE10-Lite FPGA that utilizes binary tree structured  
adder trees to reduce computation time. The study modifies a preexisting design in Verilog [5]. Quartus Prime tools are utilized to 
examine the longest delay and to calculate the maximum operating speed. 

 
II.      THE SHA-256 ALGORITHM 

SHA-2 is a set of hash functions – SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 - standardized by 
NIST [2], [13]. They are one-way algorithms that process a set of binary data, called a message, to produce a condensed 
representation called a hash, message digest or simply digest. For each algorithm, no two messages are mapped to the same digest - 
every digest is unique to its original message. The numerous algorithms available have different security strengths, dependent on the 
digest size. The digest size ranges from 224 to 512 bits, as denoted by the name of the algorithm. In addition, the algorithms differ 
by the message size, the word size, and the constants. 
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The SHA-256 algorithm takes a message of length less than 264 bits and produces a message digest of 256 bits. It has a security of 
128 bits, which means that a birthday attack can produce a collision in O(2128) time [14]. All operations in SHA-256 are done on 32-
bit words, and all additions are done modulo 232. The algorithm uses six logical operations as: 
Ch(x, y, z) = (x ∧ y) ⊕ (∼ x ∧ z) 
M aj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) 
Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x) 
Σ1(x) = ROTR6 (x) ⊕ ROTR11(x) ⊕ ROTR25(x) 
σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x) 
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x) 
where ∧, ∼ and ⊕ are the bitwise AND, NOT and XOR operations; and ROTRm(x) denotes a rotate right function of x m times and 
SHRm(x) denotes a shift right function of x m times. 
The following subsections describe the process for SHA-256, though all algorithms follow the same two-stage process: 
preprocessing and hash computation. Information on the other algorithms can be found in the official NIST standard [13]. 
 
A. Preprocessing 
1) Message Padding: Padding is performed before hash computation to ensure the message is a multiple of 512 bits. Suppose a 

message M is of length l  bits. First, append a “1” to the end of the message, followed by k “0” bits, where k satisfies the 
equation l  + 1 + k = 448 mod 512. Then, the binary representation of l as a 64-bit number is appended so that the length of the 
padded message is a multiple of 512 bits.        

2) Message Parsing: The padded message is then parsed into N 512-bit blocks: M(1), M(2), … , M(N). A block M(i) is represented as 
16 32-bit words: M0(i), M1(i), … , M15(i). 

 
B. Hash Computation 
The 256-bit hash output is denoted as H, and is divided into eight 32-bit words H0, H1,…, H7. The hash computation is performed in 
two stages. 
1) Message Expansion: Message expansion, also known as message schedule or block decomposition, expands the message block 

from 512 bits to 2048 bits, specifically from 16 32-bit words to 64 32-bit words, denoted as Wt. The 64 words are constructed 
as follows: 

      (1) 

such that 
  

  
 

2) Message Compression: Message compression is an iterative process that condenses the expanded block down to eight 32-bit 
words ( H0, H1,…, H7), the digest size of 256 bits. First, H0

(0) through H1
(0) are initialized to the first 32-bits of the fractional 

parts of the square roots of the first eight prime numbers. Next, eight working variables are set to the (i-1)st  hash value: 
       
    

For t = 0 to 63: 
               

        
where   , and  j(a,b,c)    
such that 

  
  

  
  

Kt  are the first thirty-two bits of the fractional parts of the cube roots of the first sixty-four prime numbers. 
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After the 64 rounds of processing for Hi, the new value of Hj
(t)

 is computed: 
     
    

 
A direct translation of the SHA-256 algorithm into hardware is shown in Figure 1, consisting of the message compressor (left) and 
the message expander (right). A straightforward implementation leads to a scheme whose critical path is rather long, allowing a 
clock rate not sufficiently high enough for many applications. In such cases, it becomes necessary to implement the corresponding 
algorithms in hardware so that the corresponding delays are not noticeable. 

 
Fig. 1. Block diagram of the SHA-256 algorithm comprised of message compressor (left), and message expander (right) 

 
Custom hardware implementations of the hash functions SHA-256, 384 and 512 are available, obtaining high clock rates through a 
reduction of the critical path length, both in the Expander and in the Compressor of the hash scheme [15]. This is obtained by 
applying suitable transformations to the simplest scheme shown in Figure 1. The transformations are called delay balancing and 
quasi-pipelining. Their VHDL implementation using Synopsys Design Compiler on a Sun workstation resulted in a clock rate well 
exceeding 1 GHz using 0.13μm technology. 
 

