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Abstract: This paper provides a simulation-based evaluation that addresses memory management problems throughout Big Data 
processing. A significant problem occurs with in-memory computing when there is not enough available memory for processing 
the whole chunk of data, and hence some data must be selected for deletion to make room for new ones. The selected research 
strategy is to use different cache selection and replacement algorithms, such as Adaptive Replacement Cache (ARC) and Low 
Inter-Reference Recency Set (LIRS) algorithms, besides the default one, which is Least Recently Used (LRU). A simulator was 
built by the authors to assess the use of different caching approaches on Big Data platforms. The evaluation showed that the 
LIRS and the ARC algorithms gave a better hit ratio for different workloads than the LRU algorithm. 
 

I. INTRODUCTION 
The advent of Big Data has necessitated the development of efficient data processing techniques. In-memory computing, which 
leverages main memory for data processing, has emerged as a promising approach to accelerate data analytics. However, the limited 
capacity of main memory necessitates the eviction of less frequently accessed data to accommodate new data. This process, known 
as cache replacement, significantly impacts the overall performance of in-memory computing systems.  

 
A. Overview 
New technologies are needed for real data analytics since some data are continuously gathered, processed, analyzed, and the infor-
mation is usable as soon as it is generated [1], [2]. There is no one-size-fits-all approach to create a Big Data architecture due to the 
rapid advancement of technology and the highly competitive market in which it operates.  

 
B. Problem Description   
In various Big Data platforms that support in-memory processing, such as Apache Spark and Apache Flink, the choice of which data 
to cache in memory is entirely up to the developer [3][4][5]. When creating an application consisting of actions with complex de-
pendencies, it might take time to decide whether data should be cached or not. Caching all of the data in memory will cause a severe 
reduction in performance when there is not enough memory available. 

 
C. Contribution and Paper Organization 
In this work, a proposal will be discussed, implemented on a simulator, and then evaluated to solve the stated problem. The proposal 
is to modify the cache selection and replacement algorithm used by the processing platform. 
This section serves as an introduction to the paper. The remaining sections of the paper are organized as follows: section 2 discusses 
the cache selection and replacement algorithms used in Big Data platforms; section 3 presents the developed simulator to evaluate 
other algorithms; section 4 presents the results of our evaluation according to the built simulation, and section 5 concludes the re-
search and presents future work. 

 
II. CACHE SELECTION AND REPLACEMENT ALGORITHMS 

Cache selection and replacement algorithms play a crucial role in Big Data platforms, as they address two major challenges: data 
retrieval speed and memory efficiency [3]. In Big Data environments, where large volumes of data must be processed and analyzed 
rapidly, caching helps reduce the load on storage systems by temporarily holding frequently accessed data in faster, albeit smaller, 
memory spaces, such as RAM. The efficiency of cache algorithms significantly impacts overall system performance, making these 
algorithms essential in optimizing data processing, reducing latency, and ensuring system scalability. 
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A. Importance of Cache Selection in Big Data Platforms 
Cache selection refers to the process of identifying which data should be placed in the cache based on patterns in data access. In Big 
Data platforms, where data characteristics and usage patterns can vary widely, an effective cache selection strategy can ensure that 
only the most valuable data remains in the cache. This prioritization improves data availability and speeds up access times for fre-
quently queried information. For instance, in recommendation systems or real-time analytics, data elements that are accessed repeat-
edly benefit from being readily available in the cache. Selecting the correct data to cache, such as hot data or frequently accessed 
user records, can lead to significant performance gains, particularly when data access patterns are predictable patterns. Caching 
algorithms are especially effective in situations where data access patterns are predictable. In these cases, caching algorithms can 
prioritize data that is frequently accessed or recently accessed, thereby improving data availability and access speeds in Big Data 
environments. This can be particularly beneficial in applications with regular or repeated access patterns, as it allows the caching 
system to keep the most relevant data in memory. Hence the caching system is responsible for managing cached data and deciding 
when and what to evict when cache storage reaches its limit. This process is essential in Big Data due to the continuous influx of 
data that quickly fills the cache, requiring efficient replacement strategies to free up space without disrupting performance. Tradi-
tional replacement strategies, like Least Recently Used (LRU) and Least Frequently Used (LFU), are often adapted or combined to 
suit specific Big Data needs, as their standard forms may not account for the highly dynamic and diverse data access patterns in 
these systems. Advanced algorithms, such as Adaptive Replacement Cache (ARC) and Multi-Queue algorithms, offer tailored solu-
tions for Big Data by balancing between recency and frequency of access, thus improving cache efficiency and extending the utility 
of limited memory resources [6][7][8][9]. 
 
