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Abstract: Skin diseases continue to be one of the most widely diagnosed medical concerns globally, affecting both developed and 
developing regions at scale. These dermatological conditions, which range from fungal infections and viral lesions to chronic 
autoimmune disorders, demand timely and precise identification to ensure effective treatment. Unfortunately, diagnosis often 
hinges on access to skilled dermatologists and clinical resources, both of which may be limited in rural or underserved areas. 
Manual diagnosis is not only time-consuming but prone to errors due to visual overlap across diseases. 
To address this challenge, our research presents a robust deep learning-based classification system that uses Convolutional 
Neural Networks (CNNs) to automatically detect a wide range of skin diseases from image data. We compiled a diverse and high-
resolution custom dataset consisting of over 8,000 annotated images covering various dermatological conditions including 
Chickenpox, Shingles, Psoriasis, Nail Fungus, Cutaneous Larvae Migrans, Impetigo, and several others. We trained a 
ResNet50-based model, which leveraged transfer learning and advanced preprocessing strategies to enhance classification 
performance. Our model attained over 92% accuracy, demonstrating high generalization capability. In this paper, we explore the 
dataset preparation process, CNN design, training methodology, and evaluation metrics in-depth. Furthermore, we integrate 
state-of-the-art explainability techniques and discuss practical deployment strategies to ensure real-world applicability. The 
results strongly support CNNs as reliable tools for aiding dermatological diagnostics in both clinical and mobile telemedicine 
applications. 
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I. INTRODUCTION 
The human skin, being the most visible and largest organ, acts as a vital protective barrier between the body and the external 
environment. Due to its constant exposure to microbial agents, environmental pollutants, and genetic or immunological disruptions, 
it is susceptible to a wide variety of disorders. These disorders—ranging from infections like Chickenpox and Impetigo to chronic 
conditions like Psoriasis—can have far-reaching impacts on both physical health and psychological well-being. 
Diagnosing skin diseases is traditionally carried out through clinical inspection, dermatoscopic analysis, and histopathological 
evaluation. However, the success of such assessments depends heavily on the availability of expert dermatologists and laboratory 
infrastructure, which is often lacking in resource-constrained settings. Additionally, visual similarities among skin conditions can 
lead to misdiagnosis, delaying treatment and potentially worsening outcomes. With the advent of artificial intelligence, particularly 
deep learning, the landscape of medical diagnostics is transforming. Convolutional Neural Networks (CNNs), a class of deep 
learning models, have demonstrated remarkable accuracy in image classification tasks. Their ability to automatically learn complex 
visual patterns and extract meaningful features without manual intervention makes them well-suited for medical image analysis. 
This research builds on the progress in AI by applying CNNs to the task of multi class skin disease classification using a rich, 
custom-built dataset. By training a ResNet50-based CNN model on a diverse set of skin disease images, we aim to deliver a scalable, 
accurate, and fast classification framework. This paper contributes not only a high-performing model but also offers insights into 
dataset curation, architectural decisions, evaluation metrics, and real-world deployment potential. 

 
II.   LITERATURE REVIEW 

The application of deep learning in dermatology has gained substantial traction over the last decade. Esteva et al. (2017) were 
among the pioneers in this space, demonstrating that CNNs trained on over 100,000 dermoscopic images could match the diagnostic 
accuracy of certified dermatologists in detecting melanoma. Their study used a GoogleNet Inception V3 architecture and served as a 
benchmark for many subsequent works. 
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In a complementary effort, Codella et al. (2019) introduced ensemble CNN models using transfer learning for lesion analysis in the 
ISIC challenge. They combined feature engineering with deep learning to improve robustness across diverse skin tones and lesion 
types. Their approach helped establish a foundation for hybrid CNN models incorporating handcrafted and automated features. 
More recently, Gururaj et al. (2023) proposed DeepSkin, a multi-stage deep learning pipeline employing DenseNet169 and 
ResNet50 to classify seven skin  cancer categories from the HAM10000 dataset. Their use of region-based segmentation, contrast 
enhancement, and hybrid pooling significantly improved classification metrics such as precision and F1-score. Another 
advancement was made through Region-of-Interest (ROI)-based architectures where researchers limited input to high-information 
areas in images, thereby improving model focus and reducing noise. This method was particularly effective in removing irrelevant 
background textures, which often confuse CNNs. However, many of these studies focused on binary classification (benign vs 
malignant), cancer-specific tasks, or limited disease types. Moreover, most used public datasets that lacked diversity in terms of 
ethnicity, disease type, and image capture conditions. Our work builds upon this by constructing a more comprehensive dataset and 
tackling classification across multiple disease categories, including non-cancerous conditions which are often underrepresented in 
literature. 