III.      SHA-256 IMPLEMENTATION ON DE-10 LITE FPGA 
Our research goal here was to speedup the simple scheme of SHA-256 implementation shown in Figure 1 and implement it on a 
DE10-Lite FPGA using Verilog coding. In this regard, first a Verilog implementation of SHA-256 by GitHub user Secworks was 
first analyzed for its structure and functionality, while simultaneously comparing it to the SHA-256 algorithm (Secworks).  
Individual testbenches were provided for each module to verify its correctness. The modules were examined in RTL viewer in 
Quartus Prime, and the critical paths were analysed. 
 
A. Sha256_k_constants.v 
Sha256_k_constants.v module holds the 64 constants, the first thirty-two bits of the fractional parts of the cube roots of the first 
sixty-four prime numbers. It functions as read-only memory, comprised of a 6-bit address line for 64 rounds and a 32-bit output.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XII Dec 2023- Available at www.ijraset.com 
     

 
1178 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

B. Sha256_w_mem.v 
Sha256_w_mem.v is the message expander module, expanding the 16 words of the padded block to the 64 words. This module 
executes Equation 1. For rounds 0 to 15, each of the 16 words of the block are directly output. For rounds 16 to 64, new words are 
generated using logical and addition operations. 
 
C. Sha256_core.v 
Sha256_core.v is the main core, comprised of the constants module, the message expander module, and the message compressor 
logic. It iteratively computes the values for registers A through H.  
 
D. Sha256.v 
Sha256.v is a top-level wrapper with a 32-bit interface for simple integration within other systems.  
 

IV.      PROPOSED ARCHITECTURE 
Figure 2 shows the data paths for registers A and E in Figure 1, according to the RTL viewer. A total of 10 operand additions are 
needed for register A and 9 operands for register E. This results in a critical path delay of six 32-bit adder stages for both A and E. 
To minimize the critical path delay, we rearranged the operands and added them in a binary tree like fashion. This results in 
logarithmic reduction in delay, thereby addition time can be reduced to 4 adder stages. The modified data path is shown in Figure 3. 
In this manner the critical path delay is reduced from six adder stages to four adder stages. 

 
Fig. 2. Data Paths of A, E, and Wt  from Figure 1. 

 

 
Fig. 3.  Optimized Data paths of registers A, E, and Wt 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XII Dec 2023- Available at www.ijraset.com 
     

 
1179 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

V.      MODIFICATIONS IN VERILOG CODE 
The modifications according to our proposed design were introduced in Verilog. This was done in three stages. First, an adder tree 
was implemented for Wt.  Next, an adder tree was implemented for a_reg. Lastly, an adder tree was implemented for e_reg. 
Simulations were then carried out.  
Figure 4 shows the excerpts of the original unmodified sha256_core.v, involving T1 computation logic, and state updates for 
registers A through H.  The code uses blocking statements, so they are executed sequentially. First,  is computed, then Ch, and 
finally T1 is computed. T1 involves a five-operand addition of h, , Ch, Wi, and Ki. Lastly, a is computed by adding T1 and T2. This 
is according to the data path shown in Figure 2. Registers A through H are then updated for 64 rounds.  
always @* 
    begin: t1_logic 
      reg [31:0] sum1; 
      reg [31:0] ch; 
 
      sum1 = {e_reg[5:0], e_reg[31:6]}^ 
             {e_reg[10:0], e_reg[31:11]}^ 
             {e_reg[24:0], e_reg[31:25]}; 
      ch = (e_reg & f_reg)^((~e_reg) & g_reg); 
      t1 = h_reg+sum1+ch+w_data+k_data; 
    end // t1_logic 
    . 
    . 
    . 
      if (state_update) 
        begin 
          a_new  = t1 + t2; 
          b_new  = a_reg; 
          c_new  = b_reg; 
          d_new  = c_reg; 
          e_new  = d_reg + t1; 
          f_new  = e_reg; 
          g_new  = f_reg; 
          h_new  = g_reg; 
          a_h_we = 1; 
        end 

Fig. 4.  Unmodified T1 logic and state update. 
Figure 5 shows the first modification that was made, which implemented the addition using a binary tree of adder stages for register 
a and Wt as shown in Figure 3. Once again blocking statements are used, so they are executed sequentially. First,  is computed. 
Then, h and Kt are added together in adder1. Next,  and Ch are added together as adder2, Next, adder1 and adder2 are added 
together as adder3.  Wt and adder3 are then added together, resulting in T1. Lastly, T1 and T2 are added together, resulting in a.  
reg [31:0] sum1; 
  reg [31:0] adder1; 
  reg [31:0] adder2; 
  reg [31:0] adder3; 
  always @* 
    begin : t1_logic 

sum1 = ({e_reg[5:0], e_reg[31:6]}^ 
{e_reg[10:0],e_reg[31:11]}^{e_reg[24:0], e_reg[31:25]}); 

      adder1 = h_reg + k_data;    //h + kt 
adder2 = sum1 + ((e_reg & f_reg)^((~e_reg) & g_reg)); //sum1 + ch 
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      adder3 = adder1 + adder2; //h + kt + ch + sum1 
t1 = w_data + adder3;   

      end // t1_logic  
      . 
     . 