B. Big Data Platforms and Memory Caching 
Big Data platforms incorporate a combination of technologies, tools, and algorithms that facilitate data ingestion, storage, and pro-
cessing at large scales. These platforms, such as Hadoop, Spark, and cloud-based solutions like AWS and Google BigQuery, are 
critical for handling structured, semi-structured, and unstructured data efficiently. 
Discussing cache selection and replacement algorithms within Big Data platforms, implies that a large-scale infrastructure optimizes 
data access speeds, reliability, and cost-effectiveness. In these environments, cache algorithms are essential for quickly retrieving 
data from memory, reducing latency, and supporting real-time or near-real-time analytics tasks. These platforms support workloads 
that range from batch processing to interactive querying, making caching strategies a crucial aspect of ensuring the timely availabil-
ity and accessibility of data for high-demand applications. 
Examples of Big Data platforms that use cache selection and replacement algorithms, include Hadoop, Spark, and AWS Big Data 
tools. Each of these platforms addresses the challenges of Big Data through their own architectures and caching mechanisms to 
handle the storage, retrieval, and processing of large datasets efficiently. 
 
Caching has many advantages such as: 
1) Enhanced Performance and Speed: Caching significantly reduces data retrieval time, making high-frequency data quickly ac-

cessible. In large-scale data systems like Spark or Hadoop, caching intermediate results or commonly accessed datasets mini-
mizes the need for repeated disk reads, which are slower than in-memory access. 

2) Optimized Resource Utilization: By efficiently managing the cache, platforms can prevent resource bottlenecks and ensure 
smooth scaling even as data volumes grow. Replacement algorithms that minimize cache misses reduce the need for expensive 
I/O operations, allowing Big Data systems to handle higher loads with greater efficiency. 

3) Adaptability to Diverse Workloads: Modern cache algorithms for Big Data are often designed to be adaptable, considering fac-
tors such as access frequency, recency, and data size. This adaptability is crucial for handling diverse workloads, where access 
patterns can shift between batch processing, real-time querying, and machine learning tasks. 

Overall, caching algorithms in Big Data platforms enhance data accessibility, improve processing efficiency, and enable scalable 
system designs, addressing both the volume and velocity of data processing requirements in modern data-intensive applications. 

 
C. Cache Replacement Algorithms and Memory Caching Techniques 
There are traditional cache replacement algorithms and advanced ones. The following subsections will shed more light on this tax-
onomy. 
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1) Traditional Cache Replacement Algorithms 
The Least Recently Used (LRU) algorithm is a widely used cache replacement strategy. It evicts the least recently accessed data 
block from the cache to make room for new data. While LRU is a simple and effective algorithm, it may not be optimal for all work-
loads. For instance, workloads with periodic access patterns may suffer from LRU's tendency to evict frequently accessed data. 
 
a) Least Recently Used (LRU) 
The LRU policy assumes that the block that has been accessed most recently will most probably be accessed once more shortly and 
that the block that has been least recently utilized should be evicted and replaced by the cache manager when memory is full [6]. 
The implementation of the LRU algorithm consists of only one queue. The Most Recent Used (MRU) block is located at the head of 
the queue, and the Least Recently Used is located at the tail. When a block in the queue is re-accessed, its location is changed to 
stand at the top of the queue. 
 
2) Advanced Cache Replacement Algorithms 
To address the limitations of LRU, more sophisticated algorithms have been developed. The Adaptive Replacement Cache (ARC) 
algorithm dynamically adapts to varying workload characteristics, combining the strengths of both LRU and Most Recently Used 
(MRU) strategies. ARC maintains separate lists for recently used and recently unused data blocks, dynamically adjusting the size of 
these lists based on the observed access patterns. 
Another promising algorithm is the Low Inter-Reference Recency Set (LIRS) algorithm. LIRS focuses on identifying data blocks 
that are likely to be accessed in the near future. By analyzing the reference patterns of data blocks, LIRS can make more informed 
decisions about which blocks to evict. 
 
a) Adaptive Replacement Cache (ARC) 
The ARC algorithm [10] uses two LRU cache buffers to manage both recency and frequency in block accesses. The sizes of the 
queues are dynamically adjusted. In this algorithm, a new block enters into the first LRU stack. This stack is labeled S1 for recently 
used blocks. If the block is re-accessed, the block is moved to the second stack labeled S2 for frequently used blocks.  
 
b) Low Inter-Reference Recency Set (LIRS)  
The Inter-Reference Recency (IRR) metric is used as the recorded history information of each block in the cache, where the IRR of 
a block is equal to the number of distinct blocks between two subsequent accesses to the same block in a request sequence. For ex-
ample, when a request sequence is 3-1-2-4-0-2-3, the IRR of Block 3 equals 4, and the IRR of Block 2 equals 2. According to LIRS 
policy [11], blocks with high IRRs will be chosen for replacement when needed. It is assumed that if a block's current IRR is high, 
its subsequent IRR will likely be high too. 
Memory caching has a long history and is frequently used in processors, operating systems, databases, file systems, web servers, 
and storage systems. In Apache Spark, the only used cache selection and replacement algorithm is the Least Recently Used (LRU) 
[6]. The LRU algorithm performs poorly in some workloads as scanning workloads and cyclic access (loop-like) workloads in 
which the loop length is greater than the cache size. To solve the LRU issues, numerous buffer cache algorithms have been suggest-
ed [8]. Some of these algorithms were studied in [9].  