III. DATASET PREPARATION 
A. Dataset Composition 
Our dataset consists of approximately 8,000 curated and labeled skin images from diverse sources including publicly available 
medical datasets, open-access dermatology portals, academic image libraries, and annotated case studies. Each sample was manually 
reviewed for relevance, clarity, and accuracy. 
The dataset includes images from the following disease classes: 
 Chickenpox 
 Shingles (Herpes Zoster) 
 Psoriasis 
 Nail Fungus (Onychomycosis) 
 Cutaneous Larvae Migrans 
 Impetigo 
 Tinea Corporis 
The class distribution was kept as balanced as possible through stratified sampling and oversampling techniques. Metadata such as 
lesion location, lighting conditions, and camera resolution were documented for potential use in future multi-modal analysis. 

 
B. Image Preprocessing 
To standardize and improve the quality of inputs for training, we applied a multi-stage preprocessing pipeline: 
 Resizing: All images were resized to 224x224 pixels. 
 Normalization: Pixel intensities scaled between 0 and 1. 
 Noise Reduction: Gaussian and median filters were used to suppress background noise. 
 Color Standardization: Applied histogram equalization and CLAHE (Contrast Limited Adaptive Histogram Equalization) for 

uniform contrast. 
 

C. Augmentation 
Employed techniques like 
 Rotation (0°–45°) 
 Zoom in/out (scale = 0.8–1.3) 
 Horizontal and vertical flips 
 Elastic transformations 
 Random brightness/contrast modulation 
This augmentation was dynamically applied during training to simulate image variance in real-world conditions. 

 
D. Data Partitioning 
The dataset was split as follows: 
 Training Set: 70% of the data used for learning 
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 Validation Set: 15% to tune hyperparameters 
 Testing Set: 15% for final model evaluation 
We applied stratified sampling to ensure class representation across all sets. Additionally, class imbalance was addressed using 
SMOTE (Synthetic Minority Oversampling Technique) and weighted loss functions. 

 
. 

IV. METHODOLOGY 
A. Network Architecture: ResNet50 
ResNet50 was chosen due to its performance on large-scale image classification challenges and its efficient use of residual learning. 
The architecture uses identity and convolutional blocks that enable training of deeper networks without suffering from vanishing 
gradients. 
Architecture Summary: 
 Input Layer: 224x224 RGB image 
 5 Stacked Residual Stages: 50 convolutional layers in total 
 Batch Normalization after each Conv2D layer 
 Activation Function: ReLU 
 Global Average Pooling to reduce dimensionality 
 Fully Connected Dense Layer with 512 units 
 Dropout Layer (rate: 0.5) 
 Output Layer: Dense Softmax with N classes (where N = number of diseases) 

 
B. Training Configuration 
 Optimizer: Adam with β1=0.9, β2=0.999 
 Loss Function: Categorical Cross entropy 
 Learning Rate Scheduler: Reduce LR On Plateau (factor=0.5, patience=3) 
 Epochs: 25 
 Batch Size: 32 
 Training Hardware: NVIDIA RTX 3050 (8GB), 16GB RAM 

 
Callbacks: 
 Early Stopping: Halted training after no improvement in 5 consecutive epochs. 
 Model Checkpoint: Saved the best model weights based on validation loss. 
 Tensor Board: Visualized loss and accuracy trends in real-time. 

 
V. EXPERIMENTAL RESULTS 

A. Quantitative Metrics 
The model achieved high performance across all disease classes. The table below summarizes key accuracy metrics: 
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B. Visual Explanations 
We employed Grad-CAM to visualize attention maps of correctly and incorrectly classified samples. This helped identify which 
regions the network focused on, offering insights into model decision-making. Gradients highlighted lesion boundaries and textures 
effectively. 

 
C. Training and Validation Trends 
Plots of training and validation accuracy/loss indicated smooth convergence without signs of overfitting. Data augmentation and 
dropout regularization contributed to stability. 

 
VI.  DISCUSSION 

CNN architectures, when trained on well-curated and augmented datasets, can effectively classify multiple skin diseases. ResNet50 
offered a balanced trade-off between depth and computational efficiency. Data augmentation, class balancing, and transfer learning 
substantially improved generalization. Comparison with state-of-the-art models like Deep Skin reveals competitive performance, 
especially in non-cancerous disease detection. Despite promising results, there are several limitations. Our dataset, though large, 
may still not reflect every skin tone or rare disease variant. Deployment challenges like real-time inference latency, device 
compatibility, and clinical acceptance must be addressed. For increased adoption, future iterations should integrate explainable AI 
(XAI) tools like LIME, SHAP, and trust metrics for clinical validation. 
 

VII. CONCLUSION 
This study introduces a robust deep learning system capable of multi-class skin disease classification using CNNs. By applying a 
ResNet50 architecture trained on a diverse and well-labeled dataset, we achieved high accuracy and strong generalization across 
disease categories. The model demonstrated potential for integration into real-time diagnostic platforms, especially in resource-
limited healthcare settings. 
In future, we aim to: 
 Expand the dataset with more skin tones and rare conditions. 
 Deploy the model in a mobile application using TensorFlow Lite. 
 Collaborate with dermatologists for real-world clinical validation. 
 Incorporate hybrid models combining CNNs with attention mechanisms. 
 Implement model compression techniques for edge deployment. 
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