if (state_update) 
        begin 
          a_new  = t1 + t2; 
          b_new  = a_reg; 
          c_new  = b_reg; 
          d_new  = c_reg; 
          e_new  = d_reg + t1; 
          f_new  = e_reg; 
          g_new  = f_reg; 
          h_new  = g_reg; 
          a_h_we = 1; 
        end 
Fig. 5. Modified T1 logic using adder tree and state update. 
The Wt modification was made on module sha256_w_mem.v. The logic is part of the message expander, that computes Wt, from 
rounds 16 through 64, shown in Equation 1. Wt is computed by adding four operands, σ1, w9, σ0, and w0. Figure 6 shows an excerpt 
of the unmodified module. 
   w_0  = w_mem[0]; 
       w_1  = w_mem[1]; 
       w_9  = w_mem[9]; 
       w_14 = w_mem[14]; 
       d0 = {w_1[6:0], w_1[31:7]}^ 
           {w_1[17:0], w_1[31:18]}^ 
           {3'b0, w_1[31:3]}; 
       d1 = {w_14[16:0], w_14[31:17]}^ 
           {w_14[18:0], w_14[31:19]}^ 
           {10'b0, w_14[31:10]}; 
       w_new = d1 + w_9 + d0 + w_0; 
 
Fig. 6. Unmodified Wt logic. 
Figure 7 shows the modified logic for computing Wt from rounds 16 through 64 by utilizing an adder tree. First, w0 and σ0  are 
added together as adder1. Then, w9 and σ1  are added together as adder2. Lastly, adder1 and adder2 are added together to result in 
Wt. 
   w_1  = w_mem[1]; 
       w_14 = w_mem[14]; 
       d0 = {w_1[6:0], w_1[31:7]}^ 
           {w_1[17:0], w_1[31:18]}^ 
           {3'b0, w_1[31:3]}; 
       d1 = {w_14[16:0], w_14[31:17]}^ 
           {w_14[18:0], w_14[31:19]}^ 
           {10'b0, w_14[31:10]}; 
       adder1 = w_mem[0] + d0; 
       adder2 = w_mem[9] + d1; 
       w_new = adder1 + adder2; 
Fig. 7. Modified Wt logic using adder tree. 
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VI.      VERIFICATION 
The Verilog implementation of SHA-256 algorithm was verified by running the testbench simulation, tb_sha256_core.v, that was 
provided in the open-source code [16]. Modelsim 21.1 was used to run the simulation. Figure 8 shows the three test case inputs and 
the corresponding results: test cases (a), testbench waveforms (b), and testbench output (c). Three test cases were performed. Test 
case 1 inputs one block, the string “abc”, test case 2 inputs two blocks, the string  “abcdbcdecdefdefgefghfghighijhijkijkljk 
lmklmnlmnomnopnopq”, and test case 3 inputs nine blocks. The output hash is tb_digest, and the completed flag is tb_digest_ready. 
Simulating the testbench for each modification verified that the design was functioning properly, and that implementing the adder 
trees was functionally possible. 
begin : sha256_core_test 
      // TC1: Single block message: "abc". 
      tc1 = 
512'h61626380000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000018; 
      res1 = 256'hBA7816BF8F01CFEA414140DE5DAE2223B00361A396177A9CB410FF61F20015AD; 
      single_block_test(1, tc1, res1); 
      // TC2: Double block message. 
      // "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 
      tc2_1 = 
512'h6162636462636465636465666465666765666768666768696768696A68696A6B696A6B6C6A6B6C6D6B6C6D6E6C6D6E6
F6D6E6F706E6F70718000000000000000; 
      res2_1 = 256'h85E655D6417A17953363376A624CDE5C76E09589CAC5F811CC4B32C1F20E533A; 
      tc2_2 = 
512'h00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000001C0; 
      res2_2 = 256'h248D6A61D20638B8E5C026930C3E6039A33CE45964FF2167F6ECEDD419DB06C1; 
      double_block_test(2, tc2_1, res2_1, tc2_2, res2_2); 
    end 
begin : issue_test; 
      block0 = 
512'h6b900001_496e2074_68652061_72656120_6f662049_6f542028_496e7465_726e6574_206f6620_5468696e_6773292c_206d
6f72_6520616e_64206d6f_7265626f_6f6d2c20; 
      block1 = 
512'h69742068_61732062_65656e20_6120756e_69766572_73616c20_636f6e73_656e7375_73207468_61742064_61746120_697
32074_69732061_206e6577_20746563_686e6f6c; 
      block2 = 
512'h6f677920_74686174_20696e74_65677261_74657320_64656365_6e747261_6c697a61_74696f6e_2c496e20_74686520_6172
6561_206f6620_496f5420_28496e74_65726e65; 
      block3 = 
512'h74206f66_20546869_6e677329_2c206d6f_72652061_6e64206d_6f726562_6f6f6d2c_20697420_68617320_6265656e_20612
075_6e697665_7273616c_20636f6e_73656e73; 
      block4 = 
512'h75732074_68617420_64617461_20697320_74697320_61206e65_77207465_63686e6f_6c6f6779_20746861_7420696e_7465
6772_61746573_20646563_656e7472_616c697a; 
      block5 = 
512'h6174696f_6e2c496e_20746865_20617265_61206f66_20496f54_2028496e_7465726e_6574206f_66205468_696e6773_292c2
06d_6f726520_616e6420_6d6f7265_626f6f6d; 
      block6 = 
512'h2c206974_20686173_20626565_6e206120_756e6976_65727361_6c20636f_6e73656e_73757320_74686174_20646174_612
06973_20746973_2061206e_65772074_6563686e; 
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      block7 = 
512'h6f6c6f67_79207468_61742069_6e746567_72617465_73206465_63656e74_72616c69_7a617469_6f6e2c49_6e207468_6520
6172_6561206f_6620496f_54202849_6e746572; 
      block8 = 
512'h6e657420_6f662054_68696e67_73292c20_6d6f7265_20616e64_206d6f72_65800000_00000000_00000000_00000000_0000
0000_00000000_00000000_00000000_000010e8; 
      expected = 256'h7758a30bbdfc9cd92b284b05e9be9ca3d269d3d149e7e82ab4a9ed5e81fbcf9d; 
      $display("Running test for 9 block issue."); 