 
III. PROPOSING AND BUILDING A CACHE SIMULATOR 

To evaluate the performance of these algorithms, a comprehensive simulation study was conducted. The simulation environment 
was designed to mimic real-world Big Data workloads, including various data access patterns and memory constraints. The results 
of the simulation experiments demonstrated that LIRS and ARC consistently outperform LRU in terms of hit ratio and cache effi-
ciency. 
 
A. Simulation-Based Evaluation 
In this paper, a simulator for the cache memory with different eviction techniques was built using Java language. It was proved that 
both adaptive replacement cache (ARC) [10] and low inter-reference recency set (LIRS) [11] algorithms have better performance 
for multiple workloads than LRU. The three algorithms are discussed in the following subsections. 
In Java, a cache simulator that uses multiple caching policies such as LRU, ARC, and LIRS was built by authors to evaluate differ-
ent cache selection and replacement algorithms. Objects are only stored via their ids and size.  
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The cache policies were evaluated using trace-based simulations. The traces that were used were collected from Storage Networking 
Industry Association (SNIA) [12]. SNIA is a non-profit global organization that is committed to making storage networks a full and 
reliable solution for the IT industry. The simulator flow chart is shown in Figure 1, the simulator flow is as follows: 
1) Set parameters, RamSize, BlockSize, and the selection and replacement algorithm to be used (LIRS, LRU, and ARC). 
2) Calculate the number of available blocks= RamSize/BlockSize;  
3) Load the trace file "workload," which contains the ID of the requested blocks in sequence. 
4) Each of the four classes of "Algorithms” has functions 

a) Get (BlockID, Size): check if the requested block is already in the cache or not. If the block is already in the cache, 
then Hits increased by one, and the value returned. 

b) Set (BlockID, Size): If the block is not found in the cache, then the miss is increased by one, and the Set function is 
called. The Set function checks if the cache is not full, then the block is added, else it replaces an existing one accord-
ing to each replacement policy. 

5) At the end, the hit ratio is calculated, which is equal to No. of hits/total No. of requests. The aim of a good replacement policy is 
to minimize the number of misses and increase the number of hits. 

 

 
Figure 1: Simulator Flow Chart 

 
The selection and replacement algorithms were evaluated using two block I/O traces which are OLTP and K5sample. The traces 
were downloaded from SNIA [12] and went through the cleaning phase first to extract only the block id and the block size to be 
used in our simulator. 
OLTP: trace is provided by the authors of the ARC algorithm [10], and it includes references to 3,656,580 requests. 
K5sample: The FUJITSU K5 cloud service's parallel storage workloads were obtained and examined by [7]. A sample of this trace 
with 998 requests was downloaded from SNIA and used in our experiment. 
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IV. EVALUATION AND SIMULATION RESULTS 
Table 1, shows the hit ratio calculated by running the OLTP and K5sample traces as input to the cache simulator and using LRU, 
ARC, and LIRS replacement algorithms. The results show how ARC and LIRS algorithms are better than the LRU algorithm and 
that the LIRS algorithm gave the largest Hit ratio in both traces. From these results, we recommend implementing the LIRS algo-
rithm in the Apache Spark platform [13] as a suggested future work. 

 
Table 1: Simulator Hit Ratio results 

Trace LRU 
AR
C 

LIR
S 

OLTP 75% 
75

% 
95

% 

K5Sample 12.3
% 

14
% 

58
% 

 
A. Impact on Big Data Processing 
The choice of a suitable cache replacement algorithm can significantly impact the performance of Big Data processing systems. By 
selecting an algorithm that aligns well with the specific workload characteristics, organizations can improve query response times, 
reduce resource utilization, and enhance overall system performance. 
 

V. CONCLUSION 
In this paper, the cache selection and replacement policy is used to manage the memory and improve the system performance. The 
only cache selection and replacement policy used in Apache Spark is LRU. Along with the LRU algorithm, two cache policies, 
ARC and LIRS, were created and tested by creating a cache simulator. Both algorithms, especially the LIRS policy, performed bet-
ter than LRU. Therefore, we came to the conclusion that additional cache selection and replacement policies must be added to the 
Apache Spark platform and made available to developers as options. 
 
A. Future Directions 
While LIRS and ARC have shown promising results, there is still room for further research and optimization. Future work may 
explore hybrid algorithms that combine the strengths of multiple strategies, adaptive algorithms that can dynamically adjust their 
behavior based on changing workload patterns, and hardware-accelerated cache replacement mechanisms. Additionally, investigat-
ing the impact of different memory hierarchies and storage technologies on cache replacement algorithms is an important area of 
research. 
By advancing the state-of-the-art in cache replacement algorithms, we can unlock the full potential of in-memory computing and 
drive innovation in Big Data analytics. 
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