(a) 

 
(b) 

 
(c) 

Fig. 8. tb_sha256_core test cases (a), waveforms (b), and output (c). 
 

VII.      RESULTS 
The original design and the four modifications were compared for their maximum operating frequency, area, and hashrate. The 
hashrate is the reciprocal of the hash time. If a new hash is generated every N cycles (in our case every 64 cycles),  
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Table 1 shows the comparison. A0 is the original design, B1 implements an adder tree on register a, B2 implements an adder tree on 
registers a and e, B3 implements an adder tree on registers a, e, and Wt, and C1 switches Wt and  . The original design, A0, 
operates at a maximum clock rate of 67.18 MHz, with a hash rate of 1049.69 KH/s. B1, B2, B3, and C1 are 7.67%, 8.89%, 10.00%, 
and 23.00% faster, respectively. A0 uses 3572 lookup tables (LEs), B1, B2, B3 uses 4.26%, 4.81%, and 5.21% more LEs, and C1 
uses 0.7% more LEs. A0, B1, B2, and B3 have practically the same hash rate/area of 300 H/s/LE. C1 has the best performance per 
area at 359 H/s/LE. 

TABLE I 
SHA-256 MODIFICATION COMPARISON 

Ver. Modification Fmax (Slow 1200mV 
85C) (MHz) 

Hashrate 
(KH/s) 

Area 
(LEs) 

Hashrate/Area 
(H/s/LE) 

A0 Original 67.18 1049.69 3572 294 

B1 Adder tree - a_reg 72.33 1130.16 3724 303 

B2 Adder tree: a_reg, e_reg 73.15 1142.97 3744 305 

B3 Adder tree: a_reg, e_reg, 
Wt 

73.87 1154.22 3758 307 

C1 Adder tree: a_reg, e_reg, 
Wt. Swaped Wt and   

82.69 1292.03 3600 359 

 
VIII.      CONCLUSIONS 

Hash functions are naturally well-suited to be implemented in hardware as they involve the logical operations, the manipulation of 
bits, and iterative rounds. Furthermore, hardware acceleration is advantageous over software since specialized logic serves one 
purpose or operation; where as software is executed on a general-purpose processor. 
SHA-256 hardware implementation was studied at the algorithmic, architectural, and circuit levels to find areas for improvement 
specifically aimed at speeding up the computation time. As the critical path was identified as the addition of seven operands in 
sequence, it was decided to parallelize these additions using adder trees. This resulted in a design with four adder stages in sequence, 
resulting in a hashrate 23% faster than the original design, while achieving the best performance per area of 359 H/s/LE.  
We also noticed many avenues for further research. One is to compare the performance of this SHA-256 core with software 
counterparts. Ideally, a software program needs to be written for a soft-core processor for the same FPGA, the DE10-Lite. 
Additionally, the SHA core could be physically tested and implemented in a system within the DE10-Lite and other FPGAs such as 
the DE-2. 